基于耗散哈密顿系统的永磁同步电机控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自二十世纪80年代以来,永磁同步电机以其体积小、功率密度大、效率高、维护简单等优点,越来越广泛地被应用于交流伺服系统中,利用交流伺服电动机构成的系统也越来越呈现多样化和复杂化,对伺服系统提出了更高的控制要求。永磁同步交流伺服技术随之得到了迅速发展,但是大多数方案复杂且不易实现。近来,系统镇定的能量整形方法开始受到了学者们的关注,将闭环系统的能量存储函数作为系统的Lyapunov函数来设计,在保留原有系统结构不变的基础上,使得系统稳定性分析更加简单,设计的闭环系统物理意义更加明确。本文的研究工作主要是围绕耗散哈密顿实现在永磁同步矢量控制系统中的应用开展的。全文的结构概括如下:
     1.介绍了本文的研究背景。首先综述了交流电机控制策略的发展历程,研究现状。随后介绍了能量整形方法的发展,理论基础以及应用。最后基于课题背景阐述了研究永磁同步伺服系统先进控制策略的必要性。
     2.介绍了微分流形、输入输出稳定性、耗散性、保守性等概念的定义和稳定性判据一些重要理论。随后引入了端口受控耗散哈密顿系统无源控制方法和反馈耗散哈密顿实现方法。然后对本文的研究对象:永磁同步电机的数学模型进行了介绍,同时对不同的电流控制方法进行了比较。
     3.基于端口受控耗散哈密顿的无源控制实现方法,首先对永磁同步电机进行了端口耗散哈密顿模型建模,在设计负载扰动观测器的基础上,设计了速度反馈镇定控制器,提出增益参数切换方法,提高了控制系统的动态性能。其次利用前馈补偿控制器,提出了基于能量整形思路的位置伺服控制方案。
     4.基于反馈耗散哈密顿实现方法,设计了永磁同步电机速度控制器,利用增益调度控制方法,提高了系统的动态性能。提出滑模变结构-反馈耗散哈密顿混合控制方法,在保证系统稳定性能的同时,增加了系统在动态变化过程中的鲁棒性能。针对伺服系统高性能控制时对电机参数的高精度要求,利用自适应反馈耗散哈密顿实现方法,设计出结合转子磁链更新律的永磁同步电机速度控制器,提高了伺服系统的控制精度。
     5.针对在非线性预测控制中,通常对非线性系统难以进行求解Taylor级数的问题,本文利用自动微分理论,对永磁同步电机非线性数学模型进行Taylor展开,建立了基于Taylor级数的衡量指标函数,利用自动微分理论的灵敏度矩阵求解方法,将自动微分方法应用到了永磁同步电机的预测控制设计中。
     6.基于课题背景,介绍了交流伺服系统实验平台的组成,并进行了实验波形分析。
Permanent magnet synchronous motors have advantages such as small size, high power density, great efficiency, easy maintenance, etc, and they have been more and more widely used in AC server system since 1980s. As the applications of AC servomotors become more and more complex, higher requests are submitted. Permanent magnet AC servo techniques have grown rapidly, but most of them are complicated and not easy to realize. Recently, the energy-shaping methods for stabilization of physical systems have received increasing attention from scholars. The main characteristic of it is that the closed loop's energy storage function is chosen as Lyapunov function, which can keep system structure preserved, make system's stability analysis simpler and physical meaning of closed loop more clearly. This paper aims at the permanent magnet synchronous motor vector control with dissipation Hamilton realization. The main contents are as following parts.
     1. The research background is presented in the first part. First of all, an overview of AC motor control strategy for the development and latest researches are given. Then we represent the energy-shaping method's development, its theoretical basis and applications. The necessity of researching advanced control strategy for permanent magnet synchronous servo system is also brought out based on subject's background at last.
     2. We review the definitions of differentiable manifold, input-output stability, passivity, conservative, stability criterion and some important theories. Then the port-controlled Hamilton with dissipation control theory and feed-back dissipation Hamilton realization theory are described. The mathematical model of permanent magnet synchronous motor is brought out and a comparison of different current control methods is made.
     3. We build the permanent magnet synchronous motor's port-controlled dissipation model with port-controlled Hamilton with dissipation theory. Based on the load disturbance observer, a feedback speed stabilization controller is designed. In order to improve control system's dynamic performance, we propose control method with variable coefficients. Then a position servo control proposal with energy-shaping method is proposed, which uses a feed forward compensation controller to improve the system's tracking performance.
