电化学储能用硅及活性炭材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池与超级电容器是最具希望的两种电化学储能设备,而提高其性能的最为有效的方法无疑是研究与制备性能优良的新型材料。硅是一种重要的锂离子电池负极材料,本文使用一种新颖的液相合成的方法,制备出丁基包覆的硅纳米材料,再对其进行高温烧结,得到碳包覆的硅纳米材料,详细的研究了制备的各种硅材料的电化学性能。高比表面积的活性炭是良好的超级电容器电极材料,本文采用氢氧化钠活化石油焦的方法制备了高比表面积的活性炭材料,探索了超级电容器的装配工艺,并研究了不同制备条件对材料性能的影响。
     首先,优化了丁基包覆硅纳米材料的合成工艺,制备出的材料大小适当、分布均匀,经测试发现其尺寸在50nm左右。对材料进行烧结,使用传统的管式炉烧结的方法得到的材料循环性能良好,经改进烧结工艺后最高脱锂比容量可达410.31mAh/g。使用真空烧结的实验装置能够有效阻止材料有效物质的气化流失,制得的材料中碳与硅结合紧密、包覆均匀,各种电阻相比明显下降,显著的提高了材料的电化学性能,其最高脱锂比容量可达663.25mAh/g且70次循环后容量没有明显的衰减。
     其次,研究了不同粘结剂体系对硅材料性能的影响,揭示了粘结剂影响电池性能的本质。发现使用CMC水性粘结剂体系代替传统的PVDF体系粘结剂能够有效的提高纯硅材料的循环性能,而对于碳包覆硅纳米材料,使用PVDF粘结剂时效果较好。
     最后,系统的研究了活性炭材料超级电容器的电化学性能,揭示了材料的结构对其性能的影响。石油焦为碳源,700℃下使用氢氧化钠活化1h时,得到活性炭材料在1mV/s下的比电容能够达到68.78F/g,100mV/s下比电容保持效率为47.52%。而预氧化处理能够显著的提高材料的性能。经预氧化处理的活性炭材料1mV/s下的比电容能够达到83.47F/g,在100mV/s的高扫速下仍有68.75F/g,比电容保持效率为77.57%。
Lithium-ion batteries and super capacitors are two most promising electrochemical energy storage devices. And the most effective way to improve its performance is to develop new materials. Silicon is an important lithium-ion battery anode material. In this paper, one kind of butyl-coated silicon nano-materials was prepared by the certain original liquid phase synthesis, then the carbon-coating silicon nanomaterials was prepared after high-temperature sintering, and took related tests of physical characterizations and electrochemical performances. Active carbon is a kind of good super capacitor electrode. This article used petroleum coke as the carbon source; and prepared a carbon material witn high surface area by activation of sodium hydroxide. Explore the assembly process of super capacitors, and study the relationship between different preparation conditions and material properties.
     Firstly, in this paper, it optimized the experimental conditions gradually, to prepare one kind of butyl-coated silicon nano-materials with proper size, and uniform distribution. After tests founded that its size was about 50nm with excellent distribution. Took a further process of high-temperature sintering in a tube furnace, the materials got shaw a good cycling properties, the maximum specific capacity of lithium-extracted was 410.31mAh/g. The gasification loss of active materials could be improved effectively through the method of vacuum sintering, by which obtained the silicon-coated carbon nano materials of better electrochemical properties and carbon-coating equably. Its maximum specific capacity of lithium-extracted reached to 663.25mAh/g, with excellent cycling properties and no obvious capacity attenuation after 70 cycles.
     Secondly, The study of the influences of silicon material in different binder systems was carried. Which revealed the nature of how the binder affect battery performance. Discovered that cycle properties of pure silicon could be improved when using CMC of water-based adhesive system instead of the traditional PVDF. However, when applied in carbon-coating silicon nano-materials PVDF is better.
     Finally, studied the electrochemical properties of the super capacitors when using activatied carbon as electrode materials. Revealed the relationship between the structure of the materials and its performance. Using petroleum coke as the carbon source, activation at 700℃with NaOH, the specific capacitance of the activatied carbon got under 1mV/s was 68.78F/g. The retention efficiency under 100mV/s was 47.52%. However, the activation process before joining hydrogen peroxide to pre-oxidation can improve the carbon material’s performance significantly. The specific capacitance under 1mV/s reached to 83.47F/g. It still remained 68.75F/g under 100mV/s. The retention efficiency was 77.57%.
