弱磁场辅助氧化共沉淀合成纳米Fe_3O_4颗粒及其磁流体性质和作为传动介质的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
四氧化三铁(Fe3O4)纳米粒子形貌对其性质和应用具有重要的影响。本论文采用弱外磁场(磁场强度小于500Gs)辅助氧化共沉淀法合成制备具有不同形貌的纳米Fe3O4颗粒;通过表面改性的方法将制备得到的Fe3O4纳米粒子分散于基载油中制备磁流体,并通过磁流体稳定性测试仪分析最佳的制备工艺,应用流变仪研究制备得到的磁流体的流变学特征;采用仿真和数值计算方法设计、优化磁流体传动装置,研究磁流体的传动性能及其与磁性粒子形貌的关系。
     采用自行设计的弱外磁场辅助氧化共沉淀法合成纳米Fe3O4颗粒的装置,以NaOH、FeCl2和H2O2为原料,通过改变反应物浓度和辅助磁场大小制备纳米Fe3O4颗粒;经SEM、XRD、FTIR、VSM等技术检测分析表明,该方法可合成制备具有无规则、正八面体、六方片状等不同形貌的纳米Fe3O4颗粒;弱外磁场在合成过程中能够加速诱导α-FeOOH向Fe3O4的相转变,缩短反应的时间,提高产物的纯度;弱外磁场的引入,并不会改变产物的晶格点阵形状,只对产物晶体的形貌产生作用;不同形貌的Fe3O4颗粒具有不同的磁性能,由于六方片状Fe3O4纳米晶形状的各向异性和粒度大小的影响,其饱和磁化强度小于正八面体型Fe3O4纳米晶的饱和磁化强度。
     论文通过磁流体稳定性理论分析计算,确定了磁流体的稳定分散条件;并通过设计采用L-C振荡电路原理的磁流体稳定性测试仪,确定制备稳定磁流体的条件。通过采用流变仪测试和研究利用不同形貌磁性颗粒制备得到的磁流体的磁流变学性能。结果表明:在未加外磁场的情况下,其流变学特性表现为Newtonian流体特性;在外加不同强度的水平方向磁场下,磁流体的粘度和剪切应力基本上不变,表现出Newtonian流体特性;外加不同强度的竖直方向磁场下,磁流体的粘度和剪切应力随外加磁场强度的增大而增大,表现出Bingham流体特性。正八面体形貌纳米Fe3O4颗粒由于其特殊的形貌,其制备得到的磁流体的粘度、剪切应力随外加磁场强度的变化较大。
     论文通过圆盘式磁流体传动器件的工作原理建立了数学计算模型,根据磁流体传动的基本原理,设计了用于磁流体传动的实验装置,并利用仿真和数值分析的方法对传动装置的关键部位材料选择、磁路进行了优化设计。依据设计的磁流体传动装置,建立不同传动盘间隙下的有限元分析模型,分析得出了不同间隙下传递转矩和电流强度的关系。通过建立磁流体传动性能测试平台,对磁流体传递扭矩过程中的各主要因素进行了研究。结果表明:在传动盘之间间隙一定时,磁流体传递扭矩的大小和磁感应强度的大小有关,磁流体传递的扭矩在磁性粒子未达到其饱和磁化强度时,传递扭矩大小随磁感应强度增大而迅速增大,但随着磁感应强度的进一步加大,磁性粒子逐步达到其饱和磁化强度,磁流体传递扭矩大小的增长减缓,最后几乎不再增大;传动盘之间的间隙对磁流体传递扭矩的大小影响较大,间隙越大,传递的扭矩越小;传动盘之间的转速差对磁流体传递扭矩的大小影响较小,在低转速差下传递的扭矩随转速差的增加而有所增加,但超过一定的转速差后,由于磁流体的剪切稀化效应,传递的扭矩将有所减小;磁流体中磁性纳米粒子的形貌对磁流体传递扭矩的大小有一定的影响,正八面体形貌的磁性纳米粒子相对于无规则和六方片状形貌的磁性纳米粒子,其磁流体能够传递更大的扭矩。
The morphology of nano-particles of magnetite (Fe3O4) has an important impact on the relative properties and application in engineering due to the specifications. In this dissertation, a weakly magnetic field (<500Gs) assisted oxidative co-precipitation method was proposed to synthesize the nano-particles of Fe3O4 with different morphologies. The as-synthesized nano-particles, which were modified via a surface modification method, could be dispersed in a base oil to prepare the magnetic fluids. A magnetic fluid stability testing device was manufactured to evaluate the stability of the magnetic fluids with the nano-particles using different chemicals. The rheological characteristics of the magnetic fluids with and without an external magnetic field were also investigated. The effect of the morphology of the nano-particles on the transmission properties of magnetic fluids was analyzed by a designed magnetic fluid transmission device, which was optimized via the simulation software and the numerical analysis technique.
     The nano-particles of Fe3O4 with different morphologies (i.e., irregular, octahedron and six-party flake) were synthesized using NaOH, FeCl2 and H2O2 as raw materials in a designed oxidation co-precipitation synthesis device with weakly magnetic field assistance. The synthesis was carried out at various reactant concentrations and magnetic inductions. The analysis by scanning electron microscopy (SEM), X-ray diffraction (XRD), fourier transform infrared spectrometer (FTIR) and vibrating sample magnetometer (VSM) shows that the morphologies of nano-particles of Fe3O4 synthesized appear irregular, octahedron and six-party flake as well. The application of weakly magnetic field to the synthesis could accelerate the phase transformation fromα-FeOOH to Fe3O4, shorten the reaction time and improve the purity of the products. The magnetic field could not have an effect on the lattice shape of the product, but could affect the morphology of the crystalline grain. The nano-particles with different morphologies possessed different magnetic properties due to the shape anisotropy and the crystalline (or particle) size. The saturation magnetization of the nano-particles with the shape of six-party flake was lower than that of the nano-particles with the shape of octahedron.