     4. Based on the feedback dissipative Hamilton realization theory, we design the permanent magnet synchronous motor speed controller. Gain scheduling method is used to improve system's dynamic performance. We propose a sliding-feedback dissipation Hamilton hybrid control method to enhance system's robust performance while keeping the stability properties at the same time. To meet the precision electrical parameters requirements for high-performance servo system, based on adaptive feedback dissipative Hamilton realization method, we proposed a flux adaptive control method with energy-shaping. The method improves the servo system's control precision.
     5. Aiming at the problem that Taylor series is not easy to obtain in nonlinear predictive control, we bring out the Taylor series expansion of permanent magnet synchronous motor mathematical model built on automatic differentiation method. Then sensitivity matrix of performance function is also solved by automatic differentiation method. The automatic differential method is applied to nonlinear predictive control of permanent magnet synchronous motor. The nonlinear predictive control based on automatic differentiation makes the process of solving Taylor series problem simple.
     6. Based on the project background, this paper introduces the composition of the AC servo experimental platform, and analyses the experimental waveform.
引文
[1]Ortega, R., A. van der Schaft, B. Maschke, et al. Energy-shaping of port-controlled Hamiltonian systems by interconnection[J]. Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304)Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304),1999, 164.6-51 vol.25 vol.(ⅹⅶ+5325).
    [2]Ortega, R., A.J. van der Schaft, I. Mareels, et al. Energy shaping revisited[J]. Proceedings of the 2000 Ieee International Conference on Control Applications, 2000,121-126.
    [3]Ortega, R., A.J. van der Schaft, I. Mareels, et al. Putting energy back in control [J]. Ieee Control Systems Magazine,2001.21(2),18-33.
    [4]陈伯时.矢量控制与直接转矩控制的理论基础和应用特色[J].电力电子,2004.2(1),5-9.
    [5]Blaschke, F. Das Prinzip der Feldorientierung, die Grundlage fur die TRANSVEKTOR-Regelung von Drehfeldmaschinen[J]. Siemens Zeitschrift,1971. 45(10),757?60.
    [6]Blaschke, F. The principle of field orientation as applied to the new transvektor closed-loop control system for rotating-field machines [J]. Adjustable Speed AC Drive Systems,1972.
    [7]Trzynadlowski, A. The field orientation principle in control of induction motors[M]:Kluwer Academic Pub,1994.
    [8]Novotny, D.W., R.D. Lorenz. Introduction to field orientation and high performance AC drives[M]:The Society,1986.
    [9]Vas, P. Vector control of AC machines[M]:Clarendon Pr,1990.
    [10]Depenbrock, M. Direkte Selbstregelung(DSR) fur hochdynamische Drehfeldantriebe mit Stromrichterspeisung[J]. etz-Archiv,1985.7(7),211-218.
    [11]Depenbrock, M. Direct self-control (DSC) of inverter-fed induction machine [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS,1988.3(4),420-429.
    [12]Takahashi, I., T. Noguchi. A new quick-response and high-efficiency control strategy of an induction motor [J]. IEEE Transactions on Industry Applications, 1986,820-827.
    [13]Takahashi, I., Y. Ohmori. High-performance direct torque control of an induction motor[J]. IEEE Transactions on Industry Applications,1989.25(2),257-264.
    [14]李夙.异步电动机直接转矩控制[M]:李夙1998.
    [15]田淳,胡育文.永磁同步电机直接转矩控制系统理论及控制方案的研究[J].电工技术学报,2002.17(1),7-11.
    [16]史涔激,邱建琪,金孟加,et al.永磁同步电动机直接转矩控制方法的比较研究[J].永磁同步电动机直接转矩控制方法的比较研究,2005.25(16),141-146.
    [17]叶云岳,陆凯元.直线电机的PID控制与模糊控制[J].电工技术学报,2001.16(3),11-15.
    [18]Malki, H.A., D. Misir, D. Feigenspan, et al. Fuzzy PID control of a flexible-joint robot arm with uncertaintiesfrom time-varying loads[J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY,1997.5(3),371-378.
    [19]Ketata, R., D. De Geest, A. Titli. Fuzzy controller:design, evaluation, parallel and hierarchial combination with a PID controller[J]. Fuzzy Sets and Systems,1995. 71(1),113-129.
    [20]Singh, B.N., B. Singh, B.P. Singh. Fuzzy control of integrated current-controlled converter-inverter fed cage induction motor drive[J]. IEEE Transactions on Industry Applications,1999.35(2),405-412.
    [21]戴先中,刘国海,张兴华.恒压频比变频调速系统的神经网络逆控制[J].中国电机工程学报,2005.25(7),109-114.
