日本落叶松实生苗small RNA测序、microRNA鉴定及其目标基因差异表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
日本落叶松(Larix leptolepis)是我国北方重要的针叶速生用材造林树种,已经在选择育种和杂交育种等方面取得重要进展,然而仍不能满足发展林木良种、提高林木产量、增强落叶松生产力的重大需求。究其原因,除背景复杂、生长周期长等特有问题外,我国针叶树基础理论与分子遗传研究基础薄弱也是导致落叶松改良进程缓慢的原因之一。新型的microRNA(miRNA)在生物生长发育过程中发挥关键调控作用,是农艺性状关键调控因子,正作为手段运用于品种遗传改良研究。本研究以2年生日本落叶松实生苗根、茎、叶总RNA等量混合样品构建small RNA(sRNA)文库,利用Solexa测序平台,结合生物信息学方法筛选调控落叶松生长发育过程的miRNAs;通过psRNATarget软件在线预测miRNAs目标基因;采用qRT-PCR技术研究种子萌发不同时期的种胚(0d、1d、5d、9d、28d)、植株生长不同时期的针叶及茎(90d、1.5a、5a、10a、25a和50a)中miRNA的差异表达及5′RACE技术验证3个目标基因的切割位点。研究结果如下:
     (1)利用Illumina GAIIx平台进行sRNA库Solexa测序并筛选出候选miRNAs。获得27,042,027条原始序列,经去噪、除杂,获得长度范围在16nt~26nt的待分析序列7,466,370条,测序数据已提交至NCBI-Gene Expression Omnibus (GEO)数据库,登录号为GSE34805。21nt长度的序列占sRNA的48.39%,表明落叶松sRNA以21nt长度序列为主要类型;将待分析序列与miRBase (17.0)及本室落叶松转录组数据进行BLAST序列比对,获得308个候选miRNAs。Solexa技术成功获得大量针叶树候选miRNAs序列。
     (2)利用BLAST比对及二级结构预测鉴定出85个家族的174个miRNAs。77个miRNAs(61.04%为21nt;66.23%以U为5′端首位碱基)属于48个保守家族,占所鉴定的miRNA基因家族总数的56.47%;97个miRNAs属于37个新发现的基因家族(74.23%为21nt;48.45%以U为5′端首位碱基)。48个保守miRNAs基因中有20个是陆地植物共同保守的(miR156、miR159、miR160、miR162、miR164、miR166~miR169、miR171、miR172、miR390、miR393~miR399和miR408),12个miRNAs仅在针叶树种中特异表达(miR946、miR947、miR950、miR951、miR1311~miR1314、miR1316、miR3697、miR3701和miR3707)。利用qRT-PCR方法对34个保守的和6个新发现的miRNAs进行了表达验证。研究发现和鉴定的miRNA基因,拓宽了我们对针叶树miRNA的认识并极大地丰富了其信息资源。
     (3)利用生物信息学手段预测、分析出236个miRNA目标基因。psRNATarget软件预测目标基因及GO蛋白功能注释结果表明,日本落叶松85个miRNA基因家族的236个目标基因主要参与转录调控、生长发育、蛋白转运、胁迫响应、激素信号传导及电子传递等生物过程。
     (4)29个miRNAs在种子萌发前期总体呈下降趋势、8个miRNAs在植株生长过程中随植株年龄增加呈规律性表达变化模式。运用qRT-PCR方法分析了miR156等29个miRNAs在日本落叶松种子萌发过程5个关键时期(0d、1d、5d、9d和28d)和植株生长6个时期(90d、1.5a、5a、10a、25a和50a)的表达变化模式。结果显示,miRNAs的表达水平在成熟种子(0d)中最高,吸胀(1d)和萌动(5d)阶段迅速下降,44.83%(13/29)的miRNAs总体呈逐渐降低趋势;种子萌发各个时期,miR894的相对表达量最高,miR408最低。8个miRNAs (miR156、miR172、miR395、miR396、miR397、miR398、miR408和miR947)随年龄增长呈现出规律性上升或下降趋势。5a和25a是许多miRNAs表达变化的转折点,可能是miRNA调控落叶松生长发育的关键时期。研究揭示了在种子萌发和植株生长过程中,miRNAs的差异表达特性可能对落叶松生长发育起着重要调控作用。
     (5) APm、EF1和eIF三个适合目标基因qRT-PCR定量研究的内参基因的筛选。利用geNorm和NormFinder两种分析软件对12个候选内参基因的稳定性进行评价,并从中筛选出在落叶松不同器官、不同生长发育时期(体细胞胚胎原胚团时期到胚胎成熟时期、种子萌发过程、植株幼年生长阶段到成年生长阶段)表达稳定的APm、EF1和eIF三个内参基因。为落叶松miRNA目标基因的qRT-PCR表达分析提供最适内参。
     (6)落叶松针叶中miR172与其目标基因AP2L1的表达变化在植株生长过程中呈显著负调控关系(r=–0.960,P=0.002)。miR172、miR397和miR398分别切割其目标基因AP2L1、JR147962(Laccase)和JR143920(Phytocyanin)的mRNA,切割位点位于miRNA与其目标基因互补序列第10和11位碱基之间。miR397、miR398与其目标基因JR147962(Laccase)、JR143920(Phytocyanin)之间的表达变化未发现明显相关性。
     上述研究表明,来自85个家族的174个miRNAs中,有8个miRNAs在落叶松的生长发育过程中可能具有重要调控作用。miR172在植株生长过程中与其目标基因AP2L1呈现显著的负相关性。AP2L1作为一种重要的调控日本落叶松植株个体发育过程的功能分子展开研究极具价值。为进一步研究针叶树miRNAs在生长发育过程中的作用及人工定向遗传改良的分子调控机制提供依据。
Japanese larch (Larix leptolepis) is one of the most important coniferous species withfast-growing speed. It is widely used for forestation and production of timber in north China.Some major progress has been achieved upon selective breeding and cross breeding in larch.However, the progress can not meet the significant needs of fine tree varieties development,wood yield improvement and productivity enhancement. Apart from the complicated geneticbackground and long growth cycle, the lack of important breakthroughs in basic theory andmolecular genetic research for coniferous trees has hampered the development of geneticimprovement progress. MicroRNA (miRNA), generally21–24nt in length, spatiotemporallyregulates gene expression at transcriptional and/or post-transcriptional level. MiRNAs andtheir target genes involve in morphogenesis of organs, signal transductions and biotic/abioticstress responses, playing an important role in plant growth and development, nutrienthomeostasis. It is that the central role that miRNA networks play in the control of keyargonomic traits makes them appealing biotechnological targets for the production of varietieswith improved performance. The study on the miRNA identification and function in larch isvery important, not only enriching the information resource of miRNA, but also providing anew idea for the genetic improvement of conifers.
     A pooled library was constructed with equal amounts total RNA (10μg) of needle, stem,and root from a two-year-old larch seedling in the present study. Solexa sequencing combiningwith bioinformatics methods were applied for screening and processing the miRNAs whichcould regulate the growth and developement of Japanese larch. The psRNATarget onlinesoftware was used to predict and analyze miRNAs target genes. Quantitative real-time PCR(qRT-PCR) technology was emploied to analyze the differential expression of miRNA duringthe different periods of seed germination (0d、1d、5d、9d、28d) and different stages of leaf andstem in plant growth (90d、1.5a、5a、10a、25a and50a). RACE technology was conducted todetect the cleavage sites in three predicted target genes. The major results are as the following:
     (1) Small RNA library construction and Solexa sequencing for screening candidatemiRNA. Sequencing of sRNA was implemented using Illumina GAIIx platform. A total of27,042,027raw reads were obtained, and7,466,370clean mappable sequences were generatedafter filtering and removing contaminent, low quality, known other RNA sequences. Thesesequences were submitted to NCBI-Gene Expression Omnibus (GEO) database (GEO Number:GSE34805). Among them, a total of3,612,795sequences were21nt in length, approximatelyto48.39%of the total number of sRNA population, demonstrating that21nt sRNA in size wasthe main type. The query sequences were matched to the database of miRBase (17.0)(http://www.mirbase.org) and the larix transcriptome ESTs,308candidate miRNAs wereobtained. Solexa sequencing provided large amounts of candidate miRNA sequenceinformation for next miRNA identification.
     (2) One hundred and seventy-four miRNAs from85miRNA families had been screenedusing BLAST and secondary structure prediction. There were77miRNAs from48conservedmiRNA families (47miRNAs were21nt in length,51miRNAs had uracil in which5′-endfirst base),97miRNAs from37novel families (72miRNAs were21nt in length,47miRNAshad uracil in which5′-end first base). Among them,20miRNA families were commonconserved in land plants;12miRNA families were conifer-specific. The expression detectionof34conserved and6novel miRNAs were validated by qRT-PCR. The knowledge of miRNAsequence characteristic in L.leptolepis will contribute to expand the miRNA information ofconifer trees.
