钢筋混凝土异形柱框架结构抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市建设的发展,出现了很多新型的建筑结构形式,钢筋混凝土异形柱框架结构就是其中之一。这种结构以室内不出现楞角、便于家具布置、扩大房间的有效使用面积等优点,在我国许多城市得到推广和应用。本文在前人研究成果的基础之上,就钢筋混凝土异形柱框架结构的抗震性能,按照从构件到结构的顺序展开研究,主要内容如下:
     第一,针对异形柱的特点,对影响结构抗震性能的主要参数,如层间位移角、轴压比等进行研究。根据对前人试验数据的统计分析,给出了适用于异形柱框架结构的弹性和弹塑性层间位移角限值分别为1/550和1/75;指出了异形柱框架结构的层间变形能力介于普通矩形柱框架结构和剪力墙结构之间;以T形柱为例,推导了异形柱轴压比限值的计算公式,通过与等面积矩形柱的对比分析,认为异形柱的轴压比限值与其截面尺寸的比例关系有关;当腹板受压或翼缘受压时,T形柱轴压比限值存在较大差异;不同的荷载角作用,轴压比限值变化较大;矩形柱的轴压比限值要大于异形柱的轴压比限值。
     第二,将衡量结构在大震作用下抗震性能的重要指标——延性引入到异形柱抗震性能的研究中,分别推导了异形柱截面的屈服曲率和极限曲率计算公式,给出了腹板受压和翼缘受压时的延性计算公式;采用线性回归的方法,利用Excel软件对计算公式进行了简化,并与矩形柱延性公式进行对比,分析比较了二者的异同点,从理论上说明了异形柱变形能力不如矩形柱的原因。
     第三,按照抗震规范(GB50011-2001)的相关规定,用振型分解反应谱法和弹性动力时程分析法,对钢筋混凝土异形柱框架结构进行了多遇地震下的计算分析。用各项控制指标,如周期、剪压比、轴压比、层间位移角等进行对比分析,给出在8度区该结构的最大可建造层数和最大适用高度。
     第四,采用杆系模型编制的平面结构弹塑性地震响应分析程序NDAS2D,对钢筋混凝土异形柱框架结构进行了弹塑性动力时程分析。推导了异形柱屈服面计算公式;选取了24条地震波,以场地类别作为划分依据,编制了相应的程序,计算并绘制了梁柱塑性铰出铰位置和顺序图,认为钢筋混凝土异形柱框架结构表现出典型的“强柱弱梁”特性。对同一个结构采用不同的地震波进行计算分析,发现不同的地震波引起的结构时程反应相差较大,有些甚至相差数倍。因此,地震波的选取要针对具体的场地条件,选取接近该场地条件特性的地震波,且应有一定的数量,不能以少量地震波的计算结果作为最终评定结构抗震性能的依据。计算结果表明,对于8层钢筋混凝土异形柱框架结构(柱肢高厚比在3~4范围内),除了Ⅳ类场地的若干条地震波不满足要求外,其它情况层间位移角均满足要求。
Along with the development of city construction, appeared a lot of new buildings structure form, R. C. frame structure with special-shaped column is one of them, the structure's form gets the expansion with apply in our country many cities with its advantage of not appearing column edges indoors, being easy to arrange furniture arrange, extends effective areas of the room. Based on the past results, seismic behavior of R. C. frame structure with special-shaped column is studied, according to the members to the structure in sequence in this paper. The main contents are as follows aspects:
    First of all, aiming at the characteristics of special-shaped column, various control parameters including allowable value of drift angle, axial load ratio etc, are studied. On the basis of analysis previous experiment data, it is conclusion that allowable value of drift angle of elastic and elastic-plastic is 1/550 and 1/75 respectively, which is applicable to R. C. frame structure with special-shaped column is given out. The conclusion explains that the deformabiliry of R. C. frame structure with special-shaped column lies between rectangle column frame structure and shear wall structure. The calculating formula of allowable value of axial load ratio of special-shaped column is derived, it is compared with that of equaling areas rectangle column. Through the comparison, it considers that allowable value of axial load ratio of T-shaped section column is smaller than that of rectangle column, and allowable value of axial load ratio of special-shaped column relate to do section size proportion. It has great d
    ifference of allowable value of axial load ratio when web and flange are compressed respectively. The loading angle is sensitive to allowable value.
