日本落叶松、长白落叶松及其杂种光合作用比较
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以日本落叶松(Larix kaempferi Carr.)、长白落叶松(L. olgensis Herry.)、日本落叶松×长白落叶松(Larix kaempferi×L. olgensis)杂种、长白落叶松×日本落叶松(Larix olgensis×L. kaempferi)杂种为研究对象,对落叶松高光效育种进行了探索研究,具体包括:
     为研究日本落叶松、长白落叶松、日本落叶松×长白落叶松杂种、长白落叶松×日本落叶松杂种光合日变化规律及落叶松光合限制因素,于2007年8月和2008年8月底至9月初对落叶松幼树进行光合生理指标日变化的测定,试验在辽宁清原大孤家林场的落叶松无性系评比林中进行。结果表明:落叶松Pn日变化曲线为双峰型(或假单峰型),上午8:00~9:00Pn达到峰值,14:00左右降到低谷,下午或在15:00有一小高峰或没有;10:00之前是其吸收CO2的最佳时段。Pn日均值排序为:长×日杂种>日×长杂种>长白落叶松>日本落叶松。蒸腾速率日变化为双峰曲线,早上7:00的蒸腾速率为一天中最低的,最大值出现在9:00~10:00左右,11:00略有下降之后马上又形成另一个高峰;蒸腾速率日均值的排序为长白落叶松>长×日杂种>日×长杂种>日本落叶松。水分利用效率(WUE)为单峰曲线或“L”型曲线,9:00之前的WUE明显高于其他时段,且杂种高于纯种,9:00之后种间差别很小。气孔导度日变化为单峰曲线,9:00达到峰值,11:00之后保持在一个较恒定的值。在高温、强光环境下,落叶松Pn日变化具有严重的光合“午休”现象,光合改良潜力较大。中午光合量子效率的降低不是光合“午休”的主要原因,根据Pn、气孔限制值、胞间CO2浓度的变化趋势,认为落叶松光合“午休”主要受气孔因素限制。
     以实生采穗园中的采穗母株为研究对象,对日本落叶松与日×长杂种、长白落叶松与长×日杂种、日×长杂种与长×日杂种间进行了光响应曲线和CO2响应曲线的对比测定,以比较它们光合效率的高低。结果表明,日本落叶松与日×长杂种相比,最大净光合速率、光饱和点、光补偿点、表观量子效率、暗呼吸速率、光合能力、CO2饱和点、CO2补偿点都表现出优势,但羧化效率、光呼吸速率没有差别。长白落叶松与长×日杂种相比,表观量子效率、CO2补偿点表现出优势,暗呼吸速率表现出劣势,而羧化效率、光呼吸速率、光补偿点没有差别。日×长杂种与长×日杂种相比,羧化效率、光呼吸速率、CO2补偿点稍稍表现出劣势,而表观量子效率、暗呼吸速率、光补偿点没有差别。
     以实生采穗园中的采穗母株为研究材料,对3个不同母本与同一多父本混合花粉杂交组合家系及3个同一母本与不同单一父本杂交组合家系进行了光响应曲线及CO2响应曲线的测定,以分析父母本对日×长杂种光合性状的影响。结果表明,不同母本与同一多父本混合花粉杂交组合间的表观量子效率、暗呼吸速率、羧化效率存在显著差异,光补偿点、CO2补偿点存在极显著差异,其他指标差异不显著,表现出较强的母本效应;同母本与不同父本杂种组合间只有暗呼吸速率差异达到极显著水平,其他指标差异不显著,表现出较弱的父本效应。在高光效亲本选择时,应特别重视母本选择。
     为研究落叶松光合与生长量的关系,对日本落叶松、长白落叶松、日×长杂种、长×日杂种幼树的树高、净光合速率(Pn)日均值、暗呼吸速率、物候期、形态性状进行了测定。研究表明,虽然日本落叶松的Pn日均值最低,但是它有最长的生长期和较大的全株总叶面积及较低的暗呼吸速率,这些优势帮助其拥有较高的生长量;长4C虽然暗呼吸速率最低,但Pn日均值、生长期、全株叶面积均最小,故生长表现最差。在不考虑物候期、形态性状等差异的情况下,Pn日均值并不能合理解释生长量差异。在进行高光效亲本或高光效子代选择时,必须参考形态、物候指标及生长表现。
Taking Larix kaempferi Carr., Larix olgensis Herry., Larix kaempferi×L. olgensis and Larix olgensis×L.kaempferi as study object, the thesis gived exploration research of breeding for high photosynthetic efficiency of larch. It consisted of the following parts:
     In order to investigate the differences on photosynthesis physiologic characteristics of young Larix kaempferi, L.olgensis, L.kaempferi×L.olgensis and L.olgensis×L.kaempferi, Characteristics of photosynthetic rate and other physiological indexes were measured on 5 days in larch comparing and assessing forest at Dagujia,Qingyuan,Liaoning province. The results were as follows: the diurnal changes of net photosynthetic rate (Pn) of Larch showed double-peak curves, daily highest Pn appeared between 8:00~9:00, daily lowest Pn appeared at 14:00, if there was secondary peak, it appeared at 15:00. CO2 absorption presented maximum at 7:00-10:00. The sequence of daily mean values of Pn was L.olgensis×L.kaempferi>L.kaempferi×L. olgensis>L.olgensis>L.kaempferi. The diurnal changes of transpiration (Tr) rate showed double-peak curves, the lowest value appeared at 7:00 and the highest value appeared between 9:00~10:00. The secondary peak appeared after lower point at 11:00. The sequence of daily mean values of Tr was L.olgensis > L.olgensis×L.kaempferi >L.kaempferi×L.olgensis>L.kaempferi. The diurnal changes