     (3) Two hundred and thirty-six mRNAs were predicted to be targets of85miRNAfamilies by bioinformatics. Target gene prediction and GO classification results indicated that85miRNAs targeted236target genes, which involved in all kinds of biological processesincluding transcriptional regulation, growth and development, protein transport, stressresponses, hormone signaling, electron transport and so on.
     (4) The expression profiles of29miRNAs reduced during the early period of seedgermination,8miRNAs demonstrating a regular expression change pattern during the processof plant growth and development. The expression profiles of29miRNAs were analyzed by qRT-PCR during seed germination (0d,1d,5d,9d and28d) and plant growth (90d,1.5a,5a,10a,25a and50a) in larch. The results shown that all miRNAs were highly expressed in dryseed stage (0d) than subsequent stages, and the expression levels of13miRNAs (44.83%) allwent down gradually as a whole along with the progression of seed germination. The relativeexpression level of miR894was the highest, while the one of miR408was the lowest at acertain stage during seed germination. The expression levels of8miRNAs presented gradualupward or downward trends with increasing plant age. And5a and25a were the turning pointsof miRNAs differential expressions, which revealed that the two periods may be the criticalperiods of miRNA regulating the larch growth. The spatiotemporal and differentialexpressions of miRNAs may play important roles during seed germination and plant growth.
     (5) The stabilities of12candidate internal reference genes were evaluated by geNorm andNormFinder softwar. The expressions of the tree candidate internal gene, APm、EF1and eIF,were most stable among different organs and developmental stages (somatic embryogenesis,seed germination and plant growth stage), providing optimum internal reference genes formiRNA target genes expression analysis using qRT-PCR.
     (6) The predicted target genes of miR172, miR397and miR398were AP2L1, JR147962(Laccase) and JR143920(Phytocyanin) respectively. The target genes were found to becleaved most between10thand11thbase of complementary region of miRNAs and their targetgenes. The significant negative linear relationship between miR172and its target gene (AP2L1)was minus0.960(P=0.002).
     In conclusion,174miRNAs from85families were identification, and8miRNAs mightbe involved in the regulation of growth and development of L.leptolepis. The significantnegative linear relationship between miR172and its target gene (AP2L1) was minus0.960.AP2L1is a crucial regulator being of great value for functional molecular studies duringconifer tree seed germination, growth and development. These results expand the number ofknown conifer miRNAs and provide a foundation for research on the expression patterns andfunctions of these miRNAs during individual development in conifer tree.
引文
[1] Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell,2004,116(2):281-297.
    [2] Aravin A, Tuschl T. Identification and characterization of small RNAs involved in RNA silencing.FEBS Lett,2005,579(26):5830-5840.
    [3] Kim V N. Small RNAs just got bigger: Piwi-interacting RNAs (piRNAs) in mammalian testes. GenesDev,2006,20(15):1993-1997.
    [4] Katiyar-Agarwal S, Morgan R, Dahlbeck D, et al. A pathogen-inducible endogenous siRNA in plantimmunity. Proc Natl Acad Sci U S A,2006,103(47):18002-18007.
    [5] Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4encodes small RNAswith antisense complementarity to lin-14. Cell,1993,75(5):843-854.
    [6] Mallory A C, Bartel D P, Bartel B. MicroRNA-directed regulation of Arabidopsis AUXINRESPONSE FACTOR17is essential for proper development and modulates expression of early auxinresponse genes. Plant Cell,2005,17(5):1360-1375.
    [7] Kim J H, Woo H R, Kim J, et al. Trifurcate feed-forward regulation of age-dependent cell deathinvolving miR164in Arabidopsis. Science,2009,323(5917):1053-1057.
    [8] Lauter N, Kampani A, Carlson S, et al. microRNA172down-regulates glossy15to promote vegetativephase change in maize. Proc Natl Acad Sci U S A,2005,102(26):9412-9417.
    [9] Lu S, Sun Y H, Amerson H, et al. MicroRNAs in loblolly pine (Pinus taeda L.) and their associationwith fusiform rust gall development. Plant J,2007,51(6):1077-1098.
    [10]冯健,齐力旺,孙晓梅等.落叶松扦插生根过程SSH文库构建及部分基因的表达分析.林业科学,2010,46(6):27-34.
    [11]张蕾,齐力旺,韩素英.落叶松体细胞胚成熟阶段差异表达的基因及部分基因的表达谱分析.遗传,2009,31(5):540-545.
    [12] Zhang S, Zhou J, Han S, et al. Four abiotic stress-induced miRNA families differentially regulated inthe embryogenic and non-embryogenic callus tissues of Larix leptolepis. Biochem Biophys ResCommun,2010,398(3):3553-60.
    [13]马常耕,孙晓梅.我国落叶松遗传改良现状及发展方向.世界林业研究,2008,21(3):58-63.
    [14] Reinhart B J, Slack F J, Basson M, et al. The21-nucleotide let-7RNA regulates developmental timingin Caenorhabditis elegans. Nature,2000,403(6772):901-906.
    [15] Lau N C, Lim L P, Weinstein E G, et al. An abundant class of tiny RNAs with probable regulatoryroles in Caenorhabditis elegans. Science,2001,294(5543):858-862.
    [16] Lee R C, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science,2001,294(5543):862-864.
    [17] Pasquinelli A E, Reinhart B J, Slack F, et al. Conservation of the sequence and temporal expression oflet-7heterochronic regulatory RNA. Nature,2000,408(6808):86-89.
    [18] Berezikov E, Guryev V, van de Belt J, et al. Phylogenetic shadowing and computational identificationof human microRNA genes. Cell,2005,120(1):21-24.
    [19] Lim L P, Glasner M E, Yekta S, et al. Vertebrate microRNA genes. Science,2003,299(5612):1540.
    [20] Lim L P, Lau N C, Weinstein E G, et al. The microRNAs of Caenorhabditis elegans. Genes Dev,2003,17(8):991-1008.
    [21] Lagos-Quintana M, Rauhut R, Meyer J, et al. New microRNAs from mouse and human. RNA,2003,9(2):175-179.
    [22] Lai E C, Tomancak P, Williams R W, et al. Computational identification of Drosophila microRNAgenes. Genome Biol,2003,4(7): R42.
    [23] Grad Y, Aach J, Hayes G D, et al. Computational and experimental identification of C. elegansmicroRNAs. Mol Cell,2003,11(5):1253-1263.
    [24] Ambros V, Bartel B, Bartel D P, et al. A uniform system for microRNA annotation. RNA,2003,9(3):277-279.
    [25] Meyers B C, Axtell M J, Bartel B, et al. Criteria for annotation of plant MicroRNAs. Plant Cell,2008,20(12):3186-3190.
    [26] He L, Hannon G J. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet,2004,5(7):522-531.
    [27] Allen E, Xie Z, Gustafson A M, et al. microRNA-directed phasing during trans-acting siRNAbiogenesis in plants. Cell,2005,121(2):207-221.
    [28] Rajagopalan R, Vaucheret H, Trejo J, et al. A diverse and evolutionarily fluid set of microRNAs inArabidopsis thaliana. Genes Dev,2006,20(24):3407-3425.
    [29] Zhang W, Gao S, Zhou X, et al. Multiple distinct small RNAs originate from the same microRNAprecursors. Genome Biol,2010,11(8): R81.
    [30] Kim V N. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol,2005,6(5):376-385.
    [31] Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature,2003,425(6956):415-419.
    [32] Denli A M, Tops B B, Plasterk R H, et al. Processing of primary microRNAs by the Microprocessorcomplex. Nature,2004,432(7014):231-235.
    [33] Gregory R I, Yan K P, Amuthan G, et al. The Microprocessor complex mediates the genesis ofmicroRNAs. Nature,2004,432(7014):235-240.
    [34] Han J, Lee Y, Yeom K H, et al. The Drosha-DGCR8complex in primary microRNA processing.Genes Dev,2004,18(24):3016-3027.
    [35] Landthaler M, Yalcin A, Tuschl T. The human DiGeorge syndrome critical region gene8and Its D.melanogaster homolog are required for miRNA biogenesis. Curr Biol,2004,14(23):2162-2167.
    [36] Lund E, Guttinger S, Calado A, et al. Nuclear export of microRNA precursors. Science,2004,303(5654):95-98.
    [37] Du T, Zamore P D. microPrimer: the biogenesis and function of microRNA. Development,2005,132(21):4645-4652.
    [38] Carrington J C, Ambros V. Role of microRNAs in plant and animal development. Science,2003,301(5631):336-228.