    Secondly, ductility which is an important index sign to measure the earthquake resistant behavior for special-shaped column under rare earthquake is introduced. The calculating formula of yield curvature and ultimate curvature for special-shaped column is derived, and the calculating formula of the ductility is given when web and flange are pressed respectively. Subsequently simplified calculating formula is presented using the software of Excel with the method of linearity regression, and the calculating formula of the ductility for equaling areas rectangle column is compared with that of special-shaped column, the similarities and differences are found. It is theoretically explained the reason that the deformability of special-shaped column is inferior to that of the rectangle column.
    The third, according to Code for Seismic Design of Buildings (GB50011-2001), the analysis of R. C. frame structure with special-shaped column is conducted under minor levels of ground motion by means of model analysis method and elastic time-history analysis method. The appropriate maximum stories and the appropriate maximum height of buildings are determined by using the various of control index, such as period , shear-compression ratio, allowable value of drift angle etc when earthquake fortification intensity is 8 degree.
    Finally, the analysis of elastic-plastic time-history on R. C. frame structure with special-shaped column is conducted by plane structure elastic-plastic time-history analysis the procedure NDAS2D (Nonlinear Dynamic Analysis of Structures in Two Dimensions)programmed in structural system composed of bar, 24 earthquake
    
    
    waves is adopted according to site classification. The calculating formula of yield surface for special-shaped column and the correspondent program are given in this paper. Thereafter, the position and order about the beam column plastic hinge are drawn; it is considered that the R. C. frame structure with special-shaped column reveals the typical characteristic of "strong column and weak beam". Afterward, the same structure with different earthquake waves is calculated, the distinction is quite obvious in response to time-history of the structure. So when the earthquake waves are chosen, the ones that are close to the soil characteristic condition s
引文
[1.1] 《规程》编制组.天津市异形柱框轻结构的研究及技术规程编制.建筑结构,1999,1.
    [1. 2] Joaguin Matin. Design Aids for L-shaped Reinfored Concrete Cloumns. ACI Sturctural Journal,November, 1979, pp1197-1216.
    [1. 3] M.Kawakarni.Limit States of Cracking and Ultimate Strength of Arbitrary Concrete Sections under Biaxial Bending. ACI Sturctural Journal, March-April, 1985.
    [1. 4] Dundar C.sahin B.Arbirtarily shaped Reinforced Concrete Members Subject to Biaxial Bending and Axial Load. Computer and Structures, 1993, 44(4).
    [1. 5] C.Y.Yau.S.L.Chan,A.K.W.So. Biaxial Bending Design of Arbitrarily Shaped Reinforced Concrete Column. ACI Sturctural Journal, May-June, 1993, pp269-278.
    [1. 6] Hsu.Cheng-Tzu Thomas. Biaxially Loaded L-shaped Reinforced Concrete Columns. Journal of Structural Engineering, ASCE, V. 111, No. 12, Dec. 1985, pp2576-2595.
    [1. 7] Hsu.Cheng-Tzu Thomas. Channel-shaped Reinforced Concrete Compression Members under Biaxial Bending. ACI Sturctural Journal, V.84,No.3,May-June, 1987, pp201-211.
    [1. 8] Hsu.Cheng-Tzu Thomas.T-shaped Reinforced Concrete Members under Biaxial Bending and Axial Compression. ACI Sturetural Journal, V.86,No.4,July-August,1989,pp460-468.
    [1. 9] Mallikarjunal,Mahadevappa P. Computer Aided Analysis of Reinforced Concrete Columns Subjected to Axial Compression and Bending-Ⅰ: L-shaped Sections. Computer and Structures, 1992, 44(5).
    [1. 10] Mallikarjunal,Mahadevappa P. Computer Aided Analysis of Reinforced Concrete Columns Subjected to Axial Compression and Bending-Ⅱ: T-shaped Sections. Computer and Structures,1993,52(6).
    [1. 11] S.N,Sinha.Design of Cross(十) Section of Column. The Indian Concrete Journal, 1996, March, pp153-158.
    [1.12] 曹万林等.周期反复荷载作用下钢筋混凝土十字形柱的性能.地震工程与工程振动,1994,14(3).
    [1.13] 曹万林等.不同方向周期反复荷载作用下钢筋混凝土L形柱的性能.地震工程与工程振动,1995,15(1).
    [1.14] 曹万林等.不同方向周期反复荷载作用下钢筋混凝土T形柱的性能.地震工程与工程振动,1995,15(4).
