杂种落叶松家系稳定性及优良家系初步选择研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在草河口、吉林、尚志、错海、林口、富锦、铁力和北安8个地点对21个处理进了区域化试验,以苗期7个地点的13个处理和幼龄期8个地点的21个处理为研究对象,运用基因型与环境互作的原理,利用Eberhart和Russell模型、George模型、AMMI模型、Shukla模型和秩次分析法分析了家系生长性状的稳定性,并对生长、保存率以及光合性状进行了分析,揭示了其遗传变异规律,家系在各地点的生长表现,适应性和稳定性,探讨了光合生理性状与生长性状之间的关系,筛选出优良家系。对杂种落叶松优良家系选育以及大面积的推广具有重要的指导意义。主要研究结果如下:
     1苗期和幼龄期绝大多数性状处理间和处理内变异丰富。2年生苗高处理间变异系数在22.8%-32.3%之间,平均变异系数为27.85%。兴12×兴2的变异系数最大;兴5×兴9的变异系数最小;6年生树高处理间变异系数在31.9%-43.4%之间,平均变异系数为36.64%,日3×兴9变异系数最大,兴7×日77-2的变异系数最小;胸径处理间变异系数在50.1%-71.2%之间,平均变异系数为56.16%,长73-4变异系数最大,日5×兴12的变异系数最小。6生年保存率处理间变异系数在45.78%-63.63%之间,平均变异系数为54.83%,变异系数最大的是长73-4,变异系数最小的是日3×石51。6年生净光合速率处理间变异系数在3.1%-10.7%之间,平均变异系数为5.43%,遗传变异较小;蒸腾速率家系间变异系数在29.6%-53.9%之间,平均变异系数为41.87%,日11×兴2的变异系数最大,日3×石51的变异系数最小;气孔导度家系间变异系数在30.8%-85.2%之间,平均变异系数为38.5%,兴7×日77-2的变异系数最大,日5×兴12的变异系数最小。
     2 2年生苗高和6年生树高家系生长表现出极显著正相关,相关系数为0.796。6年生净光合速与树高、胸径率极显著正相关,相关系数是0.588和0.688,有助于间接选择。净光合速率与蒸腾速率、气孔导度都表现正相关,与气孔导度相关性高,与蒸腾速率相关性低。
     3 2年生苗高每个地点处理间均差异极显著;6年生树高草河口、错海、富锦、林口、铁力处理间差异极显著,胸径错海、富锦、吉林、林口处理间差异极显著。根据6年生树高选出一批适合当地环境条件的优良家系:草河口,日5×长77-3、日5×兴9,树高遗传力为86.35%,遗传增益为62.79%。北安,兴9×日76-2、兴5×兴9,树高遗传力为39.02%,遗传增益为42.21%。错海,日12×兴9、兴6×和6,树高遗传力为75.66%,遗传增益为36.71%。富锦,日5×长78-3、日5×兴12、日5×兴9、兴7×日77-2,树高遗传力为81.07%,遗传增益为37.66%。吉林,日5×长78-3、日3×石51,树高遗传力为39.69%,遗传增益为27.37%。林口,日5×兴9、兴7×日77-2,树高遗传力为88.94%,遗传增益为62.26%。尚志,日5×长78-3、日3×兴9、兴9×日76-2,树高遗传力为11.66%,遗传增益为19.92%。铁力,日5×兴9,树高遗传力为54.41%,遗传增益为31.63%。
     4幼龄期家系平均保存率为40.19%,保存率较好高的家系是日3×石51、日5×长77-3、兴7×日77-2、日5×兴9、兴5×兴9,平均保存率为43.82%;保存率较好的家系分别超出白刀山种源、小北湖种源、乌伊岭种源的10.1%、17.29%、27.76%。
     5苗期稳定性分析结果表明,兴9×日76-2、兴5×兴9、日11×兴2和日5×长78-3属于高产稳产家系,4个家系的均值分别超出白刀山种源、小北湖种源的31.24%、27.36%。日5×长77-3、兴12×兴2、日5×兴9、日3×兴9属于高产不稳产家系。AMMI模型并结合George模型适合评价苗期处理的稳定性。幼龄期稳定性分析结果表明,日5×兴9、日5×长78-3和兴10×日13属于高产稳产家系,3个处理的均值分别超出白刀山种源、小北湖种源、乌伊岭种源的32.75%、25.93%、23.29%。日5×长77-3和兴7×日77-2属于高产不稳产家系。秩次分析法并结合Shukla模型适合评价处理的稳定性。
The regional test of twenty-one treatments on hybrid larch was conducted at eight sites in Caohekou, Jilin, Shangzhi, Cuohai, Linkou,Fujin,Tieli and Beian,in this study takes 13 treatments of seeding at 7 sites and 21 treatments of juvenile at 8 sites as the experiment material, using the principle of genotype and environment interaction, using Eberhart & Russell, the George C. C. Tai,the additive main-effect and multiplicative interaction (AMMI), Shukla and Rank analysis method to analysis stability of growth traits and the growth,survival rate,genetic variation and photosynthetic traits, It can be a true reflection of genetic variation, growth performance in various locations, adaptability and stability, the relationship between physiological traits and growth traits, selection good families.The conclusion had a certain instruction:breeding good families of Hybrid Larch, the promotion at a large area.