     In this dissertation, the stability of the magnetic fluid and the particle dispersion in the magnetic fluid were analyzed via the theoretical calculation. A test device for the magnetic fluid stability, which was designed and manufactured based on the principle of L-C oscillator circuit, was used to determine the parameters (i.e., surfactant concentration and assistant surfactant concentration) for the preparation of the magnetic fluids. The magneto-rheological properties of the magnetic fluids with the nano-particles with different morphologies were examined by a rheometer in the absence and presence of a vertical or horizontal magnetic field. The results show that the magneto-rheological properties in the absence of a magnetic field follow a Newtonian fluid behavior. The viscosity of magnetic fluid at various shear rates in the presence of a horizontal magnetic field could not be varied. The viscosity of the magnetic fluid in a vertical magnetic field increased with increasing the magnetic induction. The rheologic behaviour of the magnetic fluid became a Bingham plastic fluid in the presence of a vertical magnetic induction. The viscosity of the magnetic fluids containing the nano-particles with the octahedron shape changed with the applied magnetic field.
     A mathematical model for the magnetic fluid transmission was established according to the working principle of the disk-type magnetic fluid transmission device. The experimental device for the magnetic fluid transmission was designed. The materials used and the magnetic circuit in the device were determined by the simulation method and the numerical analysis technique. The models at different disk drive spaces in the device were established via the finite element method (FEM). The relation between the transmission torque and the current intensity at different disk spaces was analyzed. The main parameters (i.e., current intensity, disk space, speed difference and particle morphology) in the measurement of the magnetic fluid transfer torque were investigated in the magnetic fluid transmission device. The results show that the transfer torque was correlated to the magnetic field intensity in a certain gap between the drive plates when the magnetization of magnetic particles does not reach a saturation value. The transmission torque increased with increasing the magnetic field intensity. However, the magnetic particles gradually reached the saturation magnetization when the magnetic field intensity was further increased, leading to the constant transmission torque. The gap between the drive disks had an impact on the transmission torque. The greater gap could give the smaller transmission torque. The speed difference between the transmission disks had a little effect on the transmission torque at a lower speed. The transmission torque increased with increasing the speed difference. However, the transferred torque would decrease when the speed difference exceeded a certain limit due to the shear-thinning effect of the magnetic fluid. The morphology of the magnetic particles in the magnetic fluid could affect the transfer torque. The nano-particles of Fe3O4 with octahedral morphology could transfer a greater torque rather than the nano-particles with irregular or six-party flake-like morphologies.
引文
[1] Konishi Y, Nomura T, Mizoe K. A new synthesis route from spent sulfuric acid pickling solution to ferrite nanoparticles[J]. Hydrometallurgy, 2004, 74: 57-65
    [2]甘志锋,姜继森.单分散磁性纳米颗粒的制备及生物高分子在其上的组装[J].化学进展, 2005, 17(6): 978-986
    [3] Franger S, Berthet P, Berthon J. Electrochemical synthesis of Fe3O4 nanoparticles in alkaline aqueous solutions containing complexing agents[J]. Journal of Solid State Electro- Chemistry, 2004, 8: 218-223
    [4]刘华蓉,葛学武,倪永红,等.无机/有机纳米复合材料的研究进展[J].化学进展, 2001, 13(5): 403-409
    [5] Wu M Z, Xiong Y, Jia Y S, et al. Magnetic field-assisted hydrothermal growth of chain- like nanostructure of magnetite[J]. Chem. Phys. Lett., 2005, 401: 374-379
    [6] Wan S R, Huang J S, YanHS, et al. Size-controlled preparation of magnetite nanoparticles in the presence of graft copolymers[J]. J. Mater. Chem., 2006, 16: 298-303
    [7] Liu Z L, Wang X, Yao K L, et al. Synthesis of magnetite nanoparticles in W/O microemulsion[J]. J. Mater. Sci. Technol., 2004, 20(4): 417-420
    [8] Chen D, Ni S, Chen Z H. Synthesis of Fe3O4 nanoparticles by wet milling iron powder in a planetary ball mill[J]. China Particuology, 2007, (5): 357-358
    [9] Hoos S R, Kilner M, Russel G J, et al. Preparation and properties of nickel ferrofluids[J]. J. Magn. Magn. Mat., 1983, 39:107-110