of water use efficiency (WUE) showed single-peak curve or L pattern, hybrids had high WUE than L. kaempferi and L. olgensis before 9:00 but had no differences after 9:00. The diurnal changes of stomatal conductance showed single-peak curve. Larch had obvious phenomena in midday depression of photosynthesis. The decline in apparent quantum yield was not the main reason for the decline of net photosynthetic rate. We concluded that stomatal limitation is the dominant cause of the midday depression of photosynthesis according the change tendency of Pn, stomatal limiting value, intercellular CO2 concentration.
     In order to compare the photosynthetic efficiency of L.kaempferi, L. olgensis, L.kaempferi×L.olgensis and L. olgensis×L. kaempferi, light response curse and CO2 response curse were measured. The results were as follows: Compared with L.kaempferi×L.olgensis, the maximum net photosynthetic rate, light saturation point , light compensation point (LCP), apparent quantum yield (AQY), dark respiration rate (Rd), photosynthetic capacity,CO2 saturation point and CO2 compensation point (Γ) of L.kaempferi was superior, but the carboxylation efficiency (CE), photorespiration rate (Rp) of two showed no differences. Compared with L.olgensis×L.kaempferi, the AQY,Γof L.olgensis was superior but Rd of L. olgensis was inferior, and CE, Rp, LCP of the two showed no differences. Compared with L.kaempferi×L.olgensis, CE, Rp,Γof L.kaempferi×L. olgensis was a litter superior, but AQY, Rd, LCP of the two showed no differences.
     In order to make sure maternal and paternal effects on photosynthetic characters of L. kaempferi×L.olgensis hybrids, light response curse and CO2 response curse of 6 L. kaempferi×L.olgensis families, including poly-crossed and full-sib families, and 3 corresponding open-pollinated female parent families were analyzed. Result indicated that there were significant differences in AQY, Rd, CE, and very significant differences in LCP,Γamong poly-crossed families, while only Rd exerted very significant differences among full-sib hybrid families who shared the same mother. Maternal effect played a more important role than paternal effect.
     In order to study the relationship between photosynthetic characteristics and growth of Larch, height growth, daily mean values of net photosynthetic rate (Pn), phenophase, morphological traits, dark respiration rate of young L. kaempferi , L. olgensis , L. kaempferi×L. olgensis and L. olgensis×L. kaempferi were measured. Results showed that although the daily mean of Pn of L.kaempferi 85 was the lowest, the advantage of phenophase, morphological traits and dark respiration rate helped it had the fasest growth. Although Rd of L. olgensis 4C was the lowest, the disadvantage of phenophase, morphological traits and the daily mean of Pn helped it had the slowest growth. The daily mean values of Pn were not valuable to predict growth. It was conclueded that selecting parents with high photosynthetic efficiency should take into account of growth performance.