    [39] Jones-Rhoades M W, Bartel D P, Bartel B. MicroRNAS and their regulatory roles in plants. Annu RevPlant Biol,2006,57,19-53.
    [40]杨曦,何玉科.植物microRNA的生物合成和调控功能.生命科学,2010,22(7):688-696.
    [41] Xie Z, Allen E, Fahlgren N, et al. Expression of Arabidopsis MIRNA genes. Plant Physiol,2005,138(4):2145-2154.
    [42] Chen X. MicroRNA metabolism in plants. Curr Top Microbiol Immunol,2008,320,117-136.
    [43] Yang J S, Phillips M D, Betel D, et al. Widespread regulatory activity of vertebrate microRNA*species. RNA,2011,17(2):312-326.
    [44]马圣运,白玉,韩凝等. miRNA*生物合成及其功能研究的新发现.遗传,2012,34(4):383-388.
    [45] Pillai R S, Bhattacharyya S N, Artus C G, et al. Inhibition of translational initiation by Let-7MicroRNA in human cells. Science,2005,309(5740):1573-1576.
    [46] Mansfield J H, Harfe B D, Nissen R, et al. MicroRNA-responsive 'sensor' transgenes uncoverHox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat Genet,2004,36(10):1079-1083.
    [47] Yekta S, Shih I H, Bartel D P. MicroRNA-directed cleavage of HOXB8mRNA. Science,2004,304(5670):594-596.
    [48] Bagga S, Bracht J, Hunter S, et al. Regulation by let-7and lin-4miRNAs results in target mRNAdegradation. Cell,2005,122(4):553-563.
    [49] Jing Q, Huang S, Guth S, et al. Involvement of microRNA in AU-rich element-mediated mRNAinstability. Cell,2005,120(5):623-634.
    [50] Giraldez A J, Mishima Y, Rihel J, et al. Zebrafish MiR-430promotes deadenylation and clearance ofmaternal mRNAs. Science,2006,312(5770):75-79.
    [51] Qi Y, Denli A M, Hannon G J. Biochemical specialization within Arabidopsis RNA silencingpathways. Mol Cell,2005,19(3):421-428.
    [52] Yoon W H, Meinhardt H, Montell D J. miRNA-mediated feedback inhibition of JAK/STATmorphogen signalling establishes a cell fate threshold. Nat Cell Biol,2011,13(9):1062-1069.
    [53] Gandikota M, Birkenbihl R P, Hohmann S, et al. The miRNA156/157recognition element in the3'UTR of the Arabidopsis SBP box gene SPL3prevents early flowering by translational inhibition inseedlings. Plant J,2007,49(4):683-693.
    [54] Aukerman M J, Sakai H. Regulation of flowering time and floral organ identity by a MicroRNA andits APETALA2-like target genes. Plant Cell,2003,15(11):2730-2741.
    [55] Chen X. A microRNA as a translational repressor of APETALA2in Arabidopsis flower development.Science,2004,303(5666):2022-2025.
    [56]赵爽,刘默芳. MicroRNA作用机制研究的新进展.中国科学(C辑:生命科学),2009,39(1):109-113.
    [57] Wu L, Zhou H, Zhang Q, et al. DNA methylation mediated by a microRNA pathway. Mol Cell,2010,38(3):465-75.
    [58] Rhoades M W, Reinhart B J, Lim L P, et al. Prediction of plant microRNA targets. Cell,2002,110(4):513-520.
    [59] Jones-Rhoades M W, Bartel D P. Computational identification of plant microRNAs and their targets,including a stress-induced miRNA. Mol Cell,2004,14(6):787-799.
    [60] Chen M, Meng Y, Gu H, et al. Functional characterization of plant small RNAs based onnext-generation sequencing data. Comput Biol Chem,2010,34(5-6):308-312.
    [61] Schwab R, Palatnik J F, Riester M, et al. Specific effects of microRNAs on the plant transcriptome.Dev Cell,2005,8(4):517-527.
    [62] Kasschau K D, Xie Z, Allen E, et al. P1/HC-Pro, a viral suppressor of RNA silencing, interferes withArabidopsis development and miRNA function. Dev Cell,2003,4(2):205-217.
    [63] Palatnik J F, Allen E, Wu X, et al. Control of leaf morphogenesis by microRNAs. Nature,2003,425(6955):257-263.
    [64] Millar A A, Gubler F. The Arabidopsis GAMYB-like genes, MYB33and MYB65, aremicroRNA-regulated genes that redundantly facilitate anther development. Plant Cell,2005,17(3):705-721.
    [65] Achard P, Herr A, Baulcombe D C, et al. Modulation of floral development by a gibberellin-regulatedmicroRNA. Development,2004,131(14):3357-3365.
    [66] Wang J W, Wang L J, Mao Y B, et al. Control of root cap formation by MicroRNA-targeted auxinresponse factors in Arabidopsis. Plant Cell,2005,17(8):2204-2216.
    [67] Laufs P, Peaucelle A, Morin H, et al. MicroRNA regulation of the CUC genes is required forboundary size control in Arabidopsis meristems. Development,2004,131(17):4311-4322.
    [68] Guo H S, Xie Q, Fei J F, et al. MicroRNA directs mRNA cleavage of the transcription factor NAC1todownregulate auxin signals for arabidopsis lateral root development. Plant Cell,2005,17(5):1376-1386.
    [69] Mallory A C, Dugas D V, Bartel D P, et al. MicroRNA regulation of NAC-domain targets is requiredfor proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol,2004,14(12):1035-1046.
    [70] Bowman J L. Class III HD-Zip gene regulation, the golden fleece of ARGONAUTE activity?Bioessays,2004,26(9):938-942.
    [71] Llave C, Xie Z, Kasschau K D, et al. Cleavage of Scarecrow-like mRNA targets directed by a class ofArabidopsis miRNA. Science,2002,297(5589):2053-2056.
    [72] Parizotto E A, Dunoyer P, Rahm N, et al. In vivo investigation of the transcription, processing,endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. GenesDev,2004,18(18):2237-2242.
    [73] Xie Z, Kasschau K D, Carrington J C. Negative feedback regulation of Dicer-Like1in Arabidopsis bymicroRNA-guided mRNA degradation. Curr Biol,2003,13(9):784-789.
    [74] Vaucheret H, Vazquez F, Crete P, et al. The action of ARGONAUTE1in the miRNA pathway and itsregulation by the miRNA pathway are crucial for plant development. Genes Dev,2004,18(10):1187-1197.
    [75] Allen E, Xie Z, Gustafson A M, et al. Evolution of microRNA genes by inverted duplication of targetgene sequences in Arabidopsis thaliana. Nat Genet,2004,36(12):1282-1290.
    [76] Vazquez F, Vaucheret H, Rajagopalan R, et al. Endogenous trans-acting siRNAs regulate theaccumulation of Arabidopsis mRNAs. Mol Cell,2004,16(1):69-79.
    [77] Sunkar R, Zhu J K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis.Plant Cell,2004,16(8):2001-2019.
    [78] Fujii H, Chiou T J, Lin S I, et al. A miRNA involved in phosphate-starvation response in Arabidopsis.Curr Biol,2005,15(22):2038-2043.
    [79] Sunkar R, Girke T, Jain P K, et al. Cloning and characterization of microRNAs from rice. Plant Cell,2005,17(5):1397-1411.
    [80] Harvey J J, Lewsey M G, Patel K, et al. An antiviral defense role of AGO2in plants. PLoS One,2011,6(1): e14639.
    [81] Moss E G. Heterochronic genes and the nature of developmental time. Curr Biol,2007,17(11):R425-34.
    [82] Pasquinelli A E, Ruvkun G. Control of developmental timing by micrornas and their targets. AnnuRev Cell Dev Biol,2002,18:495-513.
    [83] Rougvie A E. Intrinsic and extrinsic regulators of developmental timing: from miRNAs to nutritionalcues. Development,2005,132(17):3787-3798.
    [84] Chuck G, Cigan A M, Saeteurn K, et al. The heterochronic maize mutant Corngrass1results fromoverexpression of a tandem microRNA. Nat Genet,2007,39(4):544-549.
    [85] Chuck G, Meeley R, Irish E, et al. The maize tasselseed4microRNA controls sex determination andmeristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat Genet,2007,39(12):1517-1521.
    [86] Chuck G, Meeley R, Hake S. Floral meristem initiation and meristem cell fate are regulated by themaize AP2genes ids1and sid1. Development,2008,135(18):3013-3019.
    [87] Chuck G, Whipple C, Jackson D, et al. The maize SBP-box transcription factor encoded bytasselsheath4regulates bract development and the establishment of meristem boundaries.Development,2010,137(8):1243-1250.
    [88] Wang J W, Czech B, Weigel D. miR156-regulated SPL transcription factors define an endogenousflowering pathway in Arabidopsis thaliana. Cell,2009,138(4):738-749.