     Themainfindingsareasfollows:
     1 There was larger variation in most traits of within treatments and treatment in seeding and juvenile age.the coefficients of variation of two-year old seeding height within treatments were 22.8%~32.3%, the average coefficient of variation was 27.85%.the greatest coefficients of variation was Larix. gmelinii12×L. gmelinii2, the smallest coefficients of variation was L. gmelinii5×L. gmelinii9.Juvenile age,the coefficients of variation of six-year old tree height within treatments were 31.9%~43.4%, the average coefficient of variation was 36.64%.the greatest coefficients of variation was L.kaempferi3×L. gmelinii9, the smallest coefficients of variation was L. gmelinii7×L.kaempferi77-2; the coefficients of variation of six-year old diameter at breast height (DBH) within treatments were 50.1%~71.2%, the average coefficient of variation was 56.16%.the greatest coefficients of variation was L.olgensis 73-4, the smallest coefficients of variation was L.kaempferi5×L. gmelinii12.the coefficients of variation of six-year old survival rate within treatments were 45.78%~68.63%,the average coefficient of variation was 54.83%, the greatest coefficients of variation was L.olgensis 73-4, the smallest coefficients of variation was L.kaempferi3×shi51. the coefficients of variation six-year old of net photosynthetic(Pn) within treatments were 3.1%~10.7%, the average coefficient of variation was 5.4%. genetic variation was less; the coefficients of variation of transpiration rate(Tr)within treatments were 29.6%~53.9%,the average coefficient of variation was 41.87%, the greatest coefficients of variation was L.kaempferi11×L. gmelinii2, the smallest coefficient of variation was L.kaempferi3×shi51.the coefficients of variation of stomatal conductance(Gs)within treatments were 30.8%~85.2%, the average coefficient of variation was 38.5%, the greatest coefficients of variation was L. gmelinii7×L.kaempferi77-2, the smallest coefficients of variation was L.kaempferi5×L. gmelinii12.
     2There was a very significant positive correlation between two-year old seeding height and six-year old tree height(r=0.796), between six-year old Pn and tree height,DBH(r=0.588,r=0.688). Pn and Tr,Gs were positively correlated,high correlation with Gs,low correlation with Tr.