    [22]Utkin, V.I. Sliding modes in control and optimization[M]:Springer-Verlag Berlin, 1992.
    [23]Utkin, V.I., A. Parnakh. Sliding modes and their application in variable structure systems[M]:Mir Moscow,1978.
    [24]Utkin, V.I., J. Guldner, J. Shi. Sliding mode control in electromechanical systems[M]:CRC press,1999.
    [25]贾洪平,孙丹,贺益康.基于滑模变结构的永磁同步电机直接转矩控制[J].中国电机工程学报,2006.26(20),134-138.
    [26]龙英文,赵光宙.模糊滑模变结构控制在伺服系统中的应用[J].电气传动,2004.34(1),26-28.
    [27]夏长亮,郭培健,史婷娜,et al.基于模糊遗传算法的无刷直流电机自适应控制[J].中国电机工程学报,2005.25(11),129-133.
    [28]Changuel, A., A. Jerraya, R. Rolland. Design of an adaptive motors controller based on fuzzy logic using behavioral synthesis[C]:IEEE Computer Society Press Los Alamitos, CA, USA,1996.48-52
    [29]夏长亮,祁温雅,杨荣,et al.基于RBF神经网络的超声波电机参数辨识与模型参考自适应控制[J].中国电机工程学报,2004.24(7),117-121.
    [30]赵争鸣,郑逢时.同步电机非线性参数的自适应辨识方法[J].中国电机工程学报,1994(2),1-5.
    [31]Schauder, C. Adaptive speed identification for vector control of inductionmotors without rotational transducers[J]. IEEE Transactions on Industry Applications, 1992.28(5),1054-1061.
    [32]Attaianese, C., A. Damiano, G. Gatto, et al. Induction motor drive parameters identification[J]. IEEE TRANSACTIONS ON POWER ELECTRONICS,1998. 13(6),1112-1122.
    [33]Landau, YD. Adaptive control:The model reference approach[M]:Marcel Dekker, Inc. New York, NY, USA,1979.
    [34]Ohnishi, K., Y. Ueda, K. Miyachi. Model reference adaptive system against rotor resistance variation in induction motor drive [J]. Ieee Transactions on Industrial Electronics,1986,217-223.
    [35]Lin, F.J., R.J. Wai, R.H. Kuo, et al. A comparative study of sliding mode and model reference adaptive speed observers for induction motor drive[J]. Electric power systems research,1998.44(3),163-174.
    [36]Xiao, L., H. Weiss. Model Reference Adaptive Control of Asynchronized Synchronous Motor Based on Neural Network On-Line Identification[C],2006
    [37]李永东.交流电机数字控制系统[M].北京:机械工业出版社,2003.
    [38]佘致廷,肖岸文,孙炜,et al.基于MRAS理论的无速度传感器直接转矩控制调速系统[J].电工技术学报,2006.21(4).
    [39]Pea, R., R. Cerdenas, J. Proboste, et al. Sensorless Control of Doubly-Fed Induction Generators Using a Rotor-Current-Based MRAS Observer[J]. Ieee Transactions on Industrial Electronics,2008.55(1),330-339.
    [40]Comanescu, M., L. Xu. Sliding-mode MRAS speed estimators for sensorless vector control of induction machine [J]. Ieee Transactions on Industrial Electronics, 2006.53(1),146-153.
    [41]Solsona, J., M.I. Valla, C. Muravchik. Nonlinear control of a permanent magnet synchronous motor withdisturbance torque estimation[C],1997
    [42]Hu, J., D. Zhu, Y. Li, et al. Application of sliding observer to sensorless permanent magnetsynchronous motor drive system[C],1994.532-536
    [43]Cascella, G.L., N. Salvatore, L. Salvatore, et al. Adaptive sliding-mode observer for field oriented sensorless control of SPMSM[C],2003
    [44]黄雷,赵光宙,贺益康.PMSM的自适应滑模观测器无传感器控制[J].浙江大学学报:工学版,2007,4.
    [45]TS Low, TH Lee, KT Chang. A nonlinear speed observer for permanent-magnet synchronous motors[J]. Ieee Transactions on Industrial Electronics,1993.40(3), 307-316.
    [46]Eskola, M., H. Tuusa. Comparison of MRAS and novel simple method for position estimation in PMSM drives[C],2003
    [47]黄雷,赵光宙,年珩.基于扩展反电势估算的内插式永磁同步电动机无传感器控制[J].中国电机工程学报,2007.27(9),59-63.