    [89] Wu G, Park M Y, Conway S R, et al. The sequential action of miR156and miR172regulatesdevelopmental timing in Arabidopsis. Cell,2009,138(4):750-759.
    [90] Poethig R S. Small RNAs and developmental timing in plants. Curr Opin Genet Dev,2009,19(4):374-378.
    [91] Telfer A, Bollman K M, Poethig R S. Phase change and the regulation of trichome distribution inArabidopsis thaliana. Development,1997,124(3):645-654.
    [92] Tsukaya H, Shoda K, Kim G T, et al. Heteroblasty in Arabidopsis thaliana (L.) Heynh. Planta,2000,210(4):536-542.
    [93] Usami T, Horiguchi G, Yano S, et al. The more and smaller cells mutants of Arabidopsis thalianaidentify novel roles for SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes in the controlof heteroblasty. Development,2009,136(6):955-964.
    [94] Jung J H, Seo Y H, Seo P J, et al. The GIGANTEA-regulated microRNA172mediates photoperiodicflowering independent of CONSTANS in Arabidopsis. Plant Cell,2007,19(9):2736-2748.
    [95] Wu G, Poethig R S. Temporal regulation of shoot development in Arabidopsis thaliana by miR156and its target SPL3. Development,2006,133(18):3539-3547.
    [96] Yu N, Cai W J, Wang S, et al. Temporal control of trichome distribution by microRNA156-targetedSPL genes in Arabidopsis thaliana. Plant Cell,2010,22(7):2322-2335.
    [97] Yamaguchi A, Wu M F, Yang L, et al. The microRNA-regulated SBP-Box transcription factor SPL3is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Dev Cell,2009,17(2):268-278.
    [98] Mathieu J, Yant L J, Murdter F, et al. Repression of flowering by the miR172target SMZ. PLoS Biol,2009,7(7): e1000148.
    [99] Yant L, Mathieu J, Dinh T T, et al. Orchestration of the floral transition and floral development inArabidopsis by the bifunctional transcription factor APETALA2. Plant Cell,2010,22(7):2156-2170.
    [100] Adenot X, Elmayan T, Lauressergues D, et al. DRB4-dependent TAS3trans-acting siRNAs controlleaf morphology through AGO7. Curr Biol,2006,16(9):927-932.
    [101] Fahlgren N, Montgomery T A, Howell M D, et al. Regulation of AUXIN RESPONSE FACTOR3byTAS3ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol,2006,16(9):939-944.
    [102] Garcia D, Collier S A, Byrne M E, et al. Specification of leaf polarity in Arabidopsis via thetrans-acting siRNA pathway. Curr Biol,2006,16(9):933-938.
    [103] Hunter C, Willmann M R, Wu G, et al. Trans-acting siRNA-mediated repression of ETTIN and ARF4regulates heteroblasty in Arabidopsis. Development,2006,133(15):2973-2981.
    [104] Yan J, Cai X, Luo J, et al. The REDUCED LEAFLET genes encode key components of thetrans-acting small interfering RNA pathway and regulate compound leaf and flower development inLotus japonicus. Plant Physiol,2010,152(2):797-807.
    [105] Peragine A, Yoshikawa M, Wu G, et al. SGS3and SGS2/SDE1/RDR6are required for juveniledevelopment and the production of trans-acting siRNAs in Arabidopsis. Genes Dev,2004,18(19):2368-2379.
    [106] Arazi T, Talmor-Neiman M, Stav R, et al. Cloning and characterization of micro-RNAs from moss.Plant J,2005,43(6):837-848.
    [107] Talmor-Neiman M, Stav R, Klipcan L, et al. Identification of trans-acting siRNAs in moss and anRNA-dependent RNA polymerase required for their biogenesis. Plant J,2006,48(4):511-521.
    [108] Axtell M J, Snyder J A, Bartel D P. Common functions for diverse small RNAs of land plants. PlantCell,2007,19(6):1750-1769.
    [109] Cho S H, Addo-Quaye C, Coruh C, et al. Physcomitrella patens DCL3is required for22-24nt siRNAaccumulation, suppression of retrotransposon-derived transcripts, and normal development. PLoSGenet,2008,4(12): e1000314.
    [110] Jiao Y, Wang Y, Xue D, et al. Regulation of OsSPL14by OsmiR156defines ideal plant architecturein rice. Nat Genet,2010,42(6):541-544.
    [111] Lim P O, Kim H J, Nam H G. Leaf senescence. Annu Rev Plant Biol,2007,58115-36.
    [112] Schommer C, Palatnik J F, Aggarwal P, et al. Control of jasmonate biosynthesis and senescence bymiR319targets. PLoS Biol,2008,6(9): e230.
    [113] Ellis C M, Nagpal P, Young J C, et al. AUXIN RESPONSE FACTOR1and AUXIN RESPONSEFACTOR2regulate senescence and floral organ abscission in Arabidopsis thaliana. Development,2005,132(20):4563-4574.
    [114] Lim P O, Lee I C, Kim J, et al. Auxin response factor2(ARF2) plays a major role in regulatingauxin-mediated leaf longevity. J Exp Bot,2010,61(5):1419-1430.
    [115] Okushima Y, Mitina I, Quach H L, et al. AUXIN RESPONSE FACTOR2(ARF2): a pleiotropicdevelopmental regulator. Plant J,2005,43(1):29-46.
    [116] Moreno-Risueno M A, Van Norman J M, Moreno A, et al. Oscillating gene expression determinescompetence for periodic Arabidopsis root branching. Science,2010,329(5997):1306-1311.
    [117] Rubio-Somoza I, Cuperus J T, Weigel D, et al. Regulation and functional specialization of smallRNA-target nodes during plant development. Curr Opin Plant Biol,2009,12(5):622-627.
    [118] Gifford M L, Dean A, Gutierrez R A, et al. Cell-specific nitrogen responses mediate developmentalplasticity. Proc Natl Acad Sci U S A,2008,105(2):803-808.
    [119] Marin E, Jouannet V, Herz A, et al. miR390, Arabidopsis TAS3tasiRNAs, and their AUXINRESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral rootgrowth. Plant Cell,2010,22(4):1104-1117.
    [120] Vidal E A, Araus V, Lu C, et al. Nitrate-responsive miR393/AFB3regulatory module controls rootsystem architecture in Arabidopsis thaliana. Proc Natl Acad Sci U S A,2010,107(9):4477-4482.
    [121] Yoon E K, Yang J H, Lim J, et al. Auxin regulation of the microRNA390-dependent transacting smallinterfering RNA pathway in Arabidopsis lateral root development. Nucleic Acids Res,2010,38(4):1382-1391.
    [122] Krouk G, Lacombe B, Bielach A, et al. Nitrate-regulated auxin transport by NRT1.1defines amechanism for nutrient sensing in plants. Dev Cell,2010,18(6):927-937.
    [123] Gutierrez L, Bussell J D, Pacurar D I, et al. Phenotypic plasticity of adventitious rooting inArabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts andmicroRNA abundance. Plant Cell,2009,21(10):3119-3132.
    [124] Tian C E, Muto H, Higuchi K, et al. Disruption and overexpression of auxin response factor8gene ofArabidopsis affect hypocotyl elongation and root growth habit, indicating its possible involvement inauxin homeostasis in light condition. Plant J,2004,40(3):333-343.
    [125] Todesco M, Rubio-Somoza I, Paz-Ares J, et al. A collection of target mimics for comprehensiveanalysis of microRNA function in Arabidopsis thaliana. PLoS Genet,2010,6(7): e1001031.
    [126] Aida M, Ishida T, Fukaki H, et al. Genes involved in organ separation in Arabidopsis: an analysis ofthe cup-shaped cotyledon mutant. Plant Cell,1997,9(6):841-857.
    [127] Nath U, Crawford B C, Carpenter R, et al. Genetic control of surface curvature. Science,2003,299(5611):1404-1407.
    [128] Koyama T, Furutani M, Tasaka M, et al. TCP transcription factors control the morphology of shootlateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis.Plant Cell,2007,19(2):473-484.
    [129] Koyama T, Mitsuda N, Seki M, et al. TCP transcription factors regulate the activities ofASYMMETRIC LEAVES1and miR164, as well as the auxin response, during differentiation ofleaves in Arabidopsis. Plant Cell,2010,22(11):3574-3588.
    [130] Nikovics K, Blein T, Peaucelle A, et al. The balance between the MIR164A and CUC2genes controlsleaf margin serration in Arabidopsis. Plant Cell,2006,18(11):2929-2945.
    [131] Ori N, Cohen A R, Etzioni A, et al. Regulation of LANCEOLATE by miR319is required forcompound-leaf development in tomato. Nat Genet,2007,39(6):787-791.
