MICE超导耦合磁体运行稳定性关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子化冷却?介子实验装置(Muon Ionization Cooling Experiment,简称MICE)为高能物理未来加速器中微子工厂和?介子对撞机的关键基础性研究装置之一,将在世界上首次以实验验证离子化冷却?介子技术。超导耦合螺线管磁体是MICE实验装置的关键设备之一,用于提供2.6T的中心磁场控制与其耦合的常规射频腔内的?介子束流。由于受射频腔尺寸和结构的限制,其线圈内直径为1500mm,长度285mm,厚度110mm,在最高工作电流时的最大场强达7.3T。考虑到磁体系统的实际漏热和经济性,耦合磁体采用小型制冷机冷却。
     耦合磁体的尺寸和场强较高,且稳定运行时的温度裕度仅约0.8K,磁体线圈内部的高应力和微小的机械扰动都可能引发磁体运行的不稳定,从而导致失超,甚至造成磁体结构的破坏;而磁体低温冷却系统则是磁体运行稳定性的前提及重要保障。本文以MICE超导耦合螺线管磁体为主要研究对象,从磁体的机械稳定性和冷却稳定性两方面深入地研究了影响磁体稳定运行的各个因素,确定了耦合磁体含滑移面的冷质量结构参数和冷却系统的设计参数。本文研究结果对MICE超导耦合磁体的设计和制造以及类似高场强、大口径超导磁体的设计有一定的理论指导和实际应用价值。
     对于大口径高场强超导磁体,其稳定运行的关键之一是磁体工作时的结构安全性。本文以磁体横截面内的位移偏微分方程组为基础,发展了磁体二维平面应力理论模型。模型考虑了降温和励磁时的轴向应力和横向剪切力的影响,得出了从绕制到励磁各阶段磁体横截面内各应力分量的理论解。通过计算文献中的磁体降温和励磁后的位移和峰值应力验证了理论模型的正确性。在理论模型基础上,考虑滑移面结构,建立了磁体冷质量有限元分析模型,模拟了给定结构参数下磁体冷质量在绕制-降温-励磁过程中的受力情况,比较了理论和模拟结果,验证了有限元模型的正确性,用该模型深入研究了稳定工况下机械应力对耦合磁体稳定运行的影响。
     为了得出满足磁体稳定运行要求的冷质量结构参数,应用含滑移面的磁体冷质量有限元模型对线圈的绕制预应力、紧固带的结构参数进行优化设计。给出了线圈绕制预应力的合理范围,为线圈绕制提供理论依据;根据紧固带的作用,从结构和导热方面分别优化了紧固带预应力、厚度和材料选择,得出了紧固带预应力取值范围,给出了紧固带材料和厚度的建议。
     为了理解耦合磁体由于机械应力原因导致失超或无法稳定运行以及滑移面结构对磁体稳定性的影响,采用有限元程序计算了耦合磁体的最小失超能量,对无滑移面时的环氧破裂和导线移动的耗散能量进行了分析,确定了滑移面对增强磁体稳定性的作用。建立了含滑移面的磁体冷质量非稳态应力有限元模型,模型考虑了滑移面的非线性影响和骨架及紧固带的“诱发失超”效应。应用该模型研究了耦合磁体失超引发的磁体内部过热和分段保护时各段的电磁载荷冲击对磁体结构和稳定性的影响。对滑移面的设计参数进行优化计算,指出线圈底部滑移面与侧滑移面的优化摩擦系数,给出了耦合磁体的滑移面结构。
     除了机械因素影响磁体的运行稳定性外,考虑到耦合磁体具有较低的运行温度预度,对磁体的小型制冷机低温冷却系统进行优化设计分析。影响磁体冷却稳定性的两个主要因素为制冷机冷头与磁体最高温度点的温差和磁体的热负荷。为了确定磁体的冷却方式,详细分析及计算了磁体在冷屏温度60K和运行温度4.2K的热负荷,尤其对埋入线圈内部的超导线接头的电阻进行了详细计算,选择了制冷机热虹吸再冷凝冷却方式;以减小制冷机冷头与磁体表面的温差为目标,优化了热虹吸回路的设计参数;以减小系统漏热为目标,优化设计了60K冷屏及其支撑。根据优化结果,给出了冷却系统的设计参数。
     受厂商提供的铌钛超导线材单根长度的限制,耦合磁体线圈将有12-14个超导线接头,受磁体结构内部空间的限制,这些超导线接头将埋在线圈内部,其在低温磁场下的电阻和强度均直接影响磁体的正常工作。通过伏安法和拉伸测试分别研究了超导线接头的电和力学性能,实验结果表明焊接长度为1m时的接头电阻小于2n?,并与计算值较吻合;力学测试表明Sn-Ag焊料存在明显的低温冷脆。环氧树脂是线圈绕制采用的主要粘接绝缘材料,亦是主冷屏支撑组件的粘接材料,其粘接强度是研究磁体机械稳定性和安全运行的基础参数之一。实验测试了环氧粘接面的粘接强度,得到了环氧的断裂应力,为本文非稳态机械特性分析提供了基础数据。
Muon ionization cooling experiment (MICE) will be a demonstration of muon ionization cooling technology for a neutrino factory. The superconducting coupling solenoid magnet is one of the key components in MICE and will produce a magnetic field 2.6T on the center line to control the muon beam in the RF cavity located inside it. To contain the RF cavities, the inner diameter of the coupling coil is 1500mm. The coupling magnet has a peak induction of 7.3T at the maximum current, and will be cooled by cryocoolers.