     3 The differents of treatments in two-year old seeding height were extremely significant at each locations. The differents of treatments in six-year old tree height were extremely significant at Caohekou,Cuohai,Fujin,Likou,Tieli. the excellent families which were suited for environment were selected according to tree height.L.kaempferi5xL.gmelinii9,L.kaempferi5×L.olgensis77-3 in Caohekou, heritability of tree height was 86.35%, genetic gain was 62.79%. L.gmelinii9×L.kaempferi76-2,L.gmelinii5xL.gmelinii9 in Beian, heritability of tree height was 39.02%, genetic gain was 42.21%. L.kaempferil2×L.gmelinii9,L.gmelinii6xhe6in Cuohai, heritability of tree height was 75.66%, genetic gain was 36.71%. L.kaempferi5xL.olgensis78-3,L.kaempferi5×L.gmeliniil2,L.kaempferi5×L.gmelinii9,L.gmelinii7xL.olgensis77-2 in Fujin, heritability of tree height was 81.07%, genetic gain was 37.66%. L.kaempferi5xL.olgensis 78-3,L.kaempferi3×shi51 in Jilin, heritability of tree height was 39.69%, genetic gain was 27.37%. L.kaempferi5xL.gmelini9, L.gmelinii7xL.olgensis77-2 in Linkou, heritability of tree height was 88.94%, genetic gain was 62.26%. L.kaempferi5xL.olgensis78-3L.kaempferi3xL.gmelinii9,L.gmelinii9xL.kaempferi76-2 in Shangzhi, heritability of tree height was 11.66%, genetic gain was 19.92%. L.kaempferi5xL.gmelinii9 in Tieli, heritability of tree height was 54.41%, genetic gain was 31.63%.
     4The average survival rate of the families was 40.19%, the better preservatly families were L.kaempferi3×shi51,L.kaempferi5xL.olgensis77-3,L.gmelinii7xL.olgensis77-2,L.kaempferi5xL. gmelinii9,L. gmelinii 5xL. gmelinii9, The average survival rate was43.82%, the families which survival rate was good exceeded Bai daoshan provenance,Xiao beihu provenance,Wu yiling provenance in 10.1%,17.29%,27.76%.
     5The analysis of seeding stability showed that L. gmelinii9×L.kaempferi76-2,L. gmelinii 5×L. gmelinii9,L.kaempferill×L. gmelinii2, L.kaempferi5×L.olgensis78-3 were the families of good growth and high stability, The average seedling height of four treatments exceeded Bai daoshan provenance,Xiao beihu provenance in 31.24%,27.36%, L.kaempferi5×L.olgensis77-3,L. gmelinii 12×L. gmelinii2,L.kaempferi5×L. gmelinii9,L.kaempferi3×L. gmelinii9 grew well in some areas. AMMI model and the George model were suitable for evaluating stability. The analysis of juvenile stability showed thatL.kaempferi5×L gmelinii9,L.kaempferi5×L.olgensis78-3,L. gmepo0-linii10×L.kaempferil3 were the families of good growth and high stability, The average height of four treatments exceeded Bai daoshan provenance,Xiao beihu provenance,Wu yiling provenance in 32.75%,25.93%,23.29%. L. gmelinii 7×L. L.olgensis77-2,L.kaempferi5×L.olgensis77-3 grew well in some areas. Ranking analysis and Shukla model model were suitable for evaluating stability.
引文
[1]王站.中国落叶松林.北京:中国林业出版社,1992,5.
    [2]杨书文,王秋玉,夏德安.落叶松遗传改良.哈尔滨:东北林业大学出版社,1994.
    [3]杨书文,鞠永贵,张世英等.落叶松杂种优势的研究.东北林学院学报.1985,13(1):35-36.
    [4]Takahashi N,Hainaya T. Improvent of Larch through hybridization in Japan.larogencfics-sabrao symposia,Tokyo,1972.
    [5]马常耕.国外针叶树种间杂交研究的进展.世界林业研究.1997:9-15.
    [6]Shibata M. Breeding of pine by hybridization in Japan.In:Proc.17th IUFRO world congress,Division,1981,2:151~155.
    [8]Mergen F. Growth of hybrid fir trees in Connedicut. Silvae Genet.1988,37(3-4):118~ 124.
    [9]Denison N Petal. The use and importance of hybrid intensive forestry in South Af rica. South Afri. For. J.1993,165,1993:55~60.
    [10]林木育种协会.林木育种事业30年的进展.东京:藤原印刷株式会社,昭和62年.
    [11]Nikles D G. Early growth and potential value of Pinus caribaeavar. Hndurensis X P. tecunumaniiand X P. oocarpa F1 hybrids in Australia. In:P roc.10th meeting of Ausralian For. Council,Res. working group No. 1,Cympie,Queensland,1988,45-46.
    [12]马常耕,孙晓梅.我国落叶松遗传改良现状及发展方向世界林业研究.2008,21(3):58-61.