    [132] Rodriguez R E, Mecchia M A, Debernardi J M, et al. Control of cell proliferation in Arabidopsisthaliana by microRNA miR396. Development,2010,137(1):103-112.
    [133] Juarez M T, Kui J S, Thomas J, et al. microRNA-mediated repression of rolled leaf1specifies maizeleaf polarity. Nature,2004,428(6978):84-88.
    [134] Kidner C A, Martienssen R A. Spatially restricted microRNA directs leaf polarity throughARGONAUTE1. Nature,2004,428(6978):81-84.
    [135] Li H, Xu L, Wang H, et al. The Putative RNA-dependent RNA polymerase RDR6acts synergisticallywith ASYMMETRIC LEAVES1and2to repress BREVIPEDICELLUS and MicroRNA165/166inArabidopsis leaf development. Plant Cell,2005,17(8):2157-2171.
    [136] McConnell J R, Emery J, Eshed Y, et al. Role of PHABULOSA and PHAVOLUTA in determiningradial patterning in shoots. Nature,2001,411(6838):709-713.
    [137] Emery J F, Floyd S K, Alvarez J, et al. Radial patterning of Arabidopsis shoots by class III HD-ZIPand KANADI genes. Curr Biol,2003,13(20):1768-1774.
    [138] Mallory A C, Reinhart B J, Jones-Rhoades M W, et al. MicroRNA control of PHABULOSA in leafdevelopment: importance of pairing to the microRNA5' region. EMBO J,2004,23(16):3356-3364.
    [139] Chitwood D H, Nogueira F T, Howell M D, et al. Pattern formation via small RNA mobility. GenesDev,2009,23(5):549-554.
    [140] Nogueira F T, Madi S, Chitwood D H, et al. Two small regulatory RNAs establish opposing fates of adevelopmental axis. Genes Dev,2007,21(7):750-755.
    [141] Nogueira F T, Chitwood D H, Madi S, et al. Regulation of small RNA accumulation in the maizeshoot apex. PLoS Genet,2009,5(1): e1000320.
    [142] Schwab R, Maizel A, Ruiz-Ferrer V, et al. Endogenous TasiRNAs mediate non-cell autonomouseffects on gene regulation in Arabidopsis thaliana. PLoS One,2009,4(6): e5980.
    [143] Scarpella E, Barkoulas M, Tsiantis M. Control of leaf and vein development by auxin. Cold SpringHarb Perspect Biol,2010,2(1): a001511.
    [144] Donner T J, Sherr I, Scarpella E. Regulation of preprocambial cell state acquisition by auxin signalingin Arabidopsis leaves. Development,2009,136(19):3235-3246.
    [145] Yu L, Yu X, Shen R, et al. HYL1gene maintains venation and polarity of leaves. Planta,2005,221(2):231-242.
    [146] Allen R S, Li J, Stahle M I, et al. Genetic analysis reveals functional redundancy and the major targetgenes of the Arabidopsis miR159family. Proc Natl Acad Sci U S A,2007,104(41):16371-16376.
    [147] Alonso-Peral M M, Li J, Li Y, et al. The microRNA159-regulated GAMYB-like genes inhibit growthand promote programmed cell death in Arabidopsis. Plant Physiol,2010,154(2):757-771.
    [148] Allen R S, Li J, Alonso-Peral M M, et al. MicroR159regulation of most conserved targets inArabidopsis has negligible phenotypic effects. Silence,2010,1(1):18.
    [149] Yang J Y, Iwasaki M, Machida C, et al. betaC1, the pathogenicity factor of TYLCCNV, interacts withAS1to alter leaf development and suppress selective jasmonic acid responses. Genes Dev,2008,22(18):2564-2577.
    [150] Zhao L, Kim Y, Dinh T T, et al. miR172regulates stem cell fate and defines the inner boundary ofAPETALA3and PISTILLATA expression domain in Arabidopsis floral meristems. Plant J,2007,51(5):840-849.
    [151] Wollmann H, Mica E, Todesco M, et al. On reconciling the interactions between APETALA2,miR172and AGAMOUS with the ABC model of flower development. Development,2010,137(21):3633-3642.
    [152] Liu B, Chen Z, Song X, et al. Oryza sativa dicer-like4reveals a key role for small interfering RNAsilencing in plant development. Plant Cell,2007,19(9):2705-2718.
    [153] Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for smallexpressed RNAs. Science,2001,294(5543):853-858.
    [154] Takada S, Berezikov E, Yamashita Y, et al. Mouse microRNA profiles determined with a new andsensitive cloning method. Nucleic Acids Res,2006,34(17): e115.
    [155]Cummins J M, He Y, Leary R J, et al. The colorectal microRNAome. Proc Natl Acad Sci U S A,2006,103(10):3687-3692.
    [156] Yakovlev I A, Asante D K, Fossdal C G, et al. Differential gene expression related to an epigeneticmemory affecting climatic adaptation in Norway spruce. Plant Sci,2011,180(1):132-139.
    [157] Liu J, Valencia-Sanchez M A, Hannon G J, et al. MicroRNA-dependent localization of targetedmRNAs to mammalian P-bodies. Nat Cell Biol,2005,7(7):719-723.
    [158] Miska E A, Alvarez-Saavedra E, Townsend M, et al. Microarray analysis of microRNA expression inthe developing mammalian brain. Genome Biol,2004,5(9): R68.
    [159] Valoczi A, Hornyik C, Varga N, et al. Sensitive and specific detection of microRNAs by northern blotanalysis using LNA-modified oligonucleotide probes. Nucleic Acids Res,2004,32(22): e175.
    [160] Giraldez A J, Cinalli R M, Glasner M E, et al. MicroRNAs regulate brain morphogenesis in zebrafish.Science,2005,308(5723):833-838.
    [161]刘元宁,沈廷杰,张浩等. microRNA靶基因特征提取新方法.吉林大学学报(工学版),2012,42(2):418-422.
    [162] Rehmsmeier M, Steffen P, Hochsmann M, et al. Fast and effective prediction of microRNA/targetduplexes. RNA,2004,10(10):1507-1517.
    [163] Thomson D W, Bracken C P, Goodall G J. Experimental strategies for microRNA target identification.Nucleic Acids Res,2011,39(16):6845-6853.
    [164] Chi S W, Zang J B, Mele A, et al. Argonaute HITS-CLIP decodes microRNA-mRNA interactionmaps. Nature,2009,460(7254):479-486.
    [165] Poethig R S. Phase change and the regulation of shoot morphogenesis in plants. Science,1990,250(4983):923-930.
    [166] Peer K R, Greenwood M S. Maturation, topophysis and other factors in relation to rooting in Larix.Tree Physiol,2001,21(4):267-272.
    [167] Husen A, Pal M. Effect of serial bud grafting and etiolation on rejuvenation and rooting cuttings ofmature trees of Tectona grandis Linn. f. Silvae Genetica,2003,52(2):84-88.
    [168] Monteuuis O. In vitro rooting of juvenile and mature Acacia mangium microcuttings with reference toleaf morphology as a phase change marker. Trees-Structure and Function2004,18(1):77-82.
    [169] England J R, Attiwill P M. Changes in leaf morphology and anatomy with tree age and height in thebroadleaved evergreen species, Eucalyptus regnans F. Muell. Trees,2006,20(1):79-90.
    [170] Sanchez M C, Vieitez A M. In vitro morphogenetic competence of basal sprouts and crown branchesof mature chestnut. Tree Physiol,1991,8(1):59-70.
    [171] Sweet G B. The effect of maturation on the growth and form of vegetative propagules of radiata pine.NZ J For Sci,1973,(3):191-210.
    [172] Greenwood M S. Phase change in loblolly pine: shoot developments as a function of age. PhysiolPlant,1984,(61):518-522.
    [173] Rebbeck J, Jensen K F, Greenwood M S. Ozone effects on the growth of grafted mature and juvenilered spruce. Can J For Res,1991,22756-760.
    [174] Ritchie G A, Keeley J W. Maturation in Douglas-fir: I. Changes in stem, branch and foliagecharacteristics associated with ontogenetic aging. Tree Physiol,1994,14(11):1245-1259.
    [175] Bond B J, Czarnomski N M, Cooper C, et al. Developmental decline in height growth in Douglas-fir.Tree Physiol,2007,27(3):441-453.
    [176] Abdul-Hamid H, Mencuccini M. Age-and size-related changes in physiological characteristics andchemical composition of Acer pseudoplatanus and Fraxinus excelsior trees. Tree Physiol,2009,29(1):27-38.
    [177]陈大明,沈德绪,李载龙.梨实生树童区和成年区顶端分生组织的细胞学研究(简报).植物生理学通讯,1994,30(5):343-345.