     The high level of stress inside the coil and small mechanical disturbance may cause quench or permanent damage to the magnet due to large scale and high magnetic filed; because the temperature margin of normal operation is only 0.8K, the cooling system should be stable in order to keep the magnet safe operation. This dissertation, studied the crucial factors that affect the operation stability of the MICE superconducting coupling magnet in term of both mechanical stability and cooling stability, optimized the design parameters of the cold mass assembly with slip plane and the cooling system adopting cryocoolers. The research of this dissertation will provide theoretical and practical application guidance for the design of the coupling magnet and similar solenoid magnets.
     The stress at steady state is the dominant of normal operation. An analytical model to solve the plane stress of the magnet cross section was built. This model considered the effect of the axial stress and the shear stress during cooling and charging. All of stress components after magnet excitation were obtained. The analytical model was verified by an analogous magnet. A finite element model of the coil assembly with slip planes was built and the simulation of normal operation process from winding to charging was performed, and the agreement of the simulation and the analytical results is well. The model was applied to study the effect of steady stress on the normal operation of the magnet.
     In order to obtain the adequate structure parameters of the cold mass assembly, the finite element model with slip plane was applied to optimize the conductor pre-stress and the structure parameters of banding. The dissertation presents the rational the conductor winding pre-stress. According to the function of banding, the pre- stress, thickness and material of banding were optimized.
     In order to understand the quench caused by mechanical disturbance and the effect of slip plane on the operation stability of the magnet, study on the mechanical stability at unsteady state was performed. The minimum quench energy of the coupling magnet was calculated by a finite element model, and quantitative analyses of epoxy cracking and conductor motion without slip plane were carried out. The results indicated that the slip planes have great effect on the stability of the magnet. A two dimensional dynamic stress model was built to simulate the dynamic stress during quench. The impact of over- heat and magnetic force of each section of coil was analyzed. Finite element models with and without slip planes for it were developed to simulate the stresses during the process including winding, cooling down and charging. The effect of slip planes on the stress distribution in the coil assembly was investigated. The results show that slip planes with low friction coefficients can improve the stress condition in the coil, and the structure parameters of the slip planes were confirmed.
     Considering the small temperature margin, the temperature in the magnet must be stable during operation. The key elements in the successful application of cryo cooler to cool magnets are the connection of the cryocooler to the magnet and allowable thermal load. In order to determine the thermosyphon- recondensation cooling scheme, the thermal load of the magnet system at 60K and 4.2K, especially that induced by the resistance of superconducting splices in the coil, were analyzed and calculated in detail. For the purpose of minimizing the ?T between the cooler cold head and the hot point on the magnet and minimizing the thermal load of the magnet, the design of the thermal shields structure was optimized. According to the results, the parameters of cooling system were presented.
     Because the superconducting splices wiil be wound into the coil, the performance of the splices will affect the stability of magnet. The bonding strength of epoxy used for coil impregnent will directly affect the mechanical stability of the magnet. The resistance of splice was tested by voltammetry method, and the mechanical property was investigated by means of uniaxial tensile test. The results have a good agreement with the calculated values. The bonding strength of epoxy was studied by tensile test. The crack stress was obtained to be used as the base for the magnet design.