    [10] Taeghwan Hyeon, Su Seong Lee, Jongnam Park, et al. Synthesis of highly crystalline and monodisperse maghemite nano-crystallites without a size-selection process[J]. J. Am. Chem. Soc., 2001, 123: 12798-12802
    [11] Molday, Robert S.Magnetic iron-dextran microspheres[P]. USA: 445 773, 1984
    [12] Li XG, Takahashi S, Watanabe K, et al. Fabrication and characteristics of Fe3O4-polymer composite particles by hybridization[J].Powd. Tech., 2003, 133: 156-163
    [13] Wang S Z, Xin H W, Qian Y T. Preparation of nanocrystalline Fe3O4 byγ-ray radiation[J]. Materials Letters, 1997, 33: 113-l 16
    [14] Kurikka V P M Shafi, Abraham U, Yan X Z, et al. Sonochemical synthesis offunctionalized amorphous iron oxide nanoparticles[J]. Langmuir, 2001, 17: 5093-5097
    [15] Ruoff R S, Lorents D C, Chan B, et al. Single crystal metals encapsulated in carbon nanoparticles[J]. Science, 1993, 259: 346-348
    [16] Lu Y, Yin Y, Mayers B T, et al. Modifying the surface properties of super paramagnetic iron oxide nanoparticles through a sol-gel approach[J]. Nano Letters, 2002, 2(3): 183-186
    [17] Deng Y, Wang L, Yang W, et al. Preparation of magnetic polymeric particles via inverse microemulsion polymerization process[J]. J. Magn. Magn. Mater., 2003, 257: 69-78
    [18]朱俊武,张维光,王恒志,等.纳米CuO的形貌控制合成及其性能研究[J].无机化学学报, 2004, 20(7): 863-867
    [19]马洁,李春忠,陈雪花,等.焦磷酸钠对液相碳化法制备纳米碳酸钙形貌的影响[J].无机化学学报, 2005, 21(10): 1465-1470
    [20]李德才.磁性液体理论及应用[M].北京:科学出版社, 2003
    [21]房小翠,刘璇,熊光杰,等.新型磁流变材料的特性和应用前景[J].北京轻工业学院学报, 2000, (4): 1-5
    [22]夏毅敏.磁流变液一种新型的流体传动介质[J].润滑与密封, 1998, (2): 56-58
    [23] Burda C, Chen X, Narayanan R, et al.Chemistry and properties of nanocrystals of different shapes[J]. Chem. Rev., 2005, 105: 1025-1029
    [24] Khollam Y B, Deshpande A S, Patil A J, et al. Microwave-hydrothermal synthesis of equi-axed and submicron-sized BaTiO3 powders[J]. Materials Chemistry and Physics, 2001, 71: 304-308
    [25]于文广,张同来,乔小晶,等.不同形貌Fe3O4纳米粒子的氧化沉淀法制备与表征[J].无机化学学报, 2006, 22(7): 1263-1268
    [26] Fang X S, Zhang L D. Controlled growth of one-dimensional oxide nanomaterials [J]. J. Mater. Sci. Technol., 2006, 22(1): 1-8
    [27] Zhang L, He R, Gu H C. Synthesis and kinetic shape and size evolution of magnetite nanoparticles[J]. Materials Research Bulletin, 2006, 41: 260-267
    [28] Thapa Deepa, Palkar V R, Kurup M B,et al. Properties of magnetite nanoparticles synthesized through a novel chemical route[J]. Materials Letters, 2004, 58: 2692-2694
    [29] Dunlop D J, Argyle K S. Thermoremanence, anhysteretic remanence and susceptibility of submicron magnetites: nonlinear field dependence and variation with grain size[J]. Journal ofGeophysical Research, 1997, 102(B9): 20199-20210
    [30]奥汉德利R C著.现代磁性材料原理和应用[M].周永洽译.北京:化学工业出版社, 2002
    [31] Balasubramaniam C, Khollam Y B, Banerjee I, et al. DC thermal arc-plasma preparation of nanometric and stoichiometric spherical magnetite (Fe3O4) powders[J]. Mater. Lett., 2004, 58: 3958-3962
    [32]刘存业,王跃,李建.电弧法磁性超细微粒分析[J].物理学报, 2000, 49(4): 786-789
    [33]郑兰香,彭国新.超细四氧化三铁微粒的制备[J].精细化工, 1995, 12(6): 11-13
    [34]余加祐. Fe3O4超细粒子催化剂的制备[J].大连轻工业学院学报, 2000, 19(1): 17-20
    [35]陈辉.高温分解法合成Fe3O4磁性纳米微粒[J].河南化工, 2004, 2: 11-12
    [36] Hua G F, Liu Y F, Chen J, et al. Preparation, structure, and magnetic properties of polystyrene coated by Fe3O4 nanoparticles[J]. Chem. Res., 2003, 14(2): 9-12
    [37] Gerardo F G. Handling the particle size and distribution of Fe3O4 nanoparticles through ball milling[J]. Solid State Commun., 2004, 130: 783-787
    [38]林本兰,沈晓冬,崔升.正交设计法优化纳米Fe3O4的合成工艺条件[J].云南大学学报, 2005, 27(3A): 206-208
    [39]邹涛,郭灿雄,段雪,等.强磁性Fe3O4纳米粒子的制备及其性能表征[J].精细化工, 2002, 19(12): 707-710
    [40]谌岩,裴宝全.影响液相法制备Fe3O4纳米粒子因素的研究[J].物理测试, 2001, 5: 3-5
    [41]秦润华,姜炜,刘宏英,等.纳米磁性四氧化三铁的制备及表征[J].材料导报, 2003, 17(9): 66-68
    [42]安哲,朱玲,林锋.纳米级超顺磁性Fe3O4超细粒子的制备及表征[J].哈尔滨医科大学学报, 2004, 38(5): 424-425
    [43]邱星屏.四氧化三铁磁性纳米粒子的合成及表征[J].厦门大学学报, 1999, 38(5): 711-714
    [44] Aono H, Hirazawa H, Naohara T, et al. Studies on magnetic aftereffect of Fe3O4 nano-particles[J]. Mater. Res. Bull., 2005, 40: 1126-1135
    [45]王恒志,吴东辉,李建华. Fe3O4超细粉体的制备[J].江苏化工, 2001, 29(5): 28-30
    [46]任欢鱼,刘勇健,牛亚丰.醇-水共热法制备Fe3O4磁流体[J].化工进展, 2003, 22(1):49-52
    [47]温燕梅,卢泽勤.聚乙醇-Fe3O4粒子的制备[J].化学研究与应用, 2002, 14(5): 563-565
    [48] Zhu Y H, Wu Q F. Magnetic field-induced growth and self-assembly of cobalt nanocrystallites[J]. J. Nanoparticles Res., 1999, 1: 393-396
    [49] Vayssières L, Chanéac C, Tronc E, et al. Size tailoring of magnetite particles formed by aqueous precipitation: an example of thermodynamic stability of nanometric oxide particles[J]. J. Colloid Interf. Sci., 1998, 205: 205-212
    [50] Li Y R, Shi N L. Preparation ofα-Fe2O3 nanodisks by blocking the growth of (001) Plan[J]. J. Mater. Sci. Technol., 2005, 21(4): 606-608