引文
[1]马常耕孙晓梅我国落叶松遗传改良现状及发展方向世界林业研究,2008,21(3):58-63
    [2]马常耕国外针叶树种间杂交研究进展世界林业研究,1997, (3) :9- 16
    [3]马常耕我国杨树杂交育种的现状与发展对策林业科学,1995, 31 (1) :60- 66
    [4]杨书文鞠永贵张世英等落叶松杂种优势的研究东北林业大学学报,1985,13(1): 30-36
    [5]张含国袁桂华李希才等落叶松生长和材性杂种优势研究东北林业大学学报,1998,26 (3):25-28
    [6]张含国张成林兰士波等落叶松杂种优势分析及家系选择南京林业大学学报,2005,29(3):69-72
    [7]马常耕国外林木种间杂种利用育种策略研究现状见:马常耕著近年撰写部分论文汇集,2009
    [8] Zelitch I. The close relationship between net photosynthesis and crop yield. Biosci, 1982, 32:796-802
    [9] Parker W C, Mohammed G H. Photosynthetic acclimation of shade-grown red pine (Pinus resinosa Ait.) seedlings to a high light environment. New Forests, 2000, 19 (1):1-11
    [10] Man R. Lieffers V J. Seasonal variations of photosynthetic capacities of white spruce (Picea glauca) and jack pine (Pinus banksiana) saplings. Canadian Journal of Botany, 1997, 75(10):1766-1771
    [11]李文华吴万兴鲁周民等4种落叶松的引种效果和光合日进程西南林学院学报,2006,26(4):1-4
    [12]赵凤君沈应柏高荣孚等黑杨杂交无性系间叶片δ~(13)C、长期水分利用效率和光合特性的研究西部植物学报, 2005,25(11):2250-2258
    [13]杨敏生李艳华梁海永等白杨派杂种无性系及其亲本光合和生长对盐胁迫的反应林业科学, 2006,42(04):19-26
    [14]吴承祯侯智勇洪伟等桉树无性系光合光响应研究福建林学院学报,2008,28(3):198-202
    [15]冯玉龙王丽华敖红等长白落叶松生理生态特性的CO2响应及意义植物研究,1999,19(1):53-55
    [16]姜春玲王丽华冯玉龙等.长白落叶松生理生态特性的初步研究哈尔滨师范大学自然科学学报,1998 14(6):99-103
    [17]姜海凤.三种落叶松光合生理生态学特性比较研究东北林业大学硕士学位论文, 2003
    [18]王秀伟毛子军兴安落叶松人工林冠层气体交换的时空特性林业科学,2007,43(11):43-49
    [19]胡延吉赵檀方小麦光合作用的遗传和改良潜力的初步研究中国农业科学,1995,28(增刊):14-21
    [20]杜维广王彬如谭克辉等大豆高光效育种的探讨植物学通报,1984,7-11
    [21]广东农科院水稻高光效育种组水稻净光合率的品种间差异及高光效育种植物生理学报,1978 ,113–121
    [22] Moss D N, Musgrave P B. Photosynthesis and crop production. Advances in Agronomy,1971,23:317-336
    [23] Peet M M, Bravo A, Wallace DH, et al. Photosynthesis, stomatal resistance and enzyme activities in relation to yield of field grown dry bean varieties. Crop Sci,1977,17:287-293
    [24]杜维广郝乃斌大豆高光效育种的理论基础及实践见:作物光能利用效率与调控.山东:山东科学技术出版社2004
    [25]刘振业刘贞琦作物光合作用的遗传与育种研究进展贵州农学院学报,1991,10(2):20-28
    [26]邓仲篪孙济中张金发等.杂交棉及其亲本光合特性的研究华中农业大学学报,1995,14(05),429-434
    [27]盛宁姚青菊任全进夏腊梅和美国腊梅属间杂种形态和光合生理特征浙江林学院学报,2008 25(6):728-732
    [28]王树安王纪华梁振兴杂种小麦源库基本特性的研究作物学报,1994,20(4):426-431
    [29] Cuong Van Pham Murayama, S. Kawamitsu, Y. Motomura, K. Miyagi, S. Heterosis for photosynthetic and morphological characters in F1 hybrid rice from a thermo-sensitive genic male sterile line at different growth stages. Japanese Journal of Tropical Agriculture. 2004. 48: 3, 137-148.