引文
1.张闯.国际粒子加速器的前沿.物理, 2008, 37(5): 289-29.
    2.赵籍九,尹兆升.粒子加速器技术.高等教育出版社, 2006: 10-30
    3. Super-Kamiokande Collaboration. A Measurement of Atmospheric Neutrino Oscillation Parameters by Super-Kamiokande I. Physical Review D, 2005, 71(11): 112005-112005.35.
    4. J. Burguet-Castell, D. Casper, J. J. Gómez-Cadenas, et al. Neutrino oscillation physics with a higher-γβ-beam. Nuclear Physics B, 2004, 695(1-2):217-240.
    5. M. H. Ahn, E. Aliu, S. Andringa, et al. Measurement of Neutrino Oscillation by the K2K Experiment. Physical Review D, 2006, 74(07): 1072003-072003.40.
    6. S. Geer, M.S. Zisman. Neutrino factories: Realization and physics potential. Progress in Particle and Nuclear Physics, 2007,59(2): 631-693.
    7. M. S. Zisman. Technical Challenges and Scientific Payoffs of Muon Beam Accelerators for Particle Physics. IEEE Transactions on Applied Superconductivity. 2008, 18(2): 82-91.
    8.王贻芳.大亚湾反应堆中微子实验.物理, 2007,36(3): 207-214.
    9. M. S. Zisman. Technical Challenges and Scientific Payoffs of Muon Beam Accelerators for Particle Physics. IEEE Transactions on Applied Superconductivity. 2008, 18(2): 82-91
    10. D. Neuffer. Introduction to Muon Cooling. Nuclear Instruments and Methods in Physics Research A. 2004, 532(2): 26-31.
    11.刘乃泉,林郁正,刘国治.加速器理论(第2版).清华大学出版社. 2004: 292-294.
    12. Y. Torun. MICE: the International Muon Ionization Cooling Experiment. Proceedings of the IEEE Particle Accelerator Conference, 2003, (3): 1795-1797.
    13. M. A. Green, G. Barr, D. E. Baynham, et al. Superconducting Solenoids for the MICE Channel. Proceedings of Particle Accelerator Conference. Portland, 2003,3:1987-1989.
    14. M. A. Green, J. M. Rey. Superconducting Solenoids for an International Muon Cooling Experiment. IEEE Transactions on Applied Superconductivity, 2003, 13(2): 1373-1376.
    15. D. Li, M. A. Green, S. P. Virostek, et al. Progress on the RF Coupling Modulefor the MICE Channel, 2005 Particle Accelerator Conference, Knoxville, 2005: 3417-3421.
    16. M. A. Green. The Superconducting Solenoid Magnets for MICE. Lawrence Berkeley National Laboratory technique note. 2002, LBNL-51920.
    17. M. A. Green, J. Y. Chen, S. T. Wang. Design and Construction of a Gradient Solenoid for the High Power RF Cavity Experiment for the Muon Collider. Institute of Physics Conference Series 167, 2000:1199-1203.
    18. Institute of Cryogenics and Superconductivity Technology, Engineering Design of MICE/MUCOOL Coupling Solenoid Magnet. Harbing Institute of Technology, 2008.
    19. M. A. Green. The Cryogenic Refrigeration System for MICE. Lawrence Berkeley National Laboratory, technique note, LBNL-51751.
    20. M. A. Green, H. Witte. The Use of Small Coolers in a Magnetic Field. Transactions of the Cryogenic Engineering Conference, 2008, (52):1299-1306.
    21.陈文革,武松涛.超导磁体等效材料参数的有限元预测.应用力学学报, 2003, 20(2): 83-87.
    22. T. D. Eshelhy. The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problem. Proceedings of the Royal Society Series A, London ,1957: 376-396
    23. R. Hill. A Self-consistent Mechanics of Composite Materials. Journal of Mechanical Physics Solids, 1965, (13): 213-222.
    24. T. Mori, K. Tanaka. Average Stress in Matrix and Average Energy of materials with Misfitting Inclusions. Acta Metall, 1973, (21): 571-574.
    25. J. R. Brokenbrough, S. Suresh, H. A. Wienecke. Deformation of MMCs with Continuous Fibers: Geometrical Effects of Fiber Distribution and Shape. Acta Metall Mater, 1991, (39): 735-752.
    26. M. Motokawa, M. Hamai, T. Sato. Boundary element method homogenization of the periodic elastic fiber composites. Engineering Analysis with Boundary Elements, 1999, (23):815~823.