    [48]Kim, Y.S., S.K. Kim, Y.A. Kwon. Mras based sensorless control of permanent magnet synchronous motor[C],2003
    [49]Kim, K.H., S.K. Chung, G.W. Moon, et al. Parameter estimation and control for permanent magnet synchronousmotor drive using model reference adaptive technique[C],1995
    [50]Haque, M.E., L. Zhong, M.F. Rahman. A sensorless initial rotor position estimation scheme for a direct torque controlled interior permanent magnet synchronous motor drive[J]. IEEE TRANSACTIONS ON POWER ELECTRONICS,2003. 18(6),1376-1383.
    [51]秦峰,贺益康,刘毅,et al.两种高频信号注入法的无传感器运行研究[J].中国电机工程学报,2005.25(5),116-121.
    [52]Jeong, Y, R.D. Lorenz, T.M. Jahns, et al. Initial rotor position estimation of an interior permanent-magnet synchronous machine using carrier-frequency injection methods[J]. IEEE Transactions on Industry Applications,2005.41(1),38-45.
    [53]Nakashima, S., Y Inagaki, I. Miki. Sensorless initial rotor position estimation of surface permanent-magnet synchronous motor[J]. IEEE Transactions on Industry Applications,2000.36(6),1598-1603.
    [54]李鸿儒,顾树生.基于神经网络的PMSM速度和位置自适应观测器的设计[J].中国电机工程学报,2002.22(12),32-35.
    [55]王耀南,王辉,邱四海,et al.基于递归模糊神经网络的感应电机无速度传感器矢量控制[J].中国电机工程学报,2004.24(5).
    [56]Elbuluk, M.E., L. Tong, I. Husain. Neural-network-based model reference adaptive systems forhigh-performance motor drives and motion controls[J]. IEEE Transactions on Industry Applications,2002.38(3),879-886.
    [57]Kanellakopoulos, I., P.V. Kokotovic, A.S. Morse. Systematic design of adaptive controllers for feedback linearizablesystems[J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL,1991.36(11),1241-1253.
    [58]Krstic, M., P.V. Kokotovic. Lean backstepping design for a jet engine compressor model[C],1995.1047-1052
    [59]Freeman, R.A., P.V. Kokotovic. Robust nonlinear control design:State-space and Lyapunov techniques[M]:Birkhauser,1996.
    [60]王家军,王建中,马国进.感应电动机系统的变结构反推控制研究[J].中国电机工程学报,2007.27(6),35-38.
    [61]王家军,赵光宙,齐冬莲.反推式控制在永磁同步电动机速度跟踪控制中的应用[J].中国电机工程学报,2004.24(8).
    [62]J Zhou, Y Wang. Real-time nonlinear adaptive backstepping speed control for a PM synchronous motor[J]. Control Engineering Practice,2005.13(10),1259-1269.
    [63]Ouassaid, M., M. Cherkaoui, A. Nejmi, et al. Nonlinear Torque Control for PMSM. A Lyapunov Technique Approach[J]. IEEE Trans. on Engineering, Computing and Technology,2005.6,118-121.
    [64]JHKKC Kim, EKP Chong. Fuzzy precompensated PID controllers[J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY,1994.2(4), 406-411.
    [65]Chiu, S., R.S. Center, C.A. Thousand Oaks. Using fuzzy logic in control applications:beyond fuzzy PID control[J]. Ieee Control Systems Magazine,1998. 18(5),100-104.
    [66]Kazemian, H.B. Comparative study of a learning fuzzy PID controller and a self-tuning controller [J]. ISA transactions,2001.40(3),245-253.
    [67]汤红诚,李著信,王正涛,et al.一种模糊PID控制系统[J].电机与控制学报,2005.9(2),136-138.
    [68]Shannon, T.T., G.G. Lendaris. Adaptive critic based design of a fuzzy motor speed controller[C],2001.359-363
    [69]Cerruto, E., A. Consoli, A. Raciti, et al. Fuzzy adaptive vector control of induction motor drives[J]. IEEE TRANSACTIONS ON POWER ELECTRONICS,1997.12(6),1028-1040.
    [70]马义方,蔡际令,汪雄海.伺服系统的自适应模糊滑模最优控制研究[J].浙江大学学报(工学版),2006.40(6),1032-1035.
    [71]逢海萍,江姝妍.伺服系统模糊滑模控制器的设计与仿真[J].系统仿真学报,2005.17(12),297.2-2974,2978.
    [72]McCulloch, W.S., W. Pitts. A logical calculus of the ideas immanent in nervous activity[J]. Bulletin of Mathematical Biology,1943.5(4),115-133.