    [1.15] 曹万林等.钢筋混凝土十字形柱的非线性分析.世界地震工程,1995,11(3).
    [1.16] 曹万林等.钢筋混凝土L形柱的非线性分析.世界地震工程,1995,11(4).
    [1.17] 曹万林等.钢筋混凝土T形柱的非线性分析.世界地震工程,1996,12(1).
    [1.18] 曹万林等.钢筋混凝土带暗柱十字形柱的抗震性能试验研究.世界地震工程,1999,15(2).
    [1.19] 曹万林等.钢筋混凝土带暗柱T形柱的抗震性能试验研究.世界地震工程,1999,15(3).
    [1.20] 胡国振等.钢筋混凝土带暗柱L形柱的抗震性能试验研究.世界地震工程,1999,15(4).
    [1.21] 曹万林等.钢筋混凝土带暗柱异形柱的抗震性能试验及分析.建筑结构学报,2002,23(1).
    [1.22] 曹万林等.较小剪跨比带暗柱十字形柱的抗震性能试验研究.地震工程与工程振动,1999,19(3).
    [1.23] 曹万林等.较小剪跨比带暗柱T形柱的抗震性能试验研究.地震工程与工程振动,1999,19(4).
    [1.24] 胡国振等.较小剪跨比带暗柱L形柱的抗震性能试验研究.世界地震工程,2000,16(2).
    [1.25] 曹万林等.带交叉筋十字形短柱的抗震性能试验研究.地震工程与工程振动,2002,22(5).
    [1.26] 黄选明等.带交叉筋T形截面短柱的抗震性能试验研究.地震工程与工程振动,2003,23(1).
    [1.27] 曹万林等.底部大空间异型柱框架的抗震设计.世界地震工程,1995,11(2).
    [1.28] 曹万林等.增强异型柱框架抗震耗能能力的研究.世界地震工程,1995,11(1).
    [1.29] 周明杰等.异型柱框架地震反应计算分析.世界地震工程,1996,12(4).
    [1.30] 曹万林等.异型柱框架结构底层支撑合理设置研究.地震工程与工程振动,1997,17(1).
    [1.31] 曹万林等.底层带支撑异型柱框架非线性地震反应分析.地震工程与工程振动,1996,16(4).
    
    
    [1.32] 曹万林等.底部带支撑异型柱框架抗震性能试验研究.工程力学增刊,1994(上).
    [1.33] 曹万林等.轻质填充墙异型柱框架侧移刚度试验研究.工程力学增刊,1993.
    [1.34] 曹万林等.带门洞轻质填充墙异型柱框架抗震性能试验研究.工程力学增刊,1994(上).
    [1.35] 曹万林等.轻质填充墙异型柱边框架抗震性能试验研究.地震工程与工程振动,1997,17(2)
    [1.36] 曹万林等.轻质填充墙异型柱框架弹性阶段地震作用计算.地震工程与工程振动,1997,17(3).
    [1.37] 徐金荣等.异形柱框架薄弱部位抗震设计方法探讨.世界地震工程,2002,18(2).
    [1.38] 曹万林等.大开间异型柱框架弹塑性工作性能研究.世界地震工程,2000,16(1).
    [1.39] 曹万林等.底部矩形柱上部异形柱框架抗震性能试验研究.世界地震工程,2002,18(3).
    [1.40] 郑汉兵等.底部矩形柱上部异形柱边框架抗震研究.世界地震工程,2002,18(4).
    [1.41] 曹万林等.异形柱框架楼梯间结构层刚度及其衰减过程的试验研究.建筑结构学报,1998,19(1).
    [1.42] 申东建等.钢筋砼等肢L形截面双向偏心受压柱的设计方法.建筑结构,1997,2.
    [1.43] 陈云霞等.T形截面钢筋砼压弯构件正截面承载力及延性.天津大学学报,1998,1.
    [1.44] 陈云霞等.T形、L形截面钢筋砼双向压弯构件正截面承载力的研究.建筑结构,1999,1.
    [1.45] 赵艳静等.钢筋砼异形截面双向压弯柱延性性能的理论研究.建筑结构,1999,1.
    [1.46] 徐向东等.单周及低周反复荷载作用下T形截面框架柱受剪性能的试验研究.建筑结构,1999,1.
    [1.47] 巩长江等.L形截面钢筋砼框架柱受剪性能的试验研究.建筑结构,1999,1.