    27. M. Lefik, B. A. Schrefler. Artificial neural network for parameter identifications for a elasto-plastic model of superconducting cable under cyclic loading. Computers and Structures, 2002, (80): 1699~1713.
    28.雷友锋,魏德明.细观力学有限元法预测复合材料宏观有效弹性模量.燃气涡轮实验与研究, 2003, 16(3): 11-15.
    29.阮剑华,张培强. HT-7U超导托克马充纵场线圈等效模茸的数值分析.计算力学学报, 2003, 20(2): 28-33.
    30.刘文博,张洪涛.用有限元法对CFPPEK热塑性复合材料等效模量计算.哈尔滨工业大学学报, 2006, 38(4): 535-537.
    31.王凤稳.复合材料等效性能计算及优化设计.西北工业大学硕士论文, 2007: 7-15
    32. L. M. Lontai, P. G. Marston. International Symposium on Magnet Technology. Stanford, California, 1965
    33. W. F. Westendorp, R. W. Kilb. Stresses in Magnetic field Coil. Proceedings of the 1968 Summer Study on Superconducting Devices and Accelerators, 1968, (3): 714-727.
    34. C. T. Sun, W. H. Gray, Theoretical and Experimental Determination of Mechanical Properties of Superconducting Coil Composites. IEEE Nuclear and Plasma Science Society, 1975: 261-265.
    35. N. Mitchell, U. Mszanowski. Stress Analysis of Structurally Graded Long Solenoid Coils. IEEE Trasactions on Magnetics, 1992, 28(1): 226-229.
    36. W. D. Markiewicz, S. R. Voleti, N. Chandra, et al. Transverse stress on Nb3Sn conductors in high field NMR magnets. IEEE Trasactions on Applied Superconductivity, 1993, 3(1): 258-261.
    37. W. D. Markiewicz, M. R. Vaghar, I. R. Dixon, et al. Generalized plane strain analysis of superconducting solenoids. Journal of Applied Physics, 1999, 86(12): 7039-7051.
    38. H. Hasegawa, V. Lee, T. Mura. Green’s Functions for Axisymmetric Problems of Dissimilar Elastic Solids. Journal of Applied Mechanics, 1992, 59(2): 312-321.
    39. M. R. Vaghar, H. Garmestani. Three-Dimensional Axisymmetric Stress Analysis of Superconducting Magnets Using Green’s Function Solution. Journal of Applied Mechanics, 2001, (68): 11-18.
    40. A. W. Cox. Power Series Stress Analysis of Solenoid Magnets. IEEE Transactions on Magnetics. 1996, 32(4): 3012-3015.
    41. N. E. Johnson. The Determination of Electromagnetic Forces in Tokomak Magnets Using the TORMAC Computer Program," Proceeding of the 7th Symposium on Engineering Problems of Fusion Research, Knoxville, 1977: 1352-1356.
    42. W. H. Gray, J. E. Akin. Finite Element Stress Analysis of Orthotropic Solenoids. Proceedings of the 7th Symposium on Engineering Problems of Fusion Research, Knoxville, 1977: 851-853.
    43. T. Y. Chang, H. Suzuki, M. Reich. A Finite Element Model for Elastic and Slip Responses of Fusion Magnets. Journal of Pressure Vessel Technology,1980, 102(2): 219-226.
    44. R. Wands, J. Grimson, R. Kephart, et al. Finite-Element Stress and Deflection Analysis of CDF Yike and End Plug. Fermi National Accelerator Lab Report, FERMILAB/TM-1113, 1982.
    45. C. Marinucci, L. Palladino, G. pasotti. Force Distributions and Stress Analysis of the INTOR-CH Superconducting Coil. Journal of Physics, 1984, 45(1): 901-904.
    46. M. Bona, D. Perini. Finite-element structural analysis of the 10 m long dipole prototype magnet for the LHC. IEEE Transactions on Magnetics, 1992, 28(1): 358-361.
    47. Y. W. Lee, H. J. Ahn, C. H. Choi, et al. Structural analysis of the KSTAR toroidal field magnet system. Fusion Engineering and Design, 2003, (66): 1195-1199.