引文
[1]赵灵智.锂离子电池概述及负极材料研究进展[J].广东化工, 2009, 36(5): 106~111
    [2]黄彦瑜.锂电池发展简史[J].物理学史和物理学家, 2007, 36(8): 643~651
    [3]王莉,何向明,蒲薇华,等.金属锂二次电池研究进展[J].化学进展, 2006, 18(5): 642~647
    [4] Murphy D W, Broodhead J, Steel B C. Materials for Advanced Batteries[J]. New York: Plenum Press. 1980: 145~147
    [5]黄学兴.锂离子电池及相关材料进展[J].中国材料进展, 2010, 29(8): 46~52
    [6]付文莉.锂离子电池电极材料的研究进展[J].电源技术, 2009, 33(9): 822~824
    [7] Xiao X, Liu P, Verbrugge M W, et al. Improved Cycling Stability of Silicon Thin Film Electrodes Through Patterning for High Energy Density Lithium Batteries[J]. Journal of Power Sources, 2011, 196: 1409~1416
    [8]徐乐.树脂碳包覆微晶石墨做锂离子电池负极材料研究[D].长沙理工大学硕士学位论文, 2010
    [9]时志强,郭春雨,易炜,等.催化石墨化MCMB用作锂离子电池负极材料[J].电源技术, 2009, 33(12): 1061~1063
    [10]牛鹏星,王艳莉,詹亮,等.针状焦和沥青焦用作锂离子电池负极材料的电极性能[J].材料科学与工程学报, 2011, 29(2): 205~209
    [11] Isaev I, Salitra G, Soffer A, et al. A New Approach for the Preparation of Anodes for Li-Ion Batteries Based on Activated Hard Carbon Cloth with Pore Design[J]. Journal of Power Sources, 2003, 221(1): 28~33
    [12] Lee S W, Kim B S, Chen S, et al. Layer-by-Layer Assembly of All Carbon Nanotube Ultrathin Films for Electrochemical Applications[J]. J. Am. Chem. Soc, 2009, 131(2): 671~679
    [13]王丽.石墨烯及石墨烯基复合材料的制备及储能应用[D].吉林大学硕士学位论文, 2010
    [14] Feng Y. Electrochemical Properties of Heat-Treated Polymer-Derived SiCN Anode for Lithium Ion Batteries[J]. Electrochimica Acta, 2010, 55: 5860~5866
    [15] Park C M, Jeon K J. Porous Structured SnSb/C Nanocomposites for Li-Ion Battery Anodes[J]. Chem. Commun., 2011, 47: 2122~2124
    [16] Huang T, Yao Y, Wei Z, et al. Sn-Co-Artificial Graphite Composite as Anode Material for Rechargeable Lithium Batteries[J]. Electrochimica Acta, 2010, 56:476~482
    [17] Edfouf Z, Cuevas F, Latroche M, et al. Nanostructured Si/Sn-Ni/C Composite as Negative Electrode for Li-Ion Batteries[J]. Journal of Power Sources, 2011, 196: 4762~4768
    [18]吴诗德,魏伟,李超. SnO2/SiO2复合材料的合成与电化学性能[J].郑州轻工业学院学报, 2011, 26(1): 44~46
    [19] Zhang Z J, Zhang Y, Zhou Z, et al. Core-Shell Ni0.5TiOPO4/C Composites as Anode Materials in Li Ion Batteries[J]. Electrochimica Acta, 2011, 56: 2290~2294
    [20] Lei D, Zhang M, Hao Q, et al. Morphology Effect on the Performances of SnO2 Nanorod Arrays as Anodes for Li-Ion Batteries[J]. Materials Letters, 2011, 65: 1154~1156
    [21] Zhu X J, Zhu Y W, Murali S T, et al. Nanostructured Reduced Graphene Oxide/Fe2O3 Composite as a High-Performance Anode Material for Lithium Ion Batteries[J]. Acsnano, 2011, 5(4): 3333~3338
    [22] Bouazza S, Saberi A, Porada M W. Preparation and Electrochemical Properties of Nano-Sized SnF2 as Negative Electrode for Lithium-Ion Batteries[J]. Materials Letters, 2011, 65: 1334~1336
    [23] Chang K, Chen W X, Ma L, et al. Graphene-Like MoS2/Amorphous Carbon Composites with High Capacity and Excellent Stability as Anode Materials for Lithium Ion Batteries[J]. Journal of Materials Chemistry, 2011, 21: 6251~6257
    [24] Li J L, Daniel C, Wood D, et al. Materials Processing for Lithium-Ion Batteries[J]. Journal of Power Sources, 2011, 196: 2453~2460