    [51] Wang J, Chen QW, Zeng C, et al. Magnetic-field-induced growth of single-crystalline Fe3O4 nanowires[J]. Adv. Mater., 2004, 16(2): 137-139
    [52]孟哲,张冬亭,王春平.磁性纳米级Fe3O4的氧气诱导,空气氧化液相合成与表征[J].光谱实验室, 2003, 20(4): 489-491
    [53]杨喜云,龚竹青,郑雅杰等.复印显影剂用Fe3O4的表面改性[J].功能材料, 2005, 36(5): 667-670
    [54] Thapa D, Palkar V R, Kurup M B, et al. Properties of magnetite nanoparticles synthesized through a novel chemical route[J]. Mater. Lett., 2004, 58: 2692-2694
    [55] Chen S Y, Feng J, Guo X F, et al. One-step wet chemistry for preparation of magnetite nanorods[J]. Materials Letters, 2005, 59: 985- 988
    [56]李发伸,王涛,王颖.H2O2氧化法制备Fe3O4纳米颗粒及与共沉淀法制备该样品的比较[J].物理学报, 2005, 54(7): 3100-3105
    [57] Yu W G, Zhang T L, Zhang J G, et al. The synthesis of octahedral nanoparticles of magnetite[J]. Materials Letters, 2006, 60: 2998-3001
    [58] Qu S C, Yang H B, Ren D W, et al. Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions[J]. J. Colloid Interf. Sci., 1999, 215: 190-192
    [59]涂国荣,刘翔峰,杜光旭,等.纳米絮状铁纤维的制备及性能测定[J].精细化工, 2004, 21(9): 641-644
    [60] Khollam Y B, Dhage S R, Potdar H S, et al. Microwave-hydrothermal synthesis ofequi-axed and submicron-sized BaTiO3 powders[J]. Mater. Lett., 2002, 56: 571-577
    [61] Fan R, Chen XH, Gui Z, et al. Controlled growth of one-dimensional oxide nano- materials[J]. Mater. Res. Bull., 2001, 36: 479-502
    [62]陈捷,薛博,白姝.新型磁性亲和载体的制备及其对溶菌酶的吸附[J].天津大学学报, 2001, 34(1): 103-106
    [63] Diamandescu L, MihǎilǎT D, Teodorescu V, et al. Hydrothermal synthesis and structural characterization of some substituted magnetites[J]. Mater. Lett., 1998, 37: 340-348
    [64] Wu M Z, Xiong Y, Jia Y S, et al. Magnetic field-assisted hydrothermal growth of chain-like nanostructure of magnetite[J]. Chem. Phys. Lett., 2005, 401: 374-379
    [65] Wang J, Peng Z M, Huang Y J, et al. Growth of magnetite nanorods along its easy-magnetization axis of [1 1 0][J]. J. Cryst. Growth, 2004, 263: 616-619
    [66] Lian S Y, Wang E B, Gao L,et al. Growth of single-crystal magnetite nanowires from Fe3O4 nanoparticles in a surfactant-free hydrothermal process[J]. Solid State Communications, 2004, 132: 375-378
    [67] Kumar R V, Koltypin Y, Xu X N, et al. Fabrication of magnetite nanorods by ultrasound irradiation[J]. J. Appl. Phys., 2001, 89: 6324-6328
    [68] Wu M Z, Xiong Y, Jia Y S,et al. Magnetic field-assisted hydrothermal growth of chain-like nanostructure of magnetite[J]. Chemical Physics Letters, 2005, 401: 374-379
    [69] Zhang J H, Kong Q H, Du J, et al. Formation, characterization, and magnetic properties of Fe3O4 microoctahedrons[J]. Journal of Crystal Growth, 2007,308: 159-165
    [70] Yan A G, Liu X H, Qiu G Z, et al. A simple solvothermal synthesis and characterization of round-biscuit-like Fe3O4 nanoparticles with adjustable sizes[J]. Solid State Communications, 2007, 343:235-239
    [71] Cho S B, Noh J S, Park S J. Morphological control of Fe3O4 particles via glycothermal process[J]. J. Mater. Sci., 2007, 42: 4877-4886
    [72] Mao B D, Kang Z H, Wang E B, et al. Synthesis of magnetite octahedrons from iron powders through a mild hydrothermal method[J]. Materials Research Bulletin, 2006, 41: 2226–2231
    [73] Hu C Q, Gao Z H, Yang X R. Fabrication and magnetic properties of Fe3O4 octahedra[J]. Chemical Physics Letters, 2006, 429: 513-517
    [74] Wan J, Yao Y, Tang G. Controlled-synthesis, characterization, and magnetic properties of Fe3O4 nanostructures[J]. Appl. Phys. A, 2007, 89: 529-532
    [75] Si S F, Li C H, Wang X, et al. Magnetic monodisperse Fe3O4 nanoparticles[J]. Cryst. Growth Des., 2005, 5(2): 391-393
    [76] Pinna N, Grancharov S, Beato P, et al. Magnetite nanocrystals: nonaqueous synthesis, characterization, and solubility[J]. Chem. Mater., 2005,17: 3044-3049
    [77] He K, Xu C Y, Zhen L, et al. Hydrothermal synthesis and characterization of single- crystalline Fe3O4 nanowires with high aspect ratio and uniformity[J]. Materials Letters, 2007, 61: 3159-3162
    [78] Yan A G, Liu X H, Qiu G Z, et al. Solvothermal synthesis and characterization of size controlled Fe3O4 nanoparticles[J]. Journal of Alloys and Compounds, 2007, 365: 678-682
    [79] Franger S, Berthet P, Berthon J. Optimized lithium iron phosphate for high-rate electrochemical applications[J]. J. Solid State Electrochem., 2004, 8: 218-223
    [80] Wang C Y, Zhu G M, Chen Z Y, et al. The Preparation of magnetite Fe3O4 and its morphology control by a novel arc-electrodeposition method[J]. Materials Research Bulletin, 2002, 37: 2525-252
    [81]Wang C Y, Zhu G M, Zhao S L, et al.The preparation of various metal oxides hydroxides and their morphology control by a novel arc-discharge method[J]. Materials Research Bulletin, 2001, 36 :2333-2337.