    48. K. Artoos, N. Bourcey. Mechanical Dynamic Analysis of the LHC Arc Cryo-Magnets. IEEE Transactions on Applied Superconductivity. 1998, 2(1): 815-822
    49.陈文革. HT-7U超导托卡马克核聚变装置纵场磁体结构的设计分析与磁体试验研究.中国科学院等离子体物理研究所博士论文, 2002:25-72
    50.曹云路.大型超导Tokamak装置极向场线圈的设计研究.中国科学院等离子体物理研究所博士论文, 2000:7-126
    51.宋云涛. HT-7U实验装置真空室结构仿真分析与实验研究.中国科学院等离子体物理研究所博士论文, 2001: 20-120
    52.王秋良.高磁场超导磁体科学.科学出版社, 2008: 198-245
    53. C. Schmidt, G. Pasztor. Superconductors under dynamic mechanical stress. IEEE Transactions on Magnetics, 1977, 13(1): 116-119.
    54. Y. Iwasa, R. Kensley, J. E. C. Williams. Frictional properties of metal-insulator interfaces. IEEE Transactions on Magnetics, 1979, 15(1): 36-39.
    55. T. Yamada, M. Iwamoto, H. Sakamoto, et al. Cause of quenching in epoxy impregnated superconducting coils. IEEE Transactions on Magnetics, 1981, 17(5): 1799-1802.
    56. O. Tsukamoto, Y. Iwasa. Sources of acoustic emission in superconducting magnets. Jouanal of Applied Physics, 1983, 54(2): 997-1001.
    57. O. Tsukamoto, J. F. Maguire, E. S. Bobrov, et al. Identification of quench origins in a superconductor with acoustic emission and voltage measurements. Applied Physisc Letter, 1981, 39,172-176.
    58. H. Maeda, O. Tsukamoto, Y. Iwasa. The mechanism of friction motion and itseffect at 4.2 K in superconducting magnet winding models. Cryogenics, 1982, 22(6): 287-295.
    59. Y. Iwasa. Experimental and theoretical investigation of mechanical disturbances in epoxy-impregnated superconducting coils. Part 3. Fracture-induced premature quenches. Cryogenics, 1985, 25 (6), 317-322.
    60. H. Miyamoto, S. Nisliijima, T. Kushida. Instability of impregnated superconducting windings induced by mechanical disturbance. IEEE Transactions on Magnetics, 1996, 32(4): 3008-3011.
    61. T. Kushda, S. Nishijima, T. Okada. Calculation of Wire Motion in a Superconducting Magnet. IEEE Transactions on Applied Superconductivity, 1997, 7(2): 167-170.
    62. S. Ohira, S. Nishijima. Wire dynamics simulation of impregnated superconducting magnet. IEEE Transactions on Applied Superconductivity, 2001, 11(1): 1474-1477
    63. O. Tsukamoto. Disturbance due to conductor motion and stability of large scale conductors. Fusion Engineering and Design, 1993, 20: 327-332.
    64. H. Ogata, S. Nishijima. Analysis of Wire Motion in a Superconducting Magnet by Monte Calro Method. IEEE Transactions on Applied Superconductivity. 2001, 11(1): 1470-1473.
    65. M. Calvi, N. Ponomarev, P. Pugnat, et al. Statistical analysis of conductor motion in LHC superconducting dipole magnets. IEEE Transactions on Applied Superconductivity, 2004, 14(2): 223-226.
    66. Takao T, Tsukamoto O. Stability against the frictional motion of conductor in superconducting windings. IEEE Transactions on Magnetics, 1991, 27(2): 2147~2150.
    67. T. Takao, O. Tsukamoto, S. Honjo. Probability of premature quenches due to conductor motion in superconducting windings. Cryogenics, 1991, 31: 504~509.
    68. T. Ogitsu, K. Tsuchiya, A. Devred. Investigation of wire motion in superconducting magnets. IEEE Transactions on Magnetics, 1991, 27 (2-4): 2132-2135.
    69. A. Nishimura, T. Mito, S. Yamada, et al. Measurement of superconductor motion in R&D coil for supercooling of the LHD helical coil. IEEE Transactions on Applied Superconductivity, 2004, 14(2): 1515-1518.
    70. O. Tsukamoto, Y. Iwasa. Epoxy cracking in the epoxy-impregnated superconducting winding: Nonuniform dissipation of stress energy in a wire-epoxy matrix model. IEEE Transactions on Magnetics, 1985, 21(2): 377-379.