    [178] Zluvova J, Janousek B, Vyskot B. Immunohistochemical study of DNA methylation dynamics duringplant development. J Exp Bot,2001,52(365):2265-2273.
    [179] Bitonti M B, Cozza R, Chiappetta A, et al. Distinct nuclear organization, DNA methylation patternand cytokinin distribution mark juvenile, juvenile-like and adult vegetative apical meristems in peach(Prunus persica (L.) Batsch). J Exp Bot,2002,53(371):1047-1054.
    [180]孙永华,陈学森.杏杂种实生树叶片童性的研究.果树学报,2005,22(4):327-330,339.
    [181] Gould K S. Leaf Heteroblasty in Pseudopanax crassifolius: Functional Significance of LeafMorphology and Anatomy. Annals of Botany,1993,71(1):61-70.
    [182]张才喜,李载龙,陈大明.湖北海棠阶段转变的解剖学研究.上海农学院学报,1999,17(4):264-267,289.
    [183]黄香,袁燮辉,许来玉.巴西橡胶树不同树龄、不同高度过氧化物酶和酯酶同工酶变化的探讨.热带作物学报,1988,9(2):25-32.
    [184] Huang H-j, Chen Y, Kuo J-L, et al. Rejuvenation of Sequoia sempervirens in Vitro: Changes inIsoesterases and Isoperoxidases. Plant and Cell Physiology,1995,37(1):77-80.
    [185] Bon M-C, Monteuuis O. Rejuvenation of a100-year-old Sequoiadendron giganteum through in vitromeristem culture. II. Biochemical arguments. Physiologia Plantarum,1991,81(1):116-120.
    [186] Korneeva T V. Specific protein patterns of the meristems and leaves in juvenile and adult Hederahelix L. Plants Russian Journal of Plant Physiology,1994,41(6):728-733.
    [187] Snowball A, Zeman A M, Tchan Y T, et al. Phase Change in Citrus: Immunologically DetectableDifferences Between Juvenile and Mature Plants. Australian Journal of Plant Physiology1991,18(4):385-396.
    [188] Amo-marco J B, Vidal N, Vieiteza M, et al. Polypeptide markers differentiating juvenile and adulttissues in chestnut. J Plant Physiol,1993,142(1):117-119.
    [189]龙桂友,沈德绪,林伯年.巨峰葡萄实生苗阶段发育过程中半乳糖醛酸及可溶性糖含量的变化.浙江农业学报,1990,2(4):169-173.
    [190]刘强,王军,李艳红等.红松不同年龄树枝、叶片9种元素质量分数差异及其相关性分析.东北林业大学学报,2011,39(4):46-47,82.
    [191]段爱国,保尔江,张建国等.华山松不同叶龄、部位针叶叶绿素荧光参数的动态变化规律.北京林业大学学报,2008,30(5):26-32.
    [192]翟洪波,呼和牧仁,周梅等.不同年龄华北落叶松光合、蒸腾生理生态特征的研究.内蒙古农业大学学报(自然科学版),2010,31(2):66-71.
    [193]谢国阳.施肥对闽北三耕土杉木幼林光合特性的影响.福建林学院学报,2002,22(1):90-92.
    [194]许忠坤,徐清乾,荣建平.杉木不同部位、叶龄针叶净光合效率特征.湖南林业科技,2008,(05):1-4.
    [195] Robbins W J. Gibberellic acid and the reversal of adult Hedera to a juvenile state. Am J Botany,1957,44(9):743-746.
    [196] Robbins W J. Further observation on juvenile and adult Hedera. American Journal of Botany,1960,47(6):485-491.
    [197] Frydman V M, MacMillan J. Identification of gibberellins A20and A29in seed of Pisum sativum cv.Progress No.9by combined gas chromatography-mass spectrometry. Planta,1973,115(1):11-15.
    [198]包劲松,李载龙,夏英武.常春藤阶段转变研究概况.植物学通报,1997,14(1):26-32.
    [199] Galoch E. Comparison of the content of growth regulators in juvenile and adult plants of birch. ActaPhysiol Plant,1985,7(4):205-215.
    [200] Galoch E. Comparison of the content of growth regulators in juvenile and adult plants of birch (Betulaverrucosa Ehrh.). Acta physiologiae plantarum,1985,7(4):205-215.
    [201] Oliveira C M, Browning G. Gibberellin structure-activity effects on flower initiation in mature treesand on shoot growth in mature and juvenile Prunus avium. Pant growth regulation,1993,13(1):55-63.
    [202] Ford Y Y, Taylor J M, Blake P S, et al. Gibberellin A3stimulates adventitious rooting of cuttingsfrom cherry (Prunus avium). Plant growth regulation,2002,37(2):127-133.
    [203] Andrés H, Fernández B, Rodríguez R, et al. Phytohormone contents in Corylus avellana and theirrelationship to age and other developmental processes. Plant cell, tissue and organ culture,2002,70(2):173-180.
    [204]卓小能,林伯年,沈德绪.打破巨峰葡萄种子休眠及实生苗阶段发育中内源激素的研究.果树科学,1995,12(2):79-83.
    [205] Eiichi T. Regulation of root growth by plant hormones-roles for auxin and gibberellin. CriticalReviews in Plant Sciences,2005,24(4):249-265.
    [206] Munne-Bosch S, Lalueza P. Age-related changes in oxidative stress markers and abscisic acid levels ina drought-tolerant shrub, Cistus clusii grown under Mediterranean field conditions. Planta,2007,225(4):1039-1049.
    [207] K nrgshofer H. Seasonal Changes in Polyamine Content in Different Parts of Juvenile Spruce Trees(Picea abies (L.) KARST.). Journal of Plant Physiology,1989,134(6):736-740.
    [208] Heloir M C, Fournioux J C, Barbier M, et al. Endogenous polyamine concentration in juvenile, adultand micropropagated grapevine (Vitis vinifera L.CV.Pinot noir). Vitis,1998,37(1):61-62.
    [209] Fraga M F, Berdasco M, Diego L B, et al. Changes in polyamine concentration associated with agingin Pinus radiata and Prunus persica. Tree Physiol,2004,24(11):1221-1226.
    [210] Rey M, Tiburcio A F, Diaz-Sala C, et al. Endogenous polyamine concentrations in juvenile, adult andin vitro reinvigorated hazel. Tree Physiol,1994,14(2):191-200.
    [211] Li X, Wu H, Southerton S. Seasonal reorganization of the xylem transcriptome at different tree agesreveals novel insights into wood formation in Pinus radiata. New Phytol,2010,187(3):764-76.
    [212] Zhang M, Kimatu J N, Xu K, et al. DNA cytosine methylation in plant development. J GenetGenomics,2010,37(1):1-12.
    [213]骆薇,曾凡锁,詹亚光.木本植物生长发育及繁殖过程中DNA甲基化模式重建.中国农学通报,2010,(24):35-41.
    [214] Fraga M F, Rodriguez R, Canal M J. Genomic DNA methylation-demethylation during aging andreinvigoration of Pinus radiata. Tree Physiol,2002,22(11):813-816.
    [215] Mankessi F, Saya A R, Favreau B, et al. Variations of DNA methylation in Eucalyptus urophylla×Eucalyptus grandis shoot tips and apical meristems of different physiological ages. Physiol Plant,2011,143(2):178-187.
    [216] Hasbún R, Valledor L, Berdasco M, et al. In Vitro Proliferation and Genome DNA Methylation inAdult Chestnuts. Acta horticulturae,2005,693333-339.
    [217] Chien J C, Sussex I M. Differential regulation of trichome formation on the adaxial and abaxial leafsurfaces by gibberellins and photoperiod in Arabidopsis thaliana (L.) Heynh. Plant Physiol,1996,111(4):1321-1328.
    [218] Martínez-Zapater J M, Jarillo J A, Cruz-Alvarez M, et al. Arabidopsis late-flowering fve mutants areaffected in both vegetative and reproductive development. The Plant Journal,1995,7(4):543-551.
    [219] Bollman K M, Aukerman M J, Park M Y, et al. HASTY, the Arabidopsis ortholog of exportin5/MSN5, regulates phase change and morphogenesis. Development,2003,130(8):1493-1504.
    [220] Gomez-Mena C, Pineiro M, Franco-Zorrilla J M, et al. Early bolting in short days: an Arabidopsismutation that causes early flowering and partially suppresses the floral phenotype of leafy. Plant Cell,2001,13(5):1011-1024.
    [221] Soppe W J, Bentsink L, Koornneef M. The early-flowering mutant efs is involved in the autonomouspromotion pathway of Arabidopsis thaliana. Development,1999,126(21):4763-4770.
    [222] Poethig R S. Phase change and the regulation of developmental timing in plants. Science,2003,301(5631):334-336.