    [30]小岛睦男关于提高大豆品种光合作用能力的研究农业技术研究报告D第23号,1972,97-145
    [31]聂以春张献龙杨细燕等抗虫杂交棉的光合及经济性状的优势及配合力研究华中农业大学学报,2005 24(1):5-9
    [32]姜卫兵庄猛戴美松等桃不同杂交组合亲子代品种的光合特性初探江苏农业科学, 2005 ,4:66-68
    [33] Bhardawj H L Wealer J R Combining ablitity analysis in cotton for agronomic characters, fruiting efficiency, photosynthesis and ballworm resistance. J.Agric.Sci. 1986,103:511-518
    [34] Khan, M. N. A. Murayama, S. Tsuzuki, E. Scarisbrick, D. H. Ishimine, Y. Nakamura, I. Dry matter accumulation and heterosis in photosynthesis in F1 hybrids of rice (Oryza sativa L.). Japanese Journal of Tropical Agriculture. 1998. 42: 4, 272-281
    [35] Mehta, H. Sarkar, K. R. Heterosis for leaf photosynthesis, grain yield and yield components in maize. Euphytica. 1992. 61: 2, 161-168
    [36]赵明王美云李少昆玉米杂交种与亲本主要光合性状的比较华北农学报,1997 12(2):39-43
    [37]李少昆赵明玉米杂交组合光合特性的研究新疆农业科学,1999,01:8-15
    [38]杨秀艳季孔庶王章荣等杂交鹅掌楸苗期光合特性研究西北林学院学报,2005,20(2),39-43
    [39] Murayama.S,Miyazatv.K,Nost.A Studies on matter production of F1 hybrid in riceⅠHeterosis in the single leaf photosynthetic rate.Japan J of Crop Sci,1987,56(2)
    [40] Pham Van Cuong Nguyen The Hung Tang Thi Hanh Araki, T. Affection of light intensity and diurnal change on heterosis for photosynthetic characters in F1 hybrid rice (Oryza sativa L.). Bulletin of the Institute of Tropical Agriculture, Kyushu University. 2005. 28: 1, 25-34
    [41]胡美君王义芹张亮等不同基因型小麦及其优选杂交后代的光合作用特性作物学报,2007,33(11):1879-1883
    [42]孙济中刘金兰张金发等棉花杂种优势的研究与利用棉花学报,1994.6(3):135-139
    [43]李霞丁在松李连禄等玉米光合性能的杂种优势应用生态学报,2007,18(05),1049-1054
    [44]张其德卢从明张世平等几种有优和无优杂交组合中杂交稻及其亲本光合功能的比较植物学通报,1998,15(1):50-55
    [45]赵全志吕德彬程西永等杂种小麦群体光合速率及伤流强度优势研究中国农业科学, 2002 35 (8):925-92
    [46]游俊刘金兰孙济中陆地棉品种与陆地棉族系种植系间生理生化性状的杂种优势棉花学报,1998,10(1):14-19
    [47] Rao, N. K. S. Bhatt, R. M. Anand, N. Leaf area, growth and photosynthesis in relation to heterosis in tomato. Photosynthetica. 1992. 26: 3, 449-453
    [48] Lupton,F.G.H.,Physiological basis of heterosis in wheat. Janossy A and Lupton FGH(ed),in“heterosis in Plant Breeding”,1974,71-80
    [49]董合忠李维江李振怀等转Bt基因抗虫棉与其亲本的光合能力比较核农学报,2000 14(5):384-389
    [50] W ell S R , et al. Heterosis in upland cottonⅡRelationship of leaf area to plant photosynthesis .Crop Sci, 1988, 28: 522-525.
    [51]邹学校马艳青陈文超等辣椒净光合速率杂种优势及其稳定性分析上海农业学报,2005,21(03):4-8
    [52] Ahmadzadeh A, E.A.Lee,M. tollenaar. Heterosis for leaf CO2 exchang rate during the grain-filling period in maize.Crop science, 2004.44(6):2095-2100
    [53]周春菊张嵩午王长发杂种小麦“901”某些光合生理特性的研究西北农业大学学报,1998,26(5):1-4
    [54]张永丽肖凯李雁鸣种植密度对杂种小麦C6-38/Py85-1旗叶光合特性和产量的调控效应及其生理机制作物学报,2005 31(4):498-505
    [55]张永丽肖凯李雁鸣灌水次数对杂种小麦冀矮1/C6-38旗叶光合特性和产量的影响作物学报,2006,32(3):410-414
    [56] Yang, X. E. Sun, X. Heterosis in photosynthesis of F1 hybrids in relation to N nutrition. Acta Agriculturae Universitatis Zhejiangensis. 1991. 17: 4, 355-359.