    71. E. S. Bobrov, J. E. C. Williams, Y. Iwasa. Experimental and theoretical investigation of mechanical disturbances coils. 2. Shear-stress-induced epoxy fracture as the principal source of premature quenches and training-theoretical analysis. Cryogenics, 1985, (25): 307-316.
    72. H. Yanagi, M. Sugimoto, K. Someya, et al. Experimantal study of energy release due to cracking of epoxy impregnated conductos. Cryogenics. 1989,29:753-757.
    73. T. Yamashita, S. Nishijima. Instabilities of impregnated windings induced by epoxy cracking. IEEE Transactions on Magnetics, 1989, 25(2): 1524-1527.
    74.孙林松,王德信,谢能刚.接触问题有限元分析方法综述.水利水电科技进展, 2001, 21(3): 18-20.
    75.彼莱奇科,廖荣锦,默然.连续体和结构的非线性有限元.庄茁,译.清华大学出版社, 496-524.
    76. N. D. Hung, G. Saxcé. Frictionless Contact of Elastic Bodies by Finite Element Method and Mathematical Programming Technique. Computers and Structures, 1980, 11:55-67.
    77. A. Klarbring. General Contact Boundary Conditions and the Analysis of Frictional Systems. Solids Struct,1986, 22:1377-1398
    78.钟万勰,弹性接触问题的变分原理及参数二次规划求解.计算结构力学及其应用, 1985, 2(2):189-197
    79.宋乃浩,林良真,张亮等.制冷机直接冷却的超导磁体系统.低温工程. 1999, (4):296-301.
    80. M. O. Hoenig. Design Concepts for a Mechanically Refrigerated 13 K Superconducting Magnet System. IEEE Transactions on Magnetics. 1983, 19(3): 880-883.
    81. M. T. G van der Laan, R. B. Tax, H. H. J. ten Kate, et al. The Cryogenic System of a Conduction Cooled 12 K Superconducting Magnet. Cryogenics, 1990, (30): 163-167.
    82. L. M. Furuyama, H. Yamamoto, M. Tanaka, et al. Performance of Nb3Sn Tape magnet cooled by indirect conduction method. Advanced Cryogenic Engerring, 1990, (35): 625-629.
    83. S. Masuyama, H. Yamamoto, Y. Matsubara. NbTi Split Magnet Directly Cooled by a Cryocooler. IEEE Transactions on Applied Superconductivity. 1993, 3(1):262-265.
    84. E. T. Laskaris, R. Ackermann, B. Dorri, D. Gross, K. Herd and C. Minas. A Cryogen-Free Open Superconducting Magnet for the Interventional MRIApplications. IEEE Transactions on Applied Superconductivity. 1995,5(2):163-168
    85. M. Urata, T Kuriyama, T.Yazawa, et al, A 6 T Refrigerator-Cooled NbTi Supercinduting magnet with 180 mm Room Temperature Bore, IEEE Transactions on Applied Superconductivity, 1995, 5(2): 169-172
    86. T. Kuriyama, M. Urata, T. Yazawa, et al, Cryocooler Directly Cooled 6 T NbTi Superconducting Magnet System with 180 mm Room Temperature Bore, Cryogenics, 1994, (34): 643-647.
    87. K. Koyanagi, M. Urata, Y. Ohtani, T. Kuriyama, et al. A Cryocooler-cooled 10T Superconducting Magnet with 100mm Room Temperature Bore. IEEE Transactions on Magnetics. 1996,32(4):2558-2561.
    88. J. A Good, R. Mitchell, R. Hall. A 15T Cryogen Free Magnet System. Journal of Magnetism and Magnetic Materials. 2001:2065-2066.
    89. M. F. Scott, K. F. Hwang, W. D. Markiewic. Refrigerator Operating Experience on Whole Body MRI Magnet Systems. Advances in Cryogenic Engineering 1986, (31): 625-632.
    90. B. J. Haid, H. Lee, Y. Iwasa, et al. Design Analysis of a Solid Nitrogen Cooled“Permanent”High-temperature Superconducting Magnet System. Cryogenics. 2002, 42(10):617-634.
    91. J. W. Burgoyne, P. D. Daniels, K. W. Timms. Advances in superconducting magnets for commercial and industrial applications. IEEE Transactions on Applied Superconductivity,2000,10(1): 703-709
    92.赵宝志,严陆光,王秋良等. 6T NbTi传导冷却超导磁体系统杜瓦容器的研制.低温物理学报. 2005, 27(2):179-184.