    [13]李希才,姚君等.杂种二代落叶松增产能力的研究.林业科技通讯.1995,2:21-22.
    [14]兰士波.落叶松杂交子代生长表现及遗传增益的研究.林业科技开发.2007,21(1):22-25.
    [15]张含国,袁桂华等.落叶松生长和材性杂种优势的研究.东北林业大学学报.1998,26(3):25-28.
    [16]邓继峰,张含国等.17年生杂种落叶松遗传变异及优良家系的选择.东北林业大学学报.2010,38(1):8-11.
    [17]王笑山,马浩等.落叶松杂种大规模繁殖配套技术的研究.林业科学研究.2000,13(5):469-476.
    [18]贾桂霞,沈熙环.落叶松种间交配结实力变异和自交衰退的研究.林业科学.2003,39(1) 62-68.
    [19]刘桂丰,杨传平等.落叶松杂种插穗生根过程中4中内源激素的动态变化.东北林业大学学报.2001,29(6):1-3.
    [20]王伟达,李成浩等.杂种落叶松体未成熟胚的体细胞胚发生和植株再生.林业科学.2009,45(8):34-37.
    [21]续九如,林木数量遗传学.北京:高等教育出版社,2006.
    [22]胡秉民,耿旭.作物稳定性分析法.北京:科学出版社,1993.
    [23]Kang M. S. Using Genotype-by-Environment Interaction for Crop Cultivar Development. Advances in Agronomy,1998, (62):199~252.
    [24]Kang M. S. Genotype by environment interaction and plant beeding.Baton Rouge,Louisiana,1990.
    [25]Romagosa I., P. N. Fox. Genotype×environment interaction and adaptation.1994,In: Plant Breeding:principle and prospects(edi. M. D. Hay2ward et al.). Chapman&Hall, London.
    [26]严威凯等,GGE叠图法-分析品种×环境互作模式的理想方法.作物学报.2001,27(1):21-28.
    [27]黄英姿.基因型与环境互作研究的新进展.作物学报.1992,18(2):116-125.
    [28]穆培源,庄丽等.作物品种稳定性分析方法的研究进展.2003,40(3)142-144.
    [29]叶志宏,施季森等.杉木基因型与环境交互效应的AMMI模型分析.南京林业大学学报.1993,17(4):15-20.
    [30]王军辉,顾万春等.桤木优良种源/家系的选择研究—生长的适应性和遗传稳定性分析.林业科学.2000,36(3):59-66.
    [31]李兴业,王福森等.樟子松优树子代遗传×环境互作效应及生态稳定性分析.防护林科技.2000,3:62-65.
    [32]韦淑英,杨荣海等.长白落叶松生长和材性基因型与环境互作效应的探讨.林业勘察设计.1996,3:61-63.
    [33]李新国,朱之悌.林木基因型与地点最佳组合选择的研究.北京林业大学学报.1998,20(3):15-18.
    [34]姜岳忠,李善文等.黑杨派无性系区域化试验初报.林业科学.2006,42(12):143-147.
    [35]许晨璐.日本落叶松,长白落叶松及其杂种光合作用比较——落叶松高光效育种探索的研究.中国林业科学研究员硕士论文.2009:24-32.
    [36]冯玉龙,王文章等.长白落叶松无性系选择生理指标的研究.林业科学.2000,36(1):81-85.
    [37]姜春玲,王丽华等.长白落叶松生理生态特性的初步研究.哈尔滨师范大学自然科学学报.1998,14(6):99-103.
    [38]姜海凤.三种落叶松光合生理生态学特性比较研究.东北林业大学硕士学位论文.2003.
    [39]王秀伟,毛子军.兴安落叶松人工林冠层气体交换的时空特性.林业科学,2007,43(11):43-49.
    [40]屹妍.天然幼龄兴安落叶松光合特征研究.内蒙古农业大学硕士论文.2004:5-7.
    [41]王淼,郝占庆等.高C02浓度对温带三种针叶树光合光响应特性的影响应用生态学报.2002,13(6):646-650.
    [42]Yazaki K,Ishida S,Kawagishi T,ect. Effects of elevated CO2 concentration on growth,annual ring structure and photosynthesis in Larix kaempferi seedlings.Tree Physiology,2004.24(9):951-959.