    [57]蔡惟涓屠曾平李小林等杂种稻在不同温度条件下的光合适应性和光合生产力的研究.中国水稻科学1994,8(3):145-150
    [58] Yang XingHong Chen XiaoYing Ge QiaoYing Li Bin Tong YiPing Zhang AiMin Li ZhenSheng Kuang TingYun Lu CongMing Tolerance of photosynthesis to photoinhibition, high temperature and drought stress in flag leaves of wheat: a comparison between a hybridization line and its parents grown under field conditions. Plant Science. 2006. 171: 3, 389-397
    [59] Cuong Van Pham Murayama, S. Kawamitsu, Y. Miyagi, S. Heterosis in temperature responses of photosynthetic characters in F1 hybrid rice. Environment Control in Biology. 2005. 43: 3, 193-200
    [60]周小平张岁岐杨晓青等玉米根系活力杂种优势及其与光合特性的关系.西北农业学报, 2008 17(4):84-90
    [61]赵琦唐崇钦匡廷云玉米(Zea mays L.)杂交种(中单14)及其亲本部分光合特性的研究Ⅰ杂交种和亲本自交系叶片荧光特性和光合强度的比较作物学报,1996, 22(5):560-564
    [62]赵秀琴赵明肖俊涛等栽野稻远源杂交高光效后代及其亲本叶片的气孔特性作物学报, 2003,29(2):216-221
    [63] Gaziyants, S. M. Osipov, K. G. Sokolova, I. M. Heterosis for photosynthetic processes in cotton hybrids of the intensive type. Tezisy dokladov. 1991. 56
    [64] Cannell M G R ,Last F T.1976.Tree physiology and yield improvement.New York:Academic Press
    [65]郭培国李明启杂交水稻及其亲本光合特性的研究Ⅰ功能叶片叶绿素含量、叶绿素-蛋白复合物及诱导荧光动力学热带亚热带植物学报,1996,4(4):60-65
    [66]张金发孙济中刘金兰棉属异种细胞质对陆地棉光合性能的影响中国棉花,1991,(1):17-18
    [67]刘振业刘贞琦光合作用的遗传与育种贵州:贵州人民出版社1985
    [68]沈凇海许复华四个栽培棉种叶片光合色素特性的研究中国棉花,1991,(5):10-13
    [69]徐荣旗刘俊芳江延龄等棉花杂种优势与几种生理生化指标的相关性华北农学报, 1996,11(1):76-80
    [70]刘一农玉米杂种优势与叶绿体互补遗传,1979,3:22-25
    [71]李良壁张正东谭光辉等植物叶绿体互补作用的研究Ⅰ杂交双亲叶绿体互补作用.遗传学报,1978,3:196-203
    [72]郭培国李明启杂交水稻及其亲本光合特性的研究Ⅱ功能叶片的希尔反应、光合磷酸化、ATP酶活性和ATP含量热带亚热带植物学报,1997,5(1):65-70
    [73]朱绍琳陈旭升等棉铃生物学北京:中国农业出版社, 1994: 136-140.
    [74]肖凯谷俊涛邹定辉杂种小麦及其亲本光合碳同化特性的研究作物学报,1999,25(3):381-388
    [75]董德坤师恺曹家树芸薹属两个亚种间杂种光合作用优势及其机理中国农业科学,2007,40(12),2804-2810
    [76] Bedenko, V. P. Sidorenko, O. I. Photosynthetic aspects of the yield production process in wheat in relation to the phenomenon of heterosis. Fiziologiya i Biokhimiya Kul'turnykh Rastenii. 1989. 21( 4): 333-338.