    [82] Liu Z L, Wang X, Yao KL, et al. Synthesis and characterization of ultrafine well dispersed magnetic nanoparticles[J]. J. Mater. Sci., 2004, 39: 2633-2637
    [83]何秋星,杨华,陈权启,等.微乳化法制备纳米磁性Fe3O4微粒工艺条件研究[J].磁性材料及器件, 2003, 34(2): 9-11
    [84]成国祥,张仁柏,万怡灶,等.反相胶束微反应器的特性与Fe3O4纳米微粒制备[J].兵器材料科学与工程, 1998, 21(6): 27-30
    [85] Morais P C, Azevedo R B, Rabelo D, et al. Synthesis of magnetite nanoparticles in mesoporous copolymer template: a model system for mass-loading control[J]. Chem. Mater., 2003, 15(13): 2485-2487
    [86] Si S, Kotal A, Mandal T K, et al. Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes[J]. Chem. Mater., 2004, 16: 3489-3496
    [87] Rabelo D, Lima E C D, Reis A C, et al. Preparation of magnetite nanoparticles in mesoporous copolymer template[J]. Nano Letters, 2001,27 (2): 105-108
    [88]Chen L, Yang W J, Yang C Z.Preparation of nanoscale iron and Fe3O4 powders in a polymer matrix[J]. J. Mater. Sci., 1997, 32: 3571-3575
    [89] Dmitry G. Shchukin, Igor L. Radtchenko, Gleb B. Sukhorukov. Micron-scale hollow polyelectrolyte capsules with nanosized magnetic Fe3O4 inside[J]. Materials Letters, 2003, 57: 1743-1747
    [90] Feng L, Jiang L, Mai Z H,et al. Polymer-controlled synthesis of Fe3O4 single-crystal nanorods [J]. Journal of Colloid and Interface Science, 2004, 278: 372-375
    [91] Shima M, Bnnerjee I A, Yu L, et al. Magnetic nanoparticles assembly on peptide nanotube[M]. Magnetics Conference, 2005. INTERMAG Asia 2005. Digests of the IEEE International 4-8, 2005: 447-448.
    [92] Gunko Y K, Pillai S C, McInerney D. Magnetic nanoparticles and nanoparticle assemblies from metallorganic precursors[J]. J. Mater. Sci. Mater. Electro., 2001, 12: 299-302
    [93]周洁,马明,张宇,等.不同尺寸Fe3O4磁性颗粒的制备和表征[J].东南大学学报, 2005, 35(4): 616-618
    [94] Li Z, Sun Q, Gao M Y. Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-pyrrolidone: mechanism leading to Fe3O4[J]. Angew. Chem. Int. Ed., 2005, 44: 123-126
    [95] Li Z, Chen H, Bao H B, et al. One-pot reaction to synthesize water-soluble magnetite nanocrystals [J]. Chem. Mater., 2004, 16(8): 1391-1393
    [96] Li Z, Wei L, Gao M Y, et al. One-pot reaction to synthesize biocompatible magnetite nanoparticles[J]. Adv. Mater., 2005, 17(8): 1001-1005
    [97] Sun S H, Zeng H. Size-controlled synthesis of magnetite nanoparticles[J]. J. Am. Chem. Soc., 2002, 124: 8204-8205
    [98] Zhang L, Dou Y H, Gu H C. Sterically induced shape control of magnetite nanoparticles[J]. Journal of Crystal Growth, 2006, 296: 221-226
    [99] Lian S Y, Wang E B, Kang Z H, et al. Synthesis of magnetite nanorods and porous hematite nanorods[J]. Solid State Communications, 2004, 129: 485-490
    [100] Liu F, Gao P J, Zhang H R, et al. Novel nanopyramid arrays of magnetite[J]. Adv.Mater., 2005, 17: 1893-1897
    [101] Bharde A, Wani A, Shouche Y, et al. Bacterial aerobic synthesis of nanocrystalline magnetite[J]. J. Am. Chem. Soc., 2005, 127: 9326-9327
    [102]陈建峰.超重力技术及应用-新一代反应与分离技术[M].北京:化学工业出版社, 2000
    [103] Nakashima T, Shimizu M, Kukizaki M. Membrane emulsification by microporous glass[J]. Key Engineering Materials, 1991, 61&62: 513-516
    [104] Joscelyne S M,Tragardh G. Membrane emulsification-a literature review[J]. Journal of Membrane Science, 2000, 169(1): 107-117
    [105] J Huang, J W Zou, Y Yang. Analysis of Disk-style magnetorheological brake[C]. International Conference on Heterogeneous Material Mechanics, Chongqing, China, 2003: 24-29
    [106] Berger P, Adelman N B, Beckman K J, et al. Preparation and properties of an aqueous ferrofluid[J]. J Chem. Educ, 1999, 76(7): 943-948
    [107] Feltion N M, Pileni P·Synthesizing iron ferrite magnetic nanosized particles[ J]. Langmuir, 1997, 13: 3927-3933
    [108] Shen L F, Laibinis P E, Hatton T A·Bilayer surfactant stabilized magnetic fluids: systhesis and interactions at interfaces[J]. Langmuir, 1997, 15: 447-453
    [109]曹茂盛,曹传宝,徐甲强.纳米材料学[M].哈尔滨:哈尔滨工程大学出版社, 2002
    [110]耿全荣,蒋荣立. Fe3O4水基磁流体的制备与研究[J].实验科学与技术, 2006, (4): 11-14
    [111] K Sato, B Jeyadevan, K Tohji. Preparation and properties of ferromagnetic FePt dispersion[J]. Journal of Magnetism and Magnetic Materials, 2005, 289: 1-4