    [25] Ohara S, Suzuki J, Sekine K, et al. Li Insertion/Extraction Reaction at a Si Film Evaporated on a Ni Foil[J]. Journal of Power Sources, 2004, 136: 303~306
    [26] Ding N, Xu J, Yao Y X, et al. Determination of the Diffusion Coefficient of Lithium Iros in Nano-Si[J]. Solid State Ionics, 2009, 180, 222~225
    [27] Pell E M. Diffusion Rate of Li in Si at Low Temperatures[J]. Phys. Rev., 1960, 119(4): 1222~1225
    [28] Green M, Fielder E, Scrosati B, et al. Structured Silicon Anodes for Lithium Battery Application[J]. Electrochem. Solid-State Lett., 2003, 6: 75~79
    [29] Chan C K, Peng H, Liu G, et al. High-Performance Lithium Battery Anodes Using Silicon Nanowires[J]. Nat. Nanotechnol., 2007, 3: 31-35
    [30] Song T, Xia J, Lee J H, et al. Arrays of Sealed Silicon Nanotubes as Anodes for Lithium Ion Batteries[J]. Nano Letters, 2010, 10: 1710~1716
    [31] Kim J W, Ryu J H, Lee K T, et al. Improvement of Silicon Powder Negative Electrodes by Copper Electroless Deposition for Lithium Secondary Batteries[J]. J. Power Sources, 2005, 147(1~2): 227~233
    [32] Chiu K F, Lin K M, Lin H C, et al. Electrochemical Performances of Cu Nanodots Modified Amorphous Si Thin Films for Lithium-Ion Batteries[J]. J. Electrochem., 2008, 155(9): A623~A627
    [33] Dong H, Ai X P, Yang H X. Carbon/Ba-Fe-Si Alloy Composite as High Capacity Anode Materials for Li-Ion Bbatteries[J]. Electrochem. Commun., 2003, 5(11): 952~957
    [34] Jayaprakash N, Kalaiselvi N, Doh C H. A New Class of Tailor-Made Fe0.92Mn0.08Si2 Lithium Battery Anodes: Effect of Composite and Carbon Coated Fe0.92Mn0.08Si2 Anodes[J]. Intermetallics, 2007, 15(3): 442~450
    [35] Holzapfel M, Buqa H, Scheifele W, et al. A New Type of Nano-Sized Silicon/Carbon Composite Electrode for Reversible Lithium Insertion[J]. Chem. Commun., 2005, 12: 1566
    [36] Fuchsbichler B, Stangl C, Kren H, et al. High Capacity Graphite-Silicon Composite Anode Material for Lithium-Ion Batteries[J]. Journal of Power Sources, 2011, 196: 2889~2892
    [37] Guo Z P, Milin E, Wang J Z, et al. Silicon/Disordered Carbon Nanocomposites for Lithium-Ion Battery Anodes[J]. J. Electrochem. Soc., 2005, 152(11): A2211
    [38]王宏宇,尹鸽平,徐宇虹,等.锂离子电池硅/石墨/碳负极材料性能[J].哈尔滨工业大学学报, 2010, 42(12): 1917~1920
    [39] Wang C S, Wu G T, Zhang X B, et al. Lithium Insertion in Carbon-Silicon Composite Materials Produced by Mechanical Milling[J]. J. Electrochem. Soc., 1998, 145: 2751~2758
    [40] Kim H, Seo M, Park M H, et al. A Critical Size of Silicon Nano-Anodes for Lithium Rechargeable Batteries[J]. Angew. Chem. Int. Ed, 2010, 49: 2146~2149
    [41] Baldwin R K, Pettigrew K A, Ratai E, et al. Solution Reduction Synthesis of Surface Stabilized Silicon Nanoparticles[J]. Chem. Commun., 2002, 1822~1823
    [42] Baldwin R K, Pettigrew K A, Garno J C, et al. Room Temperature Solution Synthesis of Alkyl-Capped Tetrahedral Shaped Silicon Nanocrystals[J]. J. Am. Chem. Soc., 2002, 124(7): 1150~1151
    [43] Kwon Y, Park G S, Cho J. Synthesis and Electrochemical Properties of Lithium-Electroactive Surface-Stabilized Silicon Quantum Dots[J].Electrochimica Acta, 2007, 52: 4663~4668