    [1.48] 王振武等.十字形截面钢筋砼双向压弯构件正截面承载力的研究.建筑结构,1999,1.
    [1.49] 何培玲等.十字形截面钢筋砼双向压弯柱延性的试验及理论研究.建筑结构,1999,1.
    [1.50] 曹祖同等.钢筋混凝土异形柱框架节点强度的研究.建筑结构,1999,1.
    [1.51] 李砚波等.钢筋砼双向拉弯构件正截面承载力计算及研究.建筑结构,1999,1.
    [1.52] 朱景敏等.大开间住宅钢筋混凝土异形柱框轻结构的适用范围.建筑结构,1999,1.
    [1.53] 王依群等.《天津异形柱规程》与现行国家标准相关部分的比较.混凝土结构基本理论与应用 2000会议集,结构工程师,2000年增刊.
    [1.54] 本程序开发课题组.钢筋砼异形柱结构配筋计算程序CRSC.第16届全国高层会论文集,2000年。
    [1.55] 王依群等.异形截面钢筋混凝土柱正截面承载力简化计算.建筑结构,2001.1.
    [1.56] 《天津市异形柱框轻结构规程》软件开发组.钢筋砼异形柱结构计算及配筋程序CRSC用户手册及编制原理.2002,9.
    [1.57] 王依群.平面结构弹塑性地震响应分析程序NDAS2D使用手册.天津,2002,11.
    [1.58] 赵西安编著.现代高层建筑结构设计(下册).科学出版社,2000。
    [1.59] 伍甘棠等.任意形状截面钢筋砼柱的配筋设计方法.建筑科学,1999,6.
    [1.60] 王森等.钢筋砼L形截面双向偏压构件正截面配筋设计方法的研究.建筑科学,2000,1.
    [1.61] 魏琏等.对《钢筋混凝土异形柱设计规程》配筋设计方法的讨论.建筑结构,2001,31(4).
    [1.62] 施永昌等.上海市宽肢异形柱结构体系研究和工程实践简介.第十七届全国高层建筑结构学术论文(上册),浙江杭州,2002.
    [1.63] 吴建营等.Z形截面柱在低周期反复荷载下的抗剪性能试验研究.结构工程师,2000(10).
    [1.64] 韩丽婷等.钢筋砼异型柱框-桁架结构弹塑性地震反应.结构工程师,2000增刊.
    [1.65] 李杰等.L形和Z形宽肢异形柱低周期反复荷载试验研究.建筑结构学报,2002,23(1).
    [1.66] 李杰等.钢筋砼异型柱结构振动台试验研究.土木工程学报,2002,35(3).
    [1.67] 肖建庄等.异型柱框架结构抗震设计研究,地震工程与工程振动,2003,23(2).
    [1.68] 吴敏哲等.钢筋砼L形截面柱受力性能分析.世界地震工程,2002,18(1).
    [1.69] 郭棣等.T形截面钢筋砼柱偏心受压分析.西安建筑科技大学学报,2001,34(2).
    [1.70] 郭棣等.宽肢T形柱的滞回特性及耗能分析.世界地震工程,2002,18(2).
    [1.71] 黄雅捷等.钢筋砼异形柱框架结构抗震试验与分析.建筑结构,2002,32(1).
    [1.72] 马乐为等.异型柱小型空心砌块12层房屋模态分析试验研究.西北建筑工程学院学报,2001.1.
    
    
    [1.73] 马乐为等.12层异形柱小型砼空心砌块组合结构拟动力实验研究,世界地震工程,2002,18(4).
    [1.74] 马乐为等.异形柱小型砼空心砌块组合结构12层房屋动力特性试验研究,西安建筑科技大学学报,2002,34(1).
    [1.75] 王滋军等.中高层大开间钢筋砼异形柱框架结构抗震性能研究,地震工程与工程振动,1999,19(3).
    [1.76] 王滋军等.中高层钢筋砼异形柱框架结构弹塑性时程分析,地震工程与工程振动,2001,21(3).
    [1.77] 王滋军等.中高层大开间钢筋砼异形柱框架结构抗震性能研究,地震工程与工程振动,2002,22(5).
    [1.78] 高向宇等.高层异型柱框架结构隔震性能的试验研究,世界地震工程,1997,13(4).
    [1.79] 王亚勇等.台湾921大地震特点及震害经验,工程抗震,2000(2).
    [1.80] 孙建华等.台湾“九二一”大地震概述,工程抗震,1999(4).