    [73]Rahman, M.A., M.A. Hoque. On-line adaptive artificial neural network based vector control ofpermanent magnet synchronous motors [J]. IEEE Transaction on Energy Conversion,1998.13(4),311-318.
    [74]Lin, F.J., R.J. Wai, C.C. Lee. Fuzzy neural network position controller for ultrasonic motor driveusing push-pull DC-DC converter [J]. IEE Proceedings-Control Theory and Applications,1999.146(1),99-107.
    [75]孙炜,王耀南.基于模糊高斯基函数神经网络控制的交流伺服系统[J].电机与控制学报1999.3(2),81-84.
    [76]徐立新,王常虹,庄显义.基于神经网络模型的伺服系统控制与补偿方法研究[J].宇航学报,1998.19(3),83-92.
    [77]柳朝军,廖晓钟.动态模糊神经网络控制器在伺服系统中的应用[J].控制与决策,2001.16(3),347-350.
    [78]Dazhi, W., G. Shusheng, W. Kenan. A neural-network-base adaptive estimator for speed-sensorless control of induction motor[J].
    [79]Kim, S.H., T.S. Park, J.Y. Yoo, et al. Speed-sensorless vector control of an induction motor using neuralnetwork speed estimation[J]. Ieee Transactions on Industrial Electronics,2001.48(3),609-614.
    [80]Lin, F.J., J.C. Yu, M.S. Tzeng. Sensorless induction spindle motor drive using fuzzy neural network speed controller [J]. Electric power systems research,2001. 58(3),187-196.
    [81]王萍,李斌,黄瑞祥,et al基于神经网络的无速度传感器直接转矩控制系统的研究[J].电工技术学报,2003.18(2),5-8,4.
    [82]张广明,张琦.永磁交流伺服系统神经网络模型参考自适应控制[J].解放军理工大学学报:自然科学版,2000.1(6),66-69.
    [83]夏长亮,祁温雅,杨荣,et al基于RBF神经网络的超声波电机参数辨识与模型参考自适应控制[J].中国电机工程学报2004.24(7),117-121.
    [84]Van der Schaft, A. L2-gain and passivity techniques in nonlinear control[M]: Springer,2000.
    [85]Ortega, R., A.J. van der Schaft, B. Maschke, et al. Stabilization of port-controlled Hamiltonian systems:Energy-balancing and passivation [J]. Automatica,2002. 38(4),585-596.
    [86]Maschke, B.M.J., A.J. Van der Schaft. Port controlled Hamiltonian representation of distributed parameter systems[J].2000.
    [87]Fujimoto, K., T. Sugie. Canonical transformation and stabilization of generalized Hamiltonian systems[J]. Systems and Control Letters,2001.42(3),217-228.
    [88]Haddad, W.M., S.G. Nersesov, V.S. Chellaboina. Energy-based control for hybrid port-controlled Hamiltonian systems[J]. Automatica,2003.39(8),1425-1435.
    [89]Fujimoto, K., T. Sugie. Stabilization of Hamiltonian systems with nonholonomic constraints based on time-varying generalized canonical transformations [J]. Systems and Control Letters,2001.44(4),309-320.
    [90]Rodriguez, H., A.J. Van der Schaft, R. Ortega. On stabilization of nonlinear distributed parameter port-controlledHamiltonian systems via energy shaping[C], 2001
    [91]Cheng, D., S. Spurgeon. Stabilization of Hamiltonian systems with dissipation[J]. International Journal of Control,2001.74(5),465-473.
    [92]Ortega, R. Passivity-based Control of Euler-Lagrange Systems:Mechanical, Electrical, and Electromechanical Applications[M]:Springer Verlag,1998.
    [93]Ortega, R., A. Loria, P.J. Nicklasson, et al. Passivity-based control of Euler-Lagrange systems[M]:Springer New York,1998.
    [94]Takegaki, M., S. Arimoto. A new feedback method for dynamic control of manipulators [J]. ASME, Transactions, Journal of Dynamic Systems, Measurement and Control,1981.103,119-125.
    [95]Barili, A., M. Ceresa, C. Parisi. Energy-saving motion control for an autonomous mobile robot[C]
    [96]Ge, S.S., T.H. Lee, G. Zhu. Energy-based robust controller design for multi-link flexiblerobots[C],1996
    [97]Ortega, R., P.J. Nicklasson. Passivity-based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical [J].