    [112] T Fujita, T Miyazaki, H Nishiyama, B Jeyadevan. Preparation and properties of low boiling point of alcohol and acetone-based magnetic fluid[J]. Journal of Magnetism and Magnetic Materials, 1999, 201: 14-17
    [113] D Bica, L Vekas. Preparation and magnetic properties of concentrated magnetic tluids on alcohol and water carrier liquid[J]. Journal of Magnetism and Magnetic Materials, 2002, 252: 10-12
    [114] M Kroell, M Pridoehl, G Zimmermann, et al. Magnetic and rheological characterization of novel ferrofluids[J]. Journal of Magnetism and Magnetic Materials,2005, 289: 21-24
    [115] A M Schmidt. Induction heating of novel thermoresponsive ferrofluids[J]. Journal of Magnetism and Magnetic Materials, 2005, 289: 5-8
    [116] T Kanno, Y Kouda, Y Takeishi, et al. Preparation of magnetic fluid having active-gas resistance and ultra-low vapor pressure for magnetic fluid vacuumseal[J]. Tribology International, 1997, 30(9): 701-705
    [117] Shimoiizaka. On the preparation of the colored water-based magnetic fluids(red, yellow, blue and black)[J]. Journal of Magnetism and Magnetic Materials, 1990, 85:1-3
    [118] STaketomi, Y Ozaki, K Kawasaki, et al.Transparent magnet fluid: preparation of YIG ultrafine particles[J]. Journal of Magnetism and Magnetic Materials, 1993, 122: 1-3
    [119] R Arulmurugan, G Vaidyanathan, S Sendhilnathan, et al. Preparation and properties of temperature-sensitive magnetic fluid having Co0.5Zn0.5Fe2O4 and Mn0.5Zn0.5Fe2O4 nano- particles[J]. Journal of Magnetism and Magnetic Materials, 2005, 368: 223-230
    [120] Sanglm Park, JongHee Kim, Chong Oh Kim. Preparation of photosensitizer-coated magnetic fluid for treatment of tumor[J]. Journal of Magnetism and Magnetic Materials, 2004, 274: 2340-2342
    [121]王坤东.锰锌铁氧体磁流体的工艺优化及磁性能测试[D].徐州:中国矿业大学, 2003
    [122]袁敏.锌铁氧体磁流体的制备与性能研究[J].涪陵师范学报, 2005, 21(5): 91-93
    [123]颜旭刚,娄敏毅,王德平,等.锌铁氧体材料的合成及其医学应用[J].材料导报, 2005, 19 (5): 340-343
    [124]颜华,姜玉宏,陈俊斌,等.共沉淀—酸蚀法制备CoFe2O4磁流体及其中的微粒粒径分布[J].西南师范大学学报, 2006, 2(27): 35-38
    [125]刘云志,罗新.新型磁性材料—Co-B磁流体的制备[J].化工时刊, 2005, 19(9): 14- 16
    [126]徐教仁.氮化铁磁性液体材料及应用开发研究[J].材料导报, 2001, 15(2): 12-17
    [127]王瑞金.氮化铁磁流体的制备与稳定性[J].科技通报, 2005, 21(3): 97-101
    [128]童乃虎,徐宏,古宏晨.新型水基磁流体的制备及其生物磁热效应研究[J].功能材料, 2006 ,37(4): 555-558
    [129] Winslow W M. Method and means for translating[P]. USA: 2419850, 1947
    [130] Huang J, Deng GH, Wei YQ, et al. Application of magnetorheological fluids to variable speed transmission. Proce. of the International Conference on Mechanical Transmissions. Chongqing, China. 2001: 296-298
    [131] http://www.delphiauto.com
    [132] http://www.mrfluid.com
    [133]第二届全国电磁流变学术会议论文摘要集.西安:西北工业大学, 1998
    [134] Shulman Z P. Devices for the diagnosis of transfer processes in magnetorheological suspensions[J]. Heat transfer, 1987, 19(5): 236-239
    [135] Kordonsky W I. Magnetorhelolgical effect as a base of new devices and technologies[J]. J. Magnetism and Magnetic Materials, 1993, 122: 395-398
    [136] Kordonsky W I, Magnetorhelolgical fluids and their applications[J]. Mate. Tech., 1993, 8: 240-242
    [137] Winslow, W M. Method and means for translating electrical impulse into mechanical force[P]. USA: 2417850, 1974
    [138] Winslow, W M. Induced fibrillation of suspensions[J]. J. Appl, Phys., 1989,20: 1137- 1140
    [139] Kordonsky W I. Magnetorhelolgical value and devices incorporating magneotheological elements[P]. USA: 5353839, 1994
    [140] J M Ginder, L C Davis. Shear stress in magnetorheolagical fluids: role of magnetic saturation[J]. Appl. Phys. Lett, 1994, 65(26): 3410-3412
    [141] M R Jolly, J W Bender, J D Carlson. Properties and applications of commercial magnetorheological fluids[J]. SPIE, 1998, 3327: 262-275
    [142] Shuman Z P. Structure physical properties and dynamics of magnetorheological suspensions[J]. Int. J. Mutiphase Flow, 1986, 6: 935-955
    [143] X. Tang, X. Zhang. and R. Tao. Structure-enhanced yield stress of magnetorheological fluids[J]. Journal of Applied Physics, 2000, 87(5): 2634-2638
    [144] M.R. Jolly, J W. Bender, R T Mothers. Indirect measurements of microstructure development in magnetarheological fluids[C]. Proc. of the 6th International Conf., on Electrorhevlvgical Fluids. Magnetorheological Suspensions and Their Applications, 1997:470-477