    [223] Scott D B, Jin W, Ledford H K, et al. EAF1regulates vegetative-phase change and flowering time inArabidopsis. Plant Physiol,1999,120(3):675-684.
    [224] Melzer S, Kampmann G, Chandler J, et al. FPF1modulates the competence to flowering inArabidopsis. Plant J,1999,18(4):395-405.
    [225] Weigel D, Nilsson O. A developmental switch sufficient for flower initiation in diverse plants. Nature,1995,377(6549):495-500.
    [226] Hunter C, Sun H, Poethig R S. The Arabidopsis heterochronic gene ZIPPY is an ARGONAUTEfamily member. Curr Biol,2003,13(19):1734-1739.
    [227] Clarke J H, Tack D, Findlay K, et al. The SERRATE locus controls the formation of the early juvenileleaves and phase length in Arabidopsis. Plant J,1999,20(4):493-501.
    [228] Prigge M J, Wagner D R. The arabidopsis serrate gene encodes a zinc-finger protein required fornormal shoot development. Plant Cell,2001,13(6):1263-1279.
    [229] Berardini T Z, Bollman K, Sun H, et al. Regulation of vegetative phase change in Arabidopsisthaliana by cyclophilin40. Science,2001,291(5512):2405-2407.
    [230] Bon M C. J16: An apex protein associated with juvenility of Sequoiadendron giganteum. TreePhysiol,1988,4(4):381-387.
    [231] Chang I F, Chen P J, Shen C H, et al. Proteomic profiling of proteins associated with the rejuvenationof Sequoia sempervirens (D. Don) Endl. Proteome Sci,2010,8:64.
    [232] Greenwood M S, Hopper C A, Hutchison K W. Maturation in larch: I. Effect of age on shoot growth,foliar characteristics, and DNA methylation. Plant Physiol,1989,90(2):406-412.
    [233] Copes D L. Effects of Rootstock Age on Leader Growth, Plagiotropism, and Union Formation inDouglas-Fir Grafts. Tree Planters' Notes,1987,38(4):14-18.
    [234] Hutchison K W, Sherman C D, Weber J, et al. Maturation in Larch: II. Effects of Age onPhotosynthesis and Gene Expression in Developing Foliage. Plant Physiol,1990,94(3):1308-1315.
    [235]田志和,董健,王喜武等.日本落叶松育林学.北京:北京农业大学出版社,1995.
    [236]贾桂霞,李凤兰,沈熙环.华北落叶松雌雄配子体的形成及胚胎发育.北京林业大学学报,1994,16(2):10-14.
    [237]王建华,孙晓梅,王笑山等.母株年龄、激素种类及其浓度对日本落叶松扦插生根的影响.林业科学研究,2006,19(1):102-108.
    [238]许晨璐,孙晓梅,张守攻等.日本落叶松×长白落叶松杂种光合性状的父、母本效应研究.林业科学研究,2011,24(1):8-12.
    [239] Griffiths-Jones S, Bateman A, Marshall M, et al. Rfam: an RNA family database. Nucleic Acids Res,2003,31(1):439-441.
    [240] Kapitonov V V, Jurka J. A universal classification of eukaryotic transposable elements implementedin Repbase. Nat Rev Genet,2008,9(5):411-412.
    [241]Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data.Nucleic Acids Res,2011,39(Database issue): D152-157.
    [242] Zhang Z, Yu J, Li D, et al. PMRD: plant microRNA database. Nucleic Acids Res,2010,38(Databaseissue): D806-813.
    [243] Dai X, Zhao P X. psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res,2011,39(Web Server issue): W155-159.
    [244] Morin R D, Aksay G, Dolgosheina E, et al. Comparative analysis of the small RNA transcriptomes ofPinus contorta and Oryza sativa. Genome Res,2008,18(4):571-584.
    [245] Qiu D, Pan X, Wilson I W, et al. High throughput sequencing technology reveals that the taxoidelicitor methyl jasmonate regulates microRNA expression in Chinese yew (Taxus chinensis). Gene,2009,436(1-2):37-44.
    [246] Dolgosheina E V, Morin R D, Aksay G, et al. Conifers have a unique small RNA silencing signature.RNA,2008,14(8):1508-15.
    [247] Barakat A, Wall P K, Diloreto S, et al. Conservation and divergence of microRNAs in Populus. BMCGenomics,2007,8:481.
    [248] Moxon S, Jing R, Szittya G, et al. Deep sequencing of tomato short RNAs identifies microRNAstargeting genes involved in fruit ripening. Genome Res,2008,18(10):1602-1609.
    [249] Yao Y, Guo G, Ni Z, et al. Cloning and characterization of microRNAs from wheat (Triticumaestivum L.). Genome Biol,2007,8(6): R96.
    [250] Joshi T, Yan Z, Libault M, et al. Prediction of novel miRNAs and associated target genes in Glycinemax. BMC Bioinformatics,2010,11Suppl1S14.
    [251] Szittya G, Moxon S, Santos D M, et al. High-throughput sequencing of Medicago truncatula shortRNAs identifies eight new miRNA families. BMC Genomics,2008,9:593.
    [252]陈晓东.柑橘试管苗种质保存及其microRNA鉴定[硕士论文].福建农林大学,2011.
    [253] Baumberger N, Baulcombe D C. Arabidopsis ARGONAUTE1is an RNA Slicer that selectivelyrecruits microRNAs and short interfering RNAs. Proc Natl Acad Sci,2005,102(33):11928-11933.
    [254] Czech B, Zhou R, Erlich Y, et al. Hierarchical rules for Argonaute loading in Drosophila. Mol Cell,2009,36(3):445-456.
    [255] Molnar A, Schwach F, Studholme D J, et al. miRNAs control gene expression in the single-cell algaChlamydomonas reinhardtii. Nature,2007,447(7148):1126-1129.
    [256] Siomi H, Siomi M C. Expanding RNA physiology: microRNAs in a unicellular organism. Genes Dev,2007,21(10):1153-6.
    [257] Morin R D, O'Connor M D, Griffith M, et al. Application of massively parallel sequencing tomicroRNA profiling and discovery in human embryonic stem cells. Genome Res,2008,18(4):610-621.
    [258] Zhu Q H, Spriggs A, Matthew L, et al. A diverse set of microRNAs and microRNA-like small RNAsin developing rice grains. Genome Res,2008,18(9):1456-1465.
    [259]刘生财,林玉玲,陈晓东等.利用Solexa测序技术鉴定苋菜试管开花过程中的miRNAs.热带作物学报,2011,32(7):1296-1303.
    [260] Reinhart B J, Weinstein E G, Rhoades M W, et al. MicroRNAs in plants. Genes Dev,2002,16(13):1616-1626.
    [261] Shi W, Hendrix D, Levine M, et al. A distinct class of small RNAs arises from pre-miRNA-proximalregions in a simple chordate. Nat Struct Mol Biol,2009,16(2):183-189.
    [262] Berezikov E, Robine N, Samsonova A, et al. Deep annotation of Drosophila melanogaster microRNAsyields insights into their processing, modification, and emergence. Genome Res,2011,21(2):203-215.
    [263] Zhang X, Zhao H, Gao S, et al. Arabidopsis Argonaute2regulates innate immunity viamiRNA393*-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Mol Cell,2011,42(3):356-366.
    [264] Ramachandran V, Chen X. Degradation of microRNAs by a family of exoribonucleases inArabidopsis. Science,2008,321(5895):1490-1492.
    [265] German M A, Pillay M, Jeong D H, et al. Global identification of microRNA-target RNA pairs byparallel analysis of RNA ends. Nat Biotechnol,2008,26(8):941-946.
    [266] Gregory B D, O'Malley R C, Lister R, et al. A link between RNA metabolism and silencing affectingArabidopsis development. Dev Cell,2008,14(6):854-866.
    [267] Addo-Quaye C, Eshoo T W, Bartel D P, et al. Endogenous siRNA and miRNA targets identified bysequencing of the Arabidopsis degradome. Curr Biol,2008,18(10):758-762.
    [268] Zhang B, Wang Q, Pan X. MicroRNAs and their regulatory roles in animals and plants. J Cell Physiol,2007,210(2):279-289.
    [269] Shi R, Chiang V L. Facile means for quantifying microRNA expression by real-time PCR.Biotechniques,2005,39(4):519-525.
    [270] Schmittgen T D, Jiang J, Liu Q, et al. A high-throughput method to monitor the expression ofmicroRNA precursors. Nucleic Acids Res,2004,32(4): e43.
    [271] Zhao C Z, Xia H, Frazier T P, et al. Deep sequencing identifies novel and conserved microRNAs inpeanuts (Arachis hypogaea L.). BMC Plant Biol,2010,10:3.