    [98]Ortega, R., M. Galaz-Larios, A.S. Bazanella, et al. Excitation control of synchronous generators via total energy-shaping[J]. Proceedings of the 2001 American Control Conference, Vols 1-6,2001,817-822.
    [99]Ortega, R., E. Garcia-Canseco. Interconnection and damping assignment passivity-based control:towards a constructive procedure-Part I[C], 2004.3412-3417 Vol.4
    [100]Ortega, R., M.W. Spong, F. Gomez-Estern, et al. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment[J]. Automatic Control, IEEE Transactions on,2002.47(8),1218-1233.
    [101]Biros, G, O. Ghattas. Parallel Lagrange-Newton-Krylov-Schur methods for PDE-constrained optimization. Part Ⅱ:The Lagrange-Newton solver and its application to optimal control of steady viscous flows[J]. SIAM Journal on Scientific Computing,2006.27(2),714.
    [102]Bloch, A.M., N.E. Leonard, J.E. Marsden. Controlled Lagrangians and the stabilization of Euler-Poincare mechanical systems[J]. International Journal of Robust and Nonlinear Control,2001.11(3),191-214.
    [103]Bloch, A.M., N.E. Leonard, J.E. Marsden. Controlled Lagrangians and the stabilization of mechanical systems. Ⅰ. The first matching theorem[J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL,2000.45(12),2253-2270.
    [104]Bloch, A.M., D.E. Chang, N.E. Leonard, et al. Controlled Lagrangians and the stabilization of mechanical systems. Ⅱ. Potential shaping[J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL,2001.46(10),1556-1571.
    [105]Ortega, R., A. van der Schaft, B. Maschke, et al. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems[J]. Automatica,2002.38(4),585-596.
    [106]Gomez-Estern, F.,A. van der Schaft. Physical damping in IDA-PBC controlled underactuated mechanical systems[J]. European J Control,2004.
    [107]Petrovic, V., R. Ortega, A.M. Stankovic. Interconnection and damping assignment approach to control of PMsynchronous motors[J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY,2001.9(6),811-820.
    [108]Jeltsema, D., R. Ortega, J. Scherpen. An energy balancing perspective of IDA-PBC of nonlinear systems[J]. Automatica,2004.40(9),1643-1646.
    [109]Batlle, C., A. Doria-Cerezo, E. Fossas. IDA-PBC controller for a bidirectional power flow full-bridge rectifier[C],2005.422-426
    [110]Woolsey, C.A., N.E. Leonard. Moving mass control for underwater vehicles[C], 2002
    [111]Nair, S., N.E. Leonard. A Normal Form for Energy Shaping:Application to the Furuta Pendulum (I)[C]:IEEE; 1998,2001.516-521
    [112]Sanz, A., V. Etxebarria. Experimental control of a single-link flexible robot arm using energy shaping[J]. International Journal of Systems Science,2007.38(1), 61-71.
    [113]Carles Batlle Arnau, Arnau Doria Cerezo, Enric Fossas Colet, et al. Energy-based modelling and control of a multi-domain energy storage and management system[C]:Inge Troch, Felix Breitenecker,2006.233
    [114]Rodriguez, H., R. Ortega, I. Mareels. A novel passivity-based controller for an active magnetic bearingbenchmark experiment[C],2000
    [115]Hamroun, B., L. Lefevre, E. Mendes. Passivity based control of a reduced port-controlled hamiltonian model for the shallow water equations[C], 2008.3917-3922
    [116]Slotine, J.E., M.D. Di Benedetto. Hamiltonian adaptive control of spacecraft[J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL,1990.35(7),848-852.
    [117]孙元章,彭疆南.基于Hamiltonian理论的受控电力系统暂态稳定分析方法[J].电网技术,2002.26(9),1-6.
    [118]马进,席在荣.基于Hamilton能量理论的发电机汽门与励磁非线稳定控制器的设计[J].中国电机工程学报,2002.22(5),88-93.
    [119]郝晋,王杰,陈陈,et al基于Hamilton系统理论的结构保持多机电力系统非线性励磁控制[J].中国电机工程学报,2005.25(18),6-12.
    [120]王玉振,葛树志.广义Hamilton系统的观测器及基于观测器的H∞控制设计[J].中国科学:E辑,2004.34(12),1313-1328.
    [121]Fujimoto, K., K. Sakurama, T. Sugie. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations [J]. Automatica, 2003.39(12),2059-2069.
    [122]Rodriguez, H., R. Ortega. Stabilization of electromechanical systems via interconnection and damping assignment[J]. International Journal of Robust and Nonlinear Control,2003.13(12).