    [145] Phulé. P P. Magnetorheological (MR) fluids: Principles and applications[J]. Smart Materials Bulletin, 2001, (2): 7-10
    [146] Kordonaky W I, Garodkin S R, Magnetorheological Fluid Based Seal. In: Bullogh W A. Proc of the 5th Int. Conf. on ER Fluids, MR Suspensions and Associated Technology, Singapore:World Scientific,1996: 704-709
    [147] E. Lemaire, A. Meunier, G. Bossis,et al. Influence of the particle size on the rheology of magnetorheological fluids[J]. J. Rheol. ,1995, 39(5): 1011-1020
    [148]潘胜,吴建耀,胡林,等.磁流变液的屈服应力与温度效应[J].功能材料, 1997, 28(2): 264-267
    [149]Keith D Weiss, Theodore G. Duclos, J. David Carlson, et al. High strength magneto- and electro-rheological fluids[C]. International Off-Highway & Powerplant Congress & Exposition, 1993: 21-26
    [150] Joanne H. E. Promislow, Alice P. Gast. Magnetorheological fluid structure in a pulsed magnetic field[J]. Langmuir, 1996, 12 (17): 4095-4102
    [151] Zhu Z Q, Howe D, Chan CC. Improved analytical model for predicting the magnetic field distribution in brushless permanent-magnet machines[J]. IEEE Transactions on Magnetics, 2007, 38 (1): 229-238
    [152] X Tang, X Zhang, R Tao, et al. Structure-enhanced yield stress of magnetorheological fluid[J]. Journal of Applied Physics, 2000, 87: 2634-2637
    [153]王琪民,向勇,张培强,等.利用强度增强技术的磁流变液离合器的设计、工程估算和实验研究[J].机械科学与技术, 2002, (2): 131-133
    [154]左军,罗晓玉,曹树平.磁流变体-新型智能流体材料[J].机床与液压, 2000, (1): 30-31
    [155] W I Kordonski, S D Jacobs. Magnetorheological finishing[J]. International Journal of Modern Physics B, 1996, 10(23): 2837-2848
    [156] S D Jacobs. Magnetorheological finishing of edges of optical elements[P]. USA: 5616066, 1997
    [157] S D Jacobs. Magnetorheological Finishing of IR Materials[J]. SPIE, 1996, 34: 258-269
    [158] W I Kordonski, D Golini, S Hogan et al. System for abrasive jet shaping and polishingof a surface using magnetorheological fluid[P]. USA: 5971835, 1999
    [159]祁冠方,韩军,胡文续.磁性流体及其应用[J].液压与气动, 2000, (4): 46-48
    [160] Kordonsky WL. Elements and devices base magnetorheoloeical effect[J]. J. Intelll. Marter. Systems and Struct., 1993, (1): 65-69
    [161] W Kordonski. Model of Magnetorheological Finishing[J]. Journal of Intelligent Material Systems and Structures, 1996, 7(2): 131-137
    [162]杨新民.电(磁)流变体材料[N].中国仪电报, 1999, 215
    [163] Weiss K D, Suclos T G., Chizan M J, et al. Magnetorheological Fluid Composite Structures[P]. USA: 5547049, 1996
    [164] Carlson, J D. Low-cost MR fluid sponge devices[C]. Proc.7th Int.cof.on ERF, MR Suspensions& Their Appl., Honolulu, Hawaii, 1999: 19-23
    [165] Tang X,Zhang X,Tao T. Flexible Fixture with Magnetorheological Fluids[C]. Proc. of the 7th Int. Conf. on ER Fluids and MR Suspensions. Singapore: World Scientific, 2000: 712-720.
    [166] http://www.lord.com
    [167] Huang J, Huang J W, Yang Y, et al. Shear Transmission Mechanical Model of Circular Plate MR Clutch[C]. Fifth International Symposium on Instrumentation and Control Technology, SPIE, 2003: 278-280
    [168]杨岩.磁流变液离合器的设计与实验分析[D].重庆:重庆大学, 2005
    [169]华文林.磁流变液制动器的设计与研究[D].武汉:武汉理工大学, 2002
    [170]黄一坚,黄豪彩.圆盘式磁流变传动机构的研究[J].机床与液压, 2003, (2): 62-64
    [171]邹继文,廖仕利,杨岩.磁流变离合器的设计和分析[J].现代制造工程, 2004, (2): 94-95
    [172]陈俊明.湿法制备铁氧体磁粉的新途径[M].北京:国防工业出版社, 2001
    [173] L Diamandescu, D Mihǎilǎ-Tǎrǎbǎ? V Teodorescu, et al. Hydrothermal synthesis and structural characterization of some substituted magnetites[J]. Materials Letters 1998, 37: 340–348
    [174] Khollam Y B, Dhage S R, Potdar H S, et a1. Microwave hydrothermal preparation of submicron-sized spherical magnetite (Fe3O4) powders[J]. Mater. Lett., 2002, 56: 571-577
    [175] Jianhua Meng, Guiqin Yang, Lemei Yan, Xiuyu Wang. Synthesis and characterization ofmagnetic nanometer pigment Fe3O4[J]. Dyes and Pigments, 2005, 66: 109-113
    [176] Manuel Ocana, Maria P. Morales, Carlos J. Serna. The growth mechanism ofα-Fe2O3 ellipsoidal particles in solution[J]. J Colloid and Interface Science, 1995, 171: 85-91
    [177] Aharoni A, Jakubovics J P. Cylindrical domains in small ferromagnetic spheres with cubic anisotropy[J]. IEEE. Trans. Magn., 1988, 24: 1892
    [178] R Y Hong, T T Pan, Y P Han, et al. Magnetic field synthesis of Fe3O4 nanoparticles used as a precursor of ferrofluids[J]. Journal of Magnetism and Magnetic Materials, 2007, 310: 37-47.