    [44] Zuo P J, Yang W G, Cheng X Q, et al. Enhancement of the Electrochemical Performance of Silicon/Carbon Composite Material for Lithium Ion Batteries[J]. Ionics, 2011, 17: 87~90
    [45] Yoshio M, Tsumura T, Dimov N. Silicon/Graphite Composites as an Anode Material for Lithium Ion Batteries[J]. Journal of Power Sources, 2006, 163: 215~218
    [46] Bridel J X, Azais T, Morcrette M, et al. Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries[J]. Chem. Mater., 2010, 22: 1229~1241
    [47]刘小军,卢永周.超级电容器综述[J].西安文理学院学报, 2011, 14(2): 70~73
    [48]高晓林.电容器大家族的新贵-超级电容器[J].电力电容器与无功补偿, 2010, 31(6): 27, 28
    [49]周向阳,娄世菊,杨娟,等.超级电容电池用炭类负极材料的研究进展[J].材料导报, 2010, 24(7): 6~9
    [50] Spamaay M J. The Electric Double Layer[M], Sydney: Pergamon Press Pty. Ltd., 1972: 4~6
    [51] Bai L J, Conway B E. Ac Impedance of Faradaic Reactions Involving Electrosorbed Intermediates-Examination of Conditions Leading to Pseudoinductive Behavior Represented in 3-Dimensional Impedance Spectroscopy Diagrams[J]. Journal of the Electrochemical Society. 1991, 138(10): 2897~2907
    [52]李晶,赖延清,金旭东,等.超级电容器的储能机理与关键材料研究进展[J].科技创新导报, 2011, 8(1): 123~124
    [53] Conway B E, Birss V, Wojtowiez J. The Role and Utilizations of Pseudocapacitors for Energy Storage by Super Capacitors[J]. Journal of Power Sources, 1997, 66: l~14.
    [54] Wang M X, Wang C Y, Chen M M, et al. Preparation of High Performance Activated Carbons for Electric Double Layer Capacitors by KOH Activation of Mesophase Pitches[J]. New Carbon Materials, 2010, 25(4):286~290
    [55]成果,金双玲,张传祥,等.超级电容器用高比能量超级活性炭的结构与电化学性能[J].炭素技术, 2009, 28(4): 17~20
    [56] Grazyna G, Jacek M, Ewa L G, et al. .Effect of Pore Size Distribution of Coal-Based Activated Carbon on Double Layer Capacitance[J]. Electrochimica Acta, 2005, 50(5): 1197~1206
    [57] Du C, Pan N. High Power Density Supercapacitor Electrodes of Carbon Nanotube Films by Electrophoretic Deposition[J]. Nanotechnology, 2006, 17: 5314~5318
    [58]岳淑芳,马兰,徐斌,等.活性炭纤维毡直接用作超级电容器电极[J].电池, 2011, 41(2): 63~65
    [59]周鹏伟,李宝华,康飞宇.超级电容器用有机电解液的研究[J].电池, 2005, 35(2): 97~99
    [60]李泽胜,李庆余,王红强,等.活性中间相碳微球在不同电解液中电化学性能[J].电源技术, 2010, 134(5): 483~486
    [61]周邵云,左晓希,刘建生,等.电解液对超级电容器性能的影响[J].电池工业, 2009, 14(3): 177~179
    [62] Lin C, Bitter J A, Poopv B. Characterization of Sol-Gel Derived Cobalt Oxide Xerogels as Electrochemical Capacitors[J]. Electrochem Soc., 1998, 145(12): 4097~4103
    [63] Lee H Y, Manivannan V, Goodenough J B. Electrochemical Capacitors with KCl Electrolyte[J]. Acaemie Des Sciences, 1999, 11: 565~577
    [64] Morita M, Goto M, Marsuda Y. Ethylene Carbonate-Based Organic Electrolytes for Electric Double Layer Capacitors[J]. J. App. Electrochem., 1992, 22: 901~908
    [65] Gamby J, Taberna P, Simon P. Studies and Characterization of Various Activated Carbons Used for Carbon/Carbon Super Capacitors[J]. Journal of Power Sources, 2001, 101: 109~116
    [66]张宝宏,鞠群.乙腈、碳酸丙烯酯电解液超级电容器性能研究[J].应用科技, 2005, 32(2): 62~64
    [67]路国梁,宋福全,王昭煜,等.无水无氧实验技术[J].化学通报, 1993, 10: 48~53