    [77]李季航向朝珣何立斌等水稻亚种间杂种F-1光合特性研究植物学通报,2005,22(4):432-438
    [78]郝乃斌白克智戈巧英等C3植物中C4途径代谢酶特性研究见:作物光能利用效率与调控山东科学技术出版社2004,1-28
    [79]肖凯谷俊涛邹定辉等杂种小麦及亲本旗叶老化过程中CO2导度的研究作物学报,1998,24(04):503-508
    [80]肖凯谷俊涛张荣铣杂种小麦光合特性的初步研究作物学报,1997 23(4):425-431
    [81]郭培国李明启杂交水稻及其亲本光合特性的研究Ⅲ功能叶片碳代谢中一些酶活性热带亚热带植物学报,1997,5(2):68-73
    [82]翟虎渠曹树青唐运来籼型杂交水稻光合性状的配合力及遗传力分析作物学报,2002,28(2):154-160
    [83]周艳敏张春庆玉米生育后期光合特性的遗传分析中国农学通报,2008,41(7):1900-1907
    [84] Weerasinghe, O. R. Perera, A. L. T. Costa, W. A. J. M. de Jinadase, D. M. Vishnukanthasingham, R. Yang, X. E. Sun, X. Heterosis in photosynthesis of F1 hybrids in relation to N nutrition. Acta Agriculturae Universitatis Zhejiangensis. 1991. 17(4): 355-359.
    [85]邹学校张竹青陈文超辣椒净光合速率Hayman双列杂交分析热带亚热带植物学报,2007,15(3):244-248
    [86]杨玉景李世平闫翠萍等冬小麦非旗叶光合器官光合效应的遗传规律西北农业学报, 2008,17(6):59-62
    [87]张旭陈友订水稻光温生态与品种的选育利用北京:中国农业出版社,2000
    [88]赵明杨相勇赵秀琴等利用野生资源进行水稻高光效资源创新见:作物光能利用效率与调控山东科学技术出版社2004,318-336
    [89] Ramasamy C, Shanmugam T R, Suresh D. Constraints to higher rice yields in different riceproduction environments and prioritization of rice research in southern India. In: Evenson R E, Herdt R W, Hossain M (eds). Rice Research in Asia, Progress and Priorities. Cambridge: CAB International,1996:145-160
    [90] Ku M S B, Agarie S, Nomura M, Fukayama H, eds High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nature Biotech,1999,17:76-80
    [91]许大全光合作用效率上海:上海科学技术出版社2002,163-167
    [92] Charles C. Genetic engineers aims to soup up crop photosynthesis. Science ,1999,283:314-316
    [93] Hiroko Tsuchida, Tesshu Tamai, Hiroshi Fukayama, et al. High level expressing of C4-specific NADP-Malic enzyme in leaves and impairment of photoautotrophic growth in a C3 plant, rice. Plant Cell Physiol,2001,42(2):138-145
    [94]崔继林光合作用生产南京:江苏科学技术出版社,2000
    [95]孟庆伟Weis E邹琦等银杏叶片的光抑制和光保护机制:温度、CO2和O2的影响植物学报, 1999 , 41 (4) :398– 404
    [96]李新国孟庆伟赵世杰强光胁迫下银杏叶片的光抑制及其防御机制林业科学2004,40(3):56-59
    [97]韦朝领江昌俊陶汗之等茶树叶片光合作用的光抑制及其恢复研究安徽农业大学学报2003,30(2):157-162
    [98]冯玉龙张亚杰朱春全根系渗透胁迫时杨树光合作用光抑制与活性氧的关系应用生态学报,2003,14(8):1213-1217
    [99]赖明志适制乌龙茶品种茶树田间光合特性茶叶科学,1997,17(2):189-192
    [100]姜武沈志军姜卫兵等不同季节水蜜桃品种光合生理指标的比较江苏农业学报,2008,24(3):321-330
    [101]贺立红贺立静梁红等银杏不同品种叶绿素荧光参数的比较华南农业大学学报,2006,27(4):43-46
    [102]马常耕苏晓华杨树超高产育种策略中的功能高光效改良问题2006
    [103]曹珂朱更瑞冯义斌等杏、李和杏李光合特性比较及优质种质筛选.植物遗传资源学报,2007,8(3):331-335
    [104]尹吴李丽莎新栋等杨树转C4光合PEPC基因的研究第六届全国林木遗传育种大会论文集
    [105]赵晓焱王传宽霍宏兴安落叶松(Larix gmelinii)光合能力及相关因子的种源差异生态学报,2008,28(8):3798-3807
    [106]屹妍天然幼龄兴安落叶松光合特征研究内蒙古农业大学硕士学位论文,2004