    93.严善仓,李炜.制冷机冷却型小型超导强磁场系统的研制.低温与超导. 2005,34(2):129-132.
    94. M. Kaminski , B. A. Schrefler. Probabilistic Effective Characteristics of Cables for Superconducting Coils[J], Computation Methods Appl. Mech. Engrg. 188 (2000) : 1-16.
    95.王达诠,武建华.砌体RVE均质过程的有限元分析.重庆建筑大学学报, 2002, 24(4): 35-39.
    96.陆明万,罗学富.弹性理论基础(第二版).清华大学出版社, 2001: 13-15.
    97.曹继明,黄义.弹性半空间地基上中厚圆板的幂级数解法.西安建筑科技大学学报. 2007, 39(3): 339-343.
    98. Karasik V R, Kleshnina O A, Konjukhov A A, et al. High Current Density Superconducting Magnet with 2.58m Bore, Proceedings of Advances inCryogenics Engineering, New York, 1992, 37A: 40-48.
    99.杨祖华,王刚,王鸿灵.聚酰亚胺薄膜的制备及其摩擦学性能研究.材料科学与工程学报, 2004, 22(1):105-109.
    100.布雷克纳.超导磁体系统.科学出版社,1986: 180-207.
    101. M. Arata; H. Takataro, O. Ohsaki, et al, Internal stress influence on high current density superconducting magnet performance. IEEE Transactions on Applied Superconductivity, 1995, 5(2): 365-368.
    102. M. Arata, H. Takataro, O. Ohsaki, et al, Radial stress influence on high current density superconducting magnet performance with large and small bore. IEEE Transactions on Magnetics, 1996, 32(4): 3109-3112.
    103. J. E. Jensen, W. A. Tuttle, R. B. Stewart, et al. Brookhaven National Laboratory Selected Cryogenic Data Notebook. New York: Brookhaven National Lab. 1980, Mechanical Properties: XI-E-1.1.
    104.吴杰峰,张勇,姚为民. HT-7U装置纵场线圈超导线接头的钎焊工艺.焊接, 2003, 7:29-30.
    105.张志鹏,朱玉群.超导磁体.华中理工大学出版社, 1989.
    106. Dresner L. Quench Energies of Potted Magnets. IEEE Transactions On Magnetics, 1985, MAG-21(2): 392~395.
    107.傅政,高分子材料强度及破坏行为.北京:化学工学出版社, 2005: 52-67.
    108. S. Yadav, J. Hoffman, Epoxies for Cryogenic Applications, Fermi Lab Note, TD-99-021, 1999.
    109. J. F. Knott, P. A. Withey,断裂力学应用实例.张运全,唐国翌译.科学出版社, 1995: 4-36.
    110. Martin N. Wilson. Monographs on Cryogenics Superconducting Magnets. Oxford: Oxford University Press, 1983:91-131
    111.唐本政,李焕杏,苏斌,等.脉冲超导磁体中导线位移引起的机械不稳定性研究.低温与超导, 1995: 57-64.
    112. L. Li. High Performance Pulsed Magnets: Theory, Design and Construction. Doctor thesis of Belgium: Katholieke Universiteit Leuven, 1998.
    113. X. L. Guo, F. Y. Xu, L. Wang, et al. Quench Protection for the MICE Cooling Channel Coupling Magnet. IEEE Transactions on Applied Superconductivity. 2009, 19(3): 1360-1363.
    114.关振铎,焦金生.无机材料物理性能.清华大学出版社. 1992: 17-25
    115. H. Moriyama, H.Mitsui, J.Ohmori, et al. Design and Fabrication of Highly Stabilized Close-packed Superconducting Solenoid. IEEE Transactions on Magneics, 1996, 32(4): 3028-3031.
    116. H. Moriyama, H. Sekiya, H. Mitsui, et al. Effect of ground insulation contact on stability of epoxy-impregnated superconducting solenoids. Cryogenics, 1995, 35: 825-827.
    117. M. Urata; H. Maeda. Stabilization of superconducting dry solenoids. IEEE Transactions on Magnetics, 1989, 25(2):1528-1531.
    118. Y. Iwasa, R. Kensley, J. E. C. Williams. Frictional properties of metal-insulator interfaces. IEEE Transactions on Magnetics, 1979, 15(1): 36-39.
    119.许晓璐.聚酰亚胺固体润滑膜的摩擦特性.合成润滑材料, 2007, 34(3):15-17.