    [123]Wang, Y., C. Li, D. Cheng. New approaches to generalized Hamiltonian realization of autonomous nonlinear systems[J]. Science in China Series F:Information Sciences,2003.46(6),431-444.
    [124]王玉振,程代展.广义Hamilton实现及其在电力系统中的应用[J].自动化学报,2002.28(5),745-753.
    [125]Wang, Y., D. Cheng, C. Li, et al. Dissipative Hamiltonian realization and energy-based L 2-disturbance attenuation control of multimachine power systems[J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL,2003.48(8), 1428-1433.
    [126]王玉振.广义Hamilton控制系统理论-实现、控制与应用[M].北京:科学出版社,2007312.
    [127]孙元章,刘前进,杨新林.非线性控制中的L2增益和无源化方法[M]:清华大学出版社[英国],2002.
    [128]王孝武.现代控制理论基础[M]:机械工业出版社,1998.
    [129]冯纯伯,费树岷.非线性控制系统分析与设计[M],1998208-305.
    [130]洪奕光,程代展.非线性系统的分析与控制[M].北京:科学出版社,2005276.
    [131]Willems, J.C. Dissipative dynamical systems part Ⅰ:General theory [J]. Archive for Rational Mechanics and Analysis,1972.45(5),321-351.
    [132]孙云章,刘前进,杨新林.非线性控制中的L2增益和无源化方法[M].北京:清华大学出版社,2002174.
    [133]舒志兵.交流伺服运动控制系统.2006,北京:清华大学出版社.
    [134]王成元.矢量控制交流伺服驱动电动机[M]:北京机械工业出版社,1995.
    [135]陈伯时.电力拖动自动控制系统.1992,北京:机械工业出版社.
    [136]陈荣.面装式永磁同步电机伺服系统电流控制方法研究[J].
    [137]Morimoto, S., Y. Takeda, T. Hirasa. Current phase control methods for permanent magnet synchronousmotors[J]. Power Electronics, IEEE Transactions on,1990. 5(2),133-139.
    [138]Mingji, L.,C. Zhongqin, C. Ximing, et al. Adaptive position servo control of permanent magnet synchronous motor[C]
    [139]卢贤良,郑德腾.一种新型PID算法在车用交流发电机测试系统中的应用[J].电工技术杂志,1999(005),16-18.
    [140]李晶,方勇,宋家骅,et a1.变速恒频双馈风电机组分段分层控制策略的研究[J].电网技术,2005.29(009),15-21.
    [141]苏义鑫,王娟,胡业发.磁悬浮轴承的变参数PID控制[J].武汉理工大学学报:信息与管理工程版,2004.26(002),35-37.
    [142]翁贻方,鞠磊.变参数混沌同步保密通信方案设计[J].信息与控制,2003.32(002),128-131.
    [143]刘金琨.先进PID控制及其MATLAB仿真[M]:电子工业出版社,2003.
    [144]Guo, Y., Z. Xi, D. Cheng. Speed regulation of permanent magnet synchronous motor via feedback dissipative hamiltonian realisation[J]. Control Theory & Applications, IET,2007.1(1),281-290.
    [145]Wasynczuk,O., S.D. Sudhoff, K.A. Corzine, et al. A maximum torque per ampere control strategy for induction motordrives[J]. IEEE Transaction on Energy Conversion,1998.13(2),163-169.
    [146]Du, T., M.A. Brdys. Implementation of extended Luenberger observers for joint state andparameter estimation of PWM induction motor drive[C],1993.439-444
    [147]马俊功,王世富,王占林.电液伺服速度系统的模糊增益调度控制[J].北京航空航天大学学报,2007.33(3),294-297.
    [148]金刘会,环张振.基于PCH模型的APF非线性L2增益控制新方法[J].电力系统及其自动化学报,2008.20(002),9-16.
    [149]黄祖毅,李东海,姜学智,et al.倒立摆摆角全程控制的增益调度方法[J].电机与控制学报,2004.8(2),130-133.
    [150]Ryan, E.P., M. Corless. Ultimate boundedness and asymptotic stability of a class of uncertain dynamical systems via continuous and discontinuous feedback control[J]. IMA Journal of Mathematical Control and Information,1984.1(3),223-242.
    [151]Hsu, L., R.R. Costa. Variable structure model reference adaptive control using only input and output measurements. I[J]. International Journal of Control,1989.49(2), 399-416.
    [152]赵和平,刘奋.变结构控制方法在电控离合器中的应用研究[J].中国机械工程,2002.13(020),1797-1 800.