    [107]刘志刚华北落叶松人工林树冠结构与光能利用的研究北京林业大学博士学位论文1993:112-
    [108]马文华许翠清李海朝立地条件对长白落叶松光合特性的影响东北林业大学学报,2008,36(8):4-7
    [109]姜丽芬兴安落叶松人工林光合与呼吸作用机理的研究东北林业大学博士学位论文,2003
    [110]王秀伟兴安落叶松人工林碳循环关键过程的研究东北林业大学硕士学位论文,2006:16-39
    [111]王战张颂云等中国落叶松林北京:中国林业出版社16-17
    [112]侯丽君吴玉华杨德民不同立地长白落叶松净光合特征的研究防护林科技,2000,43(2):24-27
    [113]赵溪竹姜海凤毛子军长白落叶松、日本落叶松和兴安落叶松幼苗光合作用特性的比较研究.植物研究,2007,27(3):361-366
    [114]田志诚于瑞安.兴安落叶松树冠发生及生长特点的研究林业科技通讯1996,33(12):27-28
    [115] Maryssek, R. Schulze, E. D. Heterosis in hybrid larch (Larix decidua×leptolepis). II. Growth characteristics. Trees: Structure and Function. 1987. 1: 4, 225-231
    [116] Maryssek, R. Schulze, E. D. Heterosis in hybrid larch (Larix decidua×leptolepis). I. The role of leaf characteristics. Trees: Structure and Function. 1987. 1: 4, 219-224
    [117] Zhang, J. W. Fins, L. Marshall, J. D. Stable carbon isotope discrimination, photosynthetic gas exchange, and growth differences among western larch families. Tree Physiology. 1994. 14: 5, 531-539.
    [118]冯玉龙王文章敖红长白落叶松无性系选择生理指标的研究林业科学,2000,36(专刊1):80-85
    [119]王淼郝占庆姬兰柱等高CO2浓度对温带三种针叶树光合光响应特性的影响应用生态学报, 2002,13(6):646-650
    [120] Rosenthal, S. I. Camm, E. L. Photosynthetic decline and pigment loss during autumn foliar senescence in western larch (Larix occidentalis). Tree Physiology. 1997. 17: 12, 767-775
    [121] Yazaki K,Ishida S, Kawagishi T,ect. Effects of elevated CO2 concentration on growth, annual ring structure and photosynthesis in Larix kaempferi seedlings. Tree Physiology, 2004.24(9):951-959
    [122]郭盛磊阎秀峰白冰等落叶松幼苗光合特性对氮和磷缺乏的响应应用生态学报,2005,16(4):589-594
    [123]郭盛磊阎秀峰白冰等供氮水平对落叶松幼苗光合作用的影响生态学报,2005,25(6):1291-1298
    [124]王非三江平原低山区落叶松速生丰产林增产机理的研究东北林业大学硕士学位论文,2000
    [125] Wang WenJie,Watanabe Y ect.Seasonal changes in the photosynthetic capacity of cones on a larch (Larix kaempferi) canopy. Photosynthetica. Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Praha, Czech Republic: 2006. 44: 3, 345-348
    [126] Wang WenJie,Zu yuangang ect.Carbon dioxide exchange of larch (Larix gmelinii) cones during development. Tree Physiology. Heron Publishing, Victoria, Canada: 2006. 26: 10, 1363-1368
    [127] Hutchison, K. W. Sherman, C. D. Weber, J. Smith, S. S. Singer, P. B. Greenwood, M. S. Maturation in larch. II. Effects of age on photosynthesis and gene expression in developing foliage. Plant Physiology. 1990. 94: 3, 1308-1315
    [128] Fischer R A, Turner N C. Plant productivity in the arid and semiarid zones. Ann Rev Plant Physiol, 1978 ( 29 ) :227-317.