    120.廖晨棵,赵文轸,李磊等.聚酰亚胺材料自润滑性能研究进展.机械工程材料, 2008, 32(4): 1-5.
    121.崔益民,潘皖江,武松涛.聚酰亚胺薄膜在大型低温超导磁体中的应用.绝缘材料, 2002, 5:15-17.
    122. M. A. Green. Calculating the Jc, B, T Surface for NbTi Using a Reduced-state Model. IEEE Transactions on Magnetics, 1989, 25(2): 2119~2122.
    123. Cryomech Inc. Model PT415 Cryogenic Refrigerator: Installation, Operation and Routine maintenance Manual. 2006.
    124. M. A. Green. The Cryogenic Refrigeration System for MICE: Lawrence Berkeley National Laboratory, Note LBNL-51751, 2002.
    125. M. A. Green. The Liquefaction of Hydrogen and Helium Using Small Coolers. Lawrence Berkeley National Laboratory, Note LBNL-62458, 2007.
    126. M. A. Green. Cooling the MICE Magnets using Small Cryogenic Coolers. Oxford Physics Department Engineering, Note 10, 2004.
    127. L. Wang, H. Wu, L. K. Li, et al. The Helium Cooling System and Cold Mass Support System for the MICE Coupling Solenoid. IEEE Transaction on applied superconductivity, 2008, 18(2):941-944.
    128.汤宏明. BEPCII SCQ\SSM超导磁体系统低温工作特性研究.哈尔滨工业大学博士论文, 2006: 109-113.
    129. L. Wang, L. K. Li, H. Wu, et al. Design of Current Leads for MICE Coupling Magnet. 2008 International Conference on Cryogenics and Refrigeration, Shanghai, 2008: 347-350.
    130.陈运鑫,张小斌,甘智华,等.用于小型NbTi超导磁体的二元电流引线理论与数值研究.第八届全国低温工程大会,北京, 2007: 51-57.
    131. M. Putti, M. R. Cimberle, C. Ferdeghini, et al. Study of Bi(2223) tapes with low thermal conductivity. IEEE Transactions on Applied Superconductivity, 2001, 11(1): 3285-3288.
    132.杨长春. HTS电流引线中接头电阻的研究和焊接工艺.低温与超导. 2007, 35(4):319-321.
    133. M. A. Green, D. R. Dietderich, S. Marks, et al. Design Issues for Cryogenic Cooling of Short Period Superconducting Undulators. Proceedings in Adcances in Cryogenic Engeieering, 2004, (710): 783-790.
    134.李炜征,邱利民,栗鹏.低温热管的最新研究进展.低温与特气, 2004, 22(1): 1-6.
    135. Frank Kreith, Principles of Heat Transfer, International Textbook Company, Scranton PA, 1961.
    136.陈学俊,陈立勋,周芳德.气液两相流及传热基础.科学出版社, 1995.
    137. T. K. H. Frederking, Peak Heat Flux and Temperature Difference in Nucleate Boiling of Liquefied Gasses, Proceedings in Advances in Cryogenic Engineering, New York, Plenum Press, 1962, (8): 489-497.
    138. M. A. Green. The Liquefaction of Hydrogen and Helium Using Small Coolers. Lawrence Berkeley National Laboratory, LBNL-62458,2007.
    139. S. P. Virostek, M. A. Green. The Results of Tests of the MICE Spectrometer Solenoids. IEEE Transaction on Applied Superconductivity, 2010, 20(3).
    140.王帅,王建军,李楚林,等.考虑层问摩擦的多层波纹管轴向刚度非线性有限元分析.压力容器, 2007, 24(12): 12-15.
    141.梁丽超.掺杂Sb的Sn-Ag-Cu系焊料合金性能的研究.哈尔滨理工大学硕士论文, 2008:34-36
    142.陈国邦.低温工程材料.浙江大学出版社. 1998: 168-170.
    143.沈骏. Sn-Ag系无铅焊料中金属间化合物的形成与控制.天津大学博士论文. 2005: 51-76
    144.吴树雄,尹士科,李春范.金属焊接材料手册.化学工业出版社. 2008: 198-262
    145.马秀玲. SnAgCu系无铅钎料的研究.北京工业大学硕士论文, 2004: 40-46
    146.李智,游敏,丰平.胶接接头界面理论及其表面处理技术研究进展.材料导报. 2006, 20(10): 48-51.