    [179]杨春光,乔爱平.纳米粉体团聚的原因及解决方法[J].山西化工, 2003, 23(1): 56-58
    [180]张立德,牟季美.纳米材料和纳米结构(第二版)[M].北京:科学出版社, 2001
    [181] Zins D, Cabuil V, Massart R. New aqueous magnetic fluids [J]. Journal of Molecular Liquids 1999, 83: 217-232
    [182] Jiang G D, Xiao B D, Wen C Z, et al. Magnetic and conducting Fe3O4-cross-linked polyaniline nanoparticles with core-shell structure[J]. Polymer, 2002, 43: 2179-2184
    [183]杨青林,宋延林,万梅香,等.导电聚苯胺与Fe3O4磁性纳米颗粒复合物的合成与表征[J].高等学校化学学报, 2002, 23(6): 1105-1109
    [184] Duncan J S. Introduction to colloid and surface chemistry(4th edition)[M]. Reed Educational and professional publishing Ltd, 1999
    [185]马小娟,李建.共沉淀-酸蚀法制备的磁性液体的稳定性分析[J].西南师范大学学报(自然科学版), 2002, 27(5): 713-717
    [186]池长青.铁磁流体力学[M].北京:北京航空航天大学出版社, 1993
    [187] Lai Q Y, Lu J, Ji X Y. Study of preparation and properties on magnetization and stability for ferromagnetic fluids[J]. Mater Chem Phys, 2000, 66: 6
    [188]白红英,贾梦秋,毋伟,等.纳米SiO2的原位改性及在耐热涂料中的应用[J].表面技术, 2003, 32(6): 59-62
    [189]周衡志,李子全,王玲,等.表面活性剂Span80和促进剂对TiO2/硅油电流变液性能的影响[J].材料工程, 2006, (4): 56-60
    [190]张立德,牟季美.纳米材料和纳米结构(第三版) [M].北京:科学出版社, 2002
    [191] Arkadiusz Jozefczak, Andrzej Skumiel. Study of heating effect and acoustic propertiesof dextran stabilized magnetic fluid[J]. Journal of Magnetism and Magnetic Materials, 2007, 3(11): 193-196
    [192] R Lantzsch, V Galindo, I Grants, et al. Experimental and numerical results on the fluid flow driven by a traveling magnetic field[J]. Journal of Crystal Growth, 2007, 305: 249-256
    [193] Mikhail V. Avdeev, Doina Bica, Ladislau Vekas, et al.On the possibility of using short chain length mono- carboxylic acids for stabilization of magnetic fluids[J]. Journal of Magnetism and Magnetic Materials, 2007, 311:6-9
    [194]赵静,刘勇健.磁流体制备中表面活性剂的选择及其包裹条件的影响[J].应用化工,2008, 37 (2): 198-201
    [195]苏尔皇.液体的粘度计算和测量[M].北京:国防工业出版社, 1986
    [196] Mctague J P. Magneto viscosity of magnetic colloids[ J]. Journal of Chemical Physics, 1969, 51(1): 133-136.
    [197] Deysarkar A K, Clampitt B H. Evaluation of ferrofluids as lubricants[J]. Journal of Synthetic Lubrication, 1988 (5): 105-114
    [198]神山信一.磁性流体流变特性的研究[C].第四届全国摩擦学学术会议论文集.兰州:中国摩擦学学会, 1987: 186-191
    [199]赵猛,邹继斌,胡建辉.磁场作用下磁流体粘度特性的研究[J].机械工程材料, 2006, 30(8): 64-65
    [200]刘同冈,刘进书,杨志伊.磁流体在磁场中的粘度测试研究[J].润滑与密封, 2006, (9): 77-79
    [201]冯雪梅,王耀华.磁流体粘度特性得测量研究[J].湖北工业大学学报, 2006, 21(3): 143-145
    [202]王利军,郭楚文,杨志伊.磁流体粘度特性研究[J].润滑与密封, 2006, (8): 46-48.
    [203] Jagadish Sorab. The Effect of Temperature, Pressure and Shear Rate on the Viscosity of Engine Oils[D]. Houston: University of Houston, 1991
    [204]彭小飞,俞小莉,夏立峰,等.低浓度纳米流体粘度变化规律试验[J].农业机械学报, 2007, 38(4): 138-142
    [205]韩燕平.磁流体粘滞特性的研究[D].苏州:苏州大学, 2007
    [206]魏宸官,赵家象.液体粘性传动技术[M].北京:国防工业出版社, 1996.
    [207] Chongzhi Guo, Jiangchuan Guo, Yu Guo. On dynamic transmitting property of circularplate MR clutch[C]. Proceedings of the International Conference on Nonlinear Science and Complexity, Beijing, Peoples R. China, 2006: 258-264
    [208]关新春,李金海,欧进萍.剪切阀式磁流变液减振器磁路设计方法[J].机械设计与制造, 2003, (7): 97-100
    [209] http://www.nbshangong.com/zlby.htm
    [210] Ansys, Inc. ANSYS Analysis Guides first Edition[M]. SAS, IP Inc., 2003
    [211]徐瀛等.机械设计手册[M].北京:第三版.机械工业出版社, 2001