    [129] Berry J A , Downton W J S. Environmental regulationof photosynthesis. In: Govindjee(ed). Photosynthesis VolⅡ.New York: Academia press, 1982, 263-343
    [130] Farquhar G D,Sharkey T D, Stomatal conductance and photosynthesis.Ann Rev Plant Physiol,1982(33):317-345
    [131]刘惠昌王翠华日本落叶松叶片气孔大小的观察辽宁林业科技,1990,06:48-49
    [132]王宇陈丽华余新晓等北京山区典型针叶林树种蒸腾特性比较北京林业大学学报,2008,增刊2:193-196
    [133] Long S P, Humphreis S, Falkwoski P G. Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol, 1994,45:633-662
    [134]王笑山马常耕寇金堂等日本落叶松整形修剪对插穗产量及生根率的影响林业科学,1995,31(2):116-124
    [135] Prioul J L,Chartier P. Partitioning of transfer and carboxylation components of intercellular resistance to photosynthetic CO2 fixation:a critical analysis of the methods used. Annals of Batony , 1977,41:789~800
    [136]欧志英彭长连林桂珠田间条件下超高产水稻培矮64S/E32及其亲本旗叶的光合特性作物学报,2005,31(2):209-213
    [137]赵明王美云玉米亲本及杂交种光合速率的关系北京农业大学学报,1995,21(03):265-269
    [138]焦德茂季本华童红玉等水稻籼粳亚种杂交1代光合光抑制特性植物学报,1994,36(3):190-196
    [139]孙晓梅张守攻王笑山等日本落叶松×长白落叶松杂种组合间生根性状及幼林生长的遗传变异林业科学,2008,44(4):41-47
    [140]李生英兰荣光许童语等不同杨树品种生理生态特性及其与生长的关系沈阳农业大学学报,1998,29(1):47-52
    [141]周永斌马学文姚鹏等不同生长速度杨树品种的光合生理生态特性研究沈阳农业大学学报,2007,38(3):336-339
    [142]董胜军刘明国赵桂玲山杏丰产优良无性系光合生理特性研究安徽农业科学,2007,35(18):5356-5357
    [143]徐清乾周小玲许忠坤四川桤木品系的光合和蒸腾速率差异及其生长分析林业科技开发2008,22(4):42-45
    [144] Evans L T Crop evolution, Adaptation and yield Cambridge New York:Cambridge University Press,1993:169-267
    [145] Lawlor D W. Photosynthesis, production and environment. J Ex Bol,1995, 46:1389-1396
    [146] Babu R C, Manian K,Sridharan C S. Leaf chlorophyll, photosynthesis and dry matter accumulation in sesame hybrids and their parents. Madras Agric J,1996,83:726-729
    [147] Mae T. Changes in the amounts of ribulose bisphosphate carobosylase synthesized and degraded during the life span of rice leaf (O.sativa S.).Plant Cell Physol,1983,24:1079-1096
    [148] Makine A, Mac T, Chira K. Changes in photosynthetic capacity in rice leaves from emergence through senescence-Analysis from ribulose 1,5-bisphosphate carboxylase and leaf conductance. Plant Physiol, 1984,25:511-521
    [149]张荣铣陆巍许晓明等光合作用与高光效生理育种见:匡廷云主编作物光能利用效率与调控山东:山东科学技术出版社2004,288-316
    [150]刘雅荣刘奉觉王爽等四种杨树苗木的生长与光合作用特性的研究林业科学,1983,19(3):269-276
    [151]叶金山王章荣杂种马褂木杂种优势的遗传分析林业科学,2002,38(4):67-71
    [152] Rasulov, B. Kh. Effect of heterosis on photosynthetic characters of the leaves and cotton yield. Fotosintez i produktivnost' rastenii.. 1990. 143-147.
    [153]向珣朝李平何立斌等超高产水稻的高光效特性和高光效材料的筛选中国农学通报2005,21(01):81-84
    [154]王文章陈杰张宝有等落叶松光合特性与初级生产力东北林业大学学报,1994,22(4):15-21
    [155] McCree K J. Sensitivity of sorghum grain yield to ontogenetic changes in respiration coefficients. Crop Sci,1988,28:114-120
    [156]孙晓梅张守攻李时元等日本落叶松纸浆材优良家系多性状联合选择林业科学,2005,41(4):48-54
    [157]牛正田张绮纹彭镇华等国外杨树速生机制与理想株型研究进展世界林业研究2006(2):23-27