    [272] Cissell K A, Deo S K. Trends in microRNA detection. Anal Bioanal Chem,2009,394(4):1109-1116.
    [273] Chen C, Ridzon D A, Broomer A J, et al. Real-time quantification of microRNAs by stem-loopRT-PCR. Nucleic Acids Res,2005,33(20): e179.
    [274] Varkonyi-Gasic E, Wu R, Wood M, et al. Protocol: a highly sensitive RT-PCR method for detectionand quantification of microRNAs. Plant Methods,2007,3:12.
    [275] Zhang Q, He X J, Pan X Y. Real-time quantification of microRNAs by RNA-tailing andprimer-extension RT-PCR. Beijing Da Xue Xue Bao,2007,39(1):87-91.
    [276] Axtell M J, Bartel D P. Antiquity of microRNAs and their targets in land plants. Plant Cell,2005,17(6):1658-1673.
    [277] Willmann M R, Mehalick A J, Packer R L, et al. MicroRNAs regulate the timing of embryomaturation in Arabidopsis. Plant Physiol,2011,155(4):1871-1884.
    [278] Wang L, Liu H, Li D, et al. Identification and characterization of maize microRNAs involved in thevery early stage of seed germination. BMC Genomics,2011,12:154.
    [279]尚杰,王文章,赵垦田.白皮松种子萌发过程中有机质代谢的研究.东北林业大学学报,1992,20(2):24-29.
    [280] Mallory A C, Reinhart B J, Bartel D, et al. A viral suppressor of RNA silencing differentiallyregulates the accumulation of short interfering RNAs and micro-RNAs in tobacco. Proc Natl Acad SciU S A,2002,99(23):15228-15233.
    [281] Reyes J L, Chua N H. ABA induction of miR159controls transcript levels of two MYB factors duringArabidopsis seed germination. Plant J,2007,49(4):592-606.
    [282] Trindade I, Capitao C, Dalmay T, et al. miR398and miR408are up-regulated in response to waterdeficit in Medicago truncatula. Planta,2010,231(3):705-716.
    [283] Pantaleo V, Szittya G, Moxon S, et al. Identification of grapevine microRNAs and their targets usinghigh-throughput sequencing and degradome analysis. Plant J,2010,62(6):960-976.
    [284] Kantar M, Lucas S J, Budak H. miRNA expression patterns of Triticum dicoccoides in response toshock drought stress. Planta,2011,233(3):471-484.
    [285] Wang J W, Park M Y, Wang L J, et al. miRNA control of vegetative phase change in trees. PLoSGenet,2011,7(2): e1002012.
    [286]黄飞飞.苹果microRNA的检测鉴定及前体结构预测.沈阳农业大学[硕士论文],2010.
    [287] Thellin O, Zorzi W, Lakaye B, et al. Housekeeping genes as internal standards: use and limits. JBiotechnol,1999,75(2-3):291-295.
    [288] Bustin S A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends andproblems. J Mol Endocrinol,2002,29(1):23-39.
    [289] Dheda K, Huggett J F, Bustin S A, et al. Validation of housekeeping genes for normalizing RNAexpression in real-time PCR. Biotechniques,2004,37(1):112-4,6,8-9.
    [290] Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitativeRT-PCR data by geometric averaging of multiple internal control genes. Genome Biol,2002,3(7):RESEARCH0034.
    [291] Andersen C L, Jensen J L, Orntoft T F. Normalization of real-time quantitative reversetranscription-PCR data: a model-based variance estimation approach to identify genes suited fornormalization, applied to bladder and colon cancer data sets. Cancer Res,2004,64(15):5245-5250.
    [292] Wilfinger W W, Mackey K, Chomczynski P. Effect of pH and ionic strength on thespectrophotometric assessment of nucleic acid purity. Biotechniques,1997,22(3):474-481.
    [293] Heid C A, Stevens J, Livak K J, et al. Real time quantitative PCR. Genome Res,1996,6(10):986-994.
    [294] Udvardi M K, Czechowski T, Scheible W R. Eleven golden rules of quantitative RT-PCR. Plant Cell,2008,20(7):1736-1737.
    [295]胡瑞波,范成明,傅永福.植物实时荧光定量PCR内参基因的选择.中国农业科技导报,2009,11(6):30-36.
    [296] Lee J M, Roche J R, Donaghy D J, et al. Validation of reference genes for quantitative RT-PCRstudies of gene expression in perennial ryegrass (Lolium perenne L.). BMC Mol Biol,2010,11:8.
    [297] de Oliveira L A, Breton M C, Bastolla F M, et al. Reference genes for the normalization of geneexpression in Eucalyptus species. Plant Cell Physiol,2012,53(2):405-422.
    [298] Exposito-Rodriguez M, Borges A A, Borges-Perez A, et al. Selection of internal control genes forquantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol,2008,8:131.
    [299] Reid K E, Olsson N, Schlosser J, et al. An optimized grapevine RNA isolation procedure andstatistical determination of reference genes for real-time RT-PCR during berry development. BMCPlant Biol,2006,6:27.
    [300]涂礼莉,张献龙,刘迪秋等.棉花纤维发育和体细胞胚发生过程中实时定量PCR内对照基因的筛选.科学通报,2007,52(20):2379-2385.
    [301]孙美莲,王云生,杨冬青等.茶树实时荧光定量PCR分析中内参基因的选择.植物学报,2010,45(5):579-587.
    [302] Jian B, Liu B, Bi Y, et al. Validation of internal control for gene expression study in soybean byquantitative real-time PCR. BMC Mol Biol,2008,9:59.
    [303] Silver N, Best S, Jiang J, et al. Selection of housekeeping genes for gene expression studies in humanreticulocytes using real-time PCR. BMC Mol Biol,2006,733.
    [304] Brunner A M, Yakovlev I A, Strauss S H. Validating internal controls for quantitative plant geneexpression studies. BMC Plant Biol,2004,4:14.
    [305] Pfaffl M W, Tichopad A, Prgomet C, et al. Determination of stable housekeeping genes, differentiallyregulated target genes and sample integrity: BestKeeper--Excel-based tool using pair-wise correlations.Biotechnol Lett,2004,26(6):509-515.
    [306] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCRand the2(-Delta Delta C(T)) Method. Methods,2001,25(4):402-408.
    [307] Jofuku K D, den Boer B G, Van Montagu M, et al. Control of Arabidopsis flower and seeddevelopment by the homeotic gene APETALA2. Plant Cell,1994,6(9):1211-1225.
    [308] Chuck G, Meeley R B, Hake S. The control of maize spikelet meristem fate by the APETALA2-likegene indeterminate spikelet1. Genes Dev,1998,12(8):1145-1154.
    [309] Maes T, Van de Steene N, Zethof J, et al. Petunia Ap2-like genes and their role in flower and seeddevelopment. Plant Cell,2001,13(2):229-244.
    [310] Vahala T, Oxelman B, von Arnold S. Two APETALA2-like genes of Picea abies are differentiallyexpressed during development. J Exp Bot,2001,52(358):1111-1115.
    [311]Shigyo M, Ito M. Analysis of gymnosperm two-AP2-domain-containing genes. Dev Genes Evol,2004,214(3):105-114.
    [312] Zhang B, Pan X, Cannon C H, et al. Conservation and divergence of plant microRNA genes. Plant J,2006,46(2):243-259.
    [313] Jones-Rhoades M W. Conservation and divergence in plant microRNAs. Plant Mol Biol,2011(OnlineFirst).
    [314] Tang M, Li G, Chen M. The phylogeny and expression pattern of APETALA2-like genes in rice. JGenet Genomics,2007,34(10):930-938.
    [315]Bao W, O'Malley D M, Whetten R, et al. A laccase associated with lignification in loblolly pine xylem.Science,1993,260(5108):672-674.
    [316] Constabel C P, Yip L, Patton J J, et al. Polyphenol oxidase from hybrid poplar. Cloning andexpression in response to wounding and herbivory. Plant Physiol,2000,124(1):285-295.
    [317] de Marco A, Roubelakis-Angelakis K A. Laccase activity could contribute to cell-wall reconstitutionin regenerating protoplasts. Phytochemistry,1997,46(3):421-5.
    [318]王国栋,陈晓亚.漆酶的性质、功能、催化机理和应用.植物学通报,2003,20(4):469-475.
    [319] Cruz-Gallardo I, Diaz-Moreno I, Diaz-Quintana A, et al. The cytochrome f-plastocyanin complex as amodel to study transient interactions between redox proteins. FEBS Lett,2012,586(5):646-652.
    [320] Puig S, Andres-Colas N, Garcia-Molina A, et al. Copper and iron homeostasis in Arabidopsis:responses to metal deficiencies, interactions and biotechnological applications. Plant Cell Environ,2007,30(3):271-290.