    [153]张天平.自适应模糊变结构控制器的一种新设计[J].控制与决策,2000.15(006),678-681.
    [154]宋立忠,陈少昌.自适应离散变结构控制及其在电力系统中的应用[J].中国电机工程学报,2002.22(012),97-100.
    [155]张昌凡,王耀南.滑模变结构的智能控制及其应用[J].中国电机工程学报,2001.21(003),27-29.
    [156]Slotine, J.J.E., J.A. Coetsee. Adaptive sliding controller synthesis for non-linear systems[J]. International Journal of Control,1986.43(6),1631-1651.
    [157]肖雁鸿,叶涛.基于模糊自适应调整趋近律的变结构控制[J].电气传动自动化,2001.23(004),34-35.
    [158]Bartolini, G., A. Ferrara, V.I. Utkin. Adaptive sliding mode control in discrete-time systems[J]. Automatica(Oxford),1995.31(5),769-773.
    [159]郑锋,程勉.一类时滞线性系统的变结构控制[J].自动化学报,1995.21(002),221-226.
    [160]田保峡.一类时滞不确定线性系统的变结构镇定方法研究[J].浙江大学学报(工学版),2001(04).
    [161]左小五,上海,沈阳.时滞多变量系统的变结构预测控制[J].仪器仪表学报,2003.2(2).
    [162]郭宏,蔚永强.基于变结构PID控制的直接驱动阀伺服控制系统[J].电工技术学报,2007.22(011),58-62.
    [163]Parra-Vega, V., S. Arimoto, Y.H. Liu, et al. Dynamic sliding PID control for tracking of robot manipulators:theory and experiments[J]. IEEE Transactions on Robotics and Automation,2003.19(6),967-976.
    [164]贾洪平,贺益康.永磁同步电机滑模变结构直接转矩控制[J].电工技术学报,2006.21(001),1-6.
    [165]Di Zhou, C.M., W. Xu. Adaptive sliding-mode guidance of a homing missile[J]. Journal of Guidance, Control, and Dynamics,1999.22(4),589-594.
    [166]Wai, R.J. Adaptive sliding-mode control for induction servomotor drive[J]. IEE Proceedings-Electric Power Applications,2000.147(6),553-562.
    [167]Richalet, J., A. Rault, J.L. Testud, et al. Model predictive heuristic control: Applications to industrial processes[J]. Automatica,1978.14(5),413-428.
    [168]Rall, L.B. Automatic differentiation:Techniques and applications[M]:Lecture Notes in Computer Science,120,1981.
    [169]Speelpenning, B. Compiling fast partial derivatives of functions given byalgorithms[J].1980.
    [170]张海斌,薛毅.自动微分的基本思想与实现[J].北京工业大学学报,2005.31(3),332-336.
    [171]Segal, G. Sepran users manual[J]. Ingenieursbureau Sepra, Leidschendam, NL, 1993.
    [172]Bischof, C.H., H.M. Bucker, B. Lang, et al. Extending the functionality of the general-purpose finite element package SEPRAN by automatic differentiation[J]. International Journal for Numerical Methods in Engineering,2003.58(14).
    [173]Tolsma, J., P.I. Barton. DAEPACK:An open modeling environment for legacy models[J]. Ind. Eng. Chem. Res,2000.39(6),1826-1839.
    [174]Fourer, R., D.M. Gay, B.W. Kernighan. AMPL:A mathematical programming language[M]:AT&T Bell Laboratories,1989.
    [175]Gould, N.I.M., D. Orban, P.L. Toint. GALAHAD, a library of thread-safe Fortran 90 packages for large-scale nonlinear optimization[J]. ACM Transactions on Mathematical Software (TOMS),2003.29(4),353-372.
    [176]Griewank, A., D. Juedes, J. Srinivasan, et al. ADOL-C:A package for the automatic differentiation of algorithms written in C/C++[M]:Mathematics and Computer Science Division, Argonne National Laboratory,1991.
    [177]Holmstrom, K. The TOMLAB optimization environment in Matlab[J]. Advanced Modeling and Optimization,1999.1(1),47-69.
    [178]Christianson, B. Reverse accumulation and accurate rounding error estimates for taylor series coefficient [J]. Optimization Methods and Software,1992.1(1),81-94.
    [179]Griewank, A. ODE solving via automatic differentiation and rational prediction[J]. Numerical Analysis,1995.344,37-56.
    [180]Cao, Y. A Formulation of nonlinear model predictive control using automatic differentiation[J]. Journal of Process Control,2005.15(8),851-858.
    [181]Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics,1963, 431-441.