    [43]Rosenthal,S. I. Camm,E.L. Photosynthetic decline and pigment loss during autumn foliar senescence in western larch(Larix occidentalis). Tree Physiology.1997.17(12),767-775.
    [44]郭盛磊,阎秀峰等.落叶松幼苗光合特性对氮和磷缺乏的响应应用.生态学报.2005,16(4):589-594.
    [45]董健,陆爱君等.杂种落叶松优良家系选择和嫩枝扦插生根遗传稳定性的研究.辽宁林业科技,2007,6:1-5.
    [46]李艳霞,李若琳等.杂种落叶松优良家系及优良单株的选择.林业科技.2009,34(1): 5-7.
    [47]于顺龙,袁国兴.杂种落叶松苗期生长性状优良家系的研究.内蒙古林业勘察设计.2009,32(2):114-117.
    [48]肖强,叶文景等.利用数码相机和Photoshop软件非破坏性测定叶面积的简便方法.生态学杂志.2005,24(6):711-714.
    [49]杨劲峰,陈清等.数字图像处理技术在蔬菜叶面积测量中的应用.农业工程学报.2002,18:155-158.
    [50]宋志刚,谢蕾蕾,何旭洪.SPSS16实用教程.北京:人民邮电出版社,2008:112-117,132-140.
    [51]唐启义,冯明光.DPS数据处理系统.北京:科学出版社,2006:471-490.
    [52]续九如,黄智慧.林木试验设计.北京:中国林业出版社,1995:32-34.
    [53]金文林,白琼岩.秩次分析法对作物品种区试产量性能评价的有效性.中国油料作物学报.2004,26(3):18-23.
    [54]Christa M. Hoffinanna, Toon Huijbregtsb, etal. Impact of different environments in Europe on yield and quality of sugar beet genotypes. European Journal of Agronomy. 2009,30:17-26.
    [55]Y. Rharrabti, L. F. Garcia del Moral, etal. Durum wheat quality in Mediterranean environmentsIII. Stability and comparative methods in analyzing G×E interaction. Field Crops Research.2003,80:141-146.
    [56]罗旭,张含国等.杂种落叶松生长的表现及遗传增益.东北林业大学学报.2005,33(6):8-9.
    [57]潘本立,张含国,周显昌.杂种落叶松的增产能力及其应用前景.林业科技开发.1998,2:18-20.
    [58]杨涛,李加纳等.三种评价品种稳定性方法的比较.贵州农业科学.2006,34(1):28-29.
    [59]葛知男,冷苏凤.Tai模型在棉花品种稳定性分析中的应用及其在区试中的意义.棉花学报.1991,3(1):15-20.
    [60]李火根,黄敏仁等.美洲黑杨新无性系生长遗传稳定性分析.东北林业大学学报.1997,25(6):1-5.
    [61]王军辉,顾万春,张守攻.AMMI模型应用于恺木种源区域试验的分析研究.四川农业大学学报.2004,22(4):335-340.
    [62]何代元,胡宁等.AMMI模型在玉米区域试验中的应用.玉米科学.2009,17(4):144-147,152.
    [63]刘红艳,赵应忠.秩次分析法评价国家芝麻区试品种的产量性能.中国油料作物学报.2008,30(1):51-55.
    [64]张含国,张磊等.杂种落叶松区域化试验与幼龄期选择.东北林业大学学报.2010,38(11):1-4.
    [65]杨秀艳,季孔庶.林木育种中的早期选择.世界林业研究.2004,17(2):6-8.
    [66]丁振芳,王景章等.日本落叶松家系早期选择技术.东北林业大学学报.1997,25(3):65-67.
    [67]叶培忠,陈岳武等.杉木遗传型×环境互作和遗传稳定性的研究—杉木多点子代测定的分析.南京林产工业学院学报.1980,24-32.
    [68]刘录祥.作物品种的稳定性和适应性育种.陕西农业科学.1992,(6):42-48.
    [69]李建民.马尾松自由授粉家系与环境的互作及其基因型稳定性的研究.1992,165-170.