C-Mn双相钢的组织形成机理研究及开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究工作之初,作者认为“快速、大量析出的铁素体晶粒抑制了中温区剩余奥氏体向贝氏体的转变,从而在低温区(Ms以下)形成马氏体”;而“C-Mn钢中铁素体晶粒快速、大量析出”是CSP生产流程的重要特点。因而,采用连续冷却工艺,在包钢CSP线上进行540MPa级C-Mn双相钢的开发试验,取得令人满意的结果。虽然如此,但猜测性的机理仍需从逻辑或理论上加以论证。因此,本文选题为“C-Mn双相钢的组织形成机理研究与开发”,确切地说,是对连续冷却条件下过冷奥氏体依次形成铁素体、马氏体而不产生贝氏体(或只产生微量贝氏体)的相变动力学过程的研究。
     通过推导连续冷却条件下“膨胀曲线”与“相变动力学曲线”之间的数学关系,获得连续冷却条件下的表观意义上的相变动力学曲线。以连续冷却相变动力学曲线为基础,建立不同类型相变之间以及同类相变不同阶段之间的临界温度和对应转变分数的分析方法,命名为"Austin-Rickett指数法”。利用Austin-Rickett指数法,研究连续冷却条件下奥氏体晶粒尺寸、冷却速度、C含量对先共析转变过程的影响,解释连续冷却条件下铁素体快速、大量析出的原因。通过研究快速、大量析出铁素体的先共析转变对剩余奥氏体后续相变的影响,分析讨论了CCT图中贝氏体区分离的可能性,建立连续冷却相变过程中铁素体和马氏体双相组织的形成机理,并利用补充实验验证其正确性。
     利用上述“双相组织形成机理”,重新解释“在CSP线,以普通C-Mn钢为原料,采用连续冷却工艺生产出540MPa级C-Mn双相钢”的原因,分析CSP工艺对于生产热轧C-Mn双相钢的适应性。根据“双相组织形成机理”,在包钢CSP线安装“超快速冷却”装置,扩大双相钢生产规格,实现低成本C-Mn热轧双相钢的商业化生产。
     在研究过程中建立的“获得连续冷却转变动力学曲线的方法”以及"Austin-Rickett指数法”,是一种研究连续冷却条件下相变规律的新思路;贝氏体区“分离”的CCT图,是采用连续冷却工艺开发热轧C-Mn系双相钢的理论基础。
Before the present work, a prediction was given by the author, according to a conjecture mechanics, which is that the dual phase steel could be made of C-Mn steel by using one-stage type continuous cooling on Compact Strip Production (CSP) line. Simply, the conjecture mechanics consider that the fast & largely nucleation ferrite grain suppress the remainder austenite-bainite transition in the middle temperature scale and make the remainder austenite change to martensite under the Ms point. Ferrite grain nucleation fast & largely is the important feature of the CSP line. During the subsequent industrial experiments, a 540MPa grade C-Mn dual-phase steel strip was developed successfully by using continuous cooling process on Baotou CSP line, based on the prediction of the author. The result of the prediction was verified certainly. However, the conjecture mechanics need detecting in logic or in theory by no means. Therefore, the topic of the paper is that the research on the structures-formation mechanics in the hot rolled C-Mn dual-phase steel produced by using continuous cooling process, i.e., the research on the over-cooling austenite transformation to the ferrite and martensite, but no bainite or only microscale, on the condition of continuous cooling.
     Firstly, a method for obtaining the transition kinetics curve was established, based on the mathematics relationship between the dilatation curve and the transition kinetics curve. Also, based on the transition kinetics curve, a new method, named Austin-Rickett formula Exponent (ARE) method, was constructed, which is used for analyzing or determining the critical temperature and the corresponding transition fraction among the different transformation course or the different stage in the same transformation course. By using the ARE method, the effects of the austenite grain size, cooling rate and carbon content on the pro-eutectoid transition were researched respectively. The phenomenon of the ferrite liberating quickly and massively was interpreted. The effect of the pro-eutectoid with the ferrite liberating quickly and massively on the subsequent transformation of the residue austenite was researched. Based on the CCT with the bainite zone'segregation', the dual-phase structures-formation mechanics in the hot rolled C-Mn dual-phase steel produced by using continuous cooling process was established. The validity of the mechanics was certified by a supplementary experiment.
     The reason why the dual phase steel was made of C-Mn steel by using continuous cooling on Baotou CSP line was explained by using the mechanics. The adaptability of the CSP line for producing dual-phase steels was analyzed. According to the mechanics, the High Rate Cooling (HRC) device had been installed on the CSP line. It is used for increasing the thickness specification of dual-phase steel and producing low cast C-Mn dual phase steel commercially.
     The method for obtaining the transition kinetics curve and the ARE method in the present work are the new means for studying the transition regularity on the condition of the continuous cooling. Also, the CCT with bainite zone 'segregation' is the theoretical basis on the aspect of transition kinetics for the development of C-Mn dual-phase steels using continuous cooling process.
引文
[1]Formable HSLA and Dual Phase Steels[C], ed. by A. T. Davenport, TMS/AIME, New York,1979.
    [2]王天民.生态环境材料[M].天津,天津大学出版社,2000.
    [3]刘江龙.环境材料导论[M].北京,冶金工业出版社,1999.
    [4]金志浩等.环境材料的先进性与相对性[J].兰州大学学报,1996,32:17~21.
    [5]Ding P D. Frontier of Ecomaterials and Its Relative Limitation [A]. Proc. IUPAC CHEMRAWN IX, Seoal,1996:595~599
    [6]刘江龙等.金属材料的环境影响因子及其评价[J].环境科学进展,1996,4(6):45~50.
    [7]左铁镛.材料产业可持续发展与环境保护[J].兰州大学学报,1996,32:1~9.
    [8]Formable HSLA and Dual Phase Steels[C], ed. by A. T. Davenport. TMS/AIME, New York,1979.
    [9]Structure and Properties of Dual Phase Steels[C], eds. R. A. Kot and J. W. Morris, Jr., TMS/AIME, New York,1979.
    [10]Fundamentals of Dual Phase Steels[C], eds. R. A. Kot and B. L. Bramfitt, TMS/AIME, New York,1981.
    [11]张久信,王明微等.640MPa级直接热轧双相钢SX65的研制[J].鞍钢技术,1994(4):1~10.
    [12]钟定忠,彭涛等.直接热轧双相钢板RS55的研究与开发[J].武钢技术,1994(1):41~47.
    [13]刘晰棕.Si-Mn-Cr热轧双相钢板的生产[J].钢铁,1995,30(3):28~32.
    [14]唐多光,冯铎等.汽车用热轧双相钢板材的研究[J].汽车工艺与材料,1994(11):20~24.
    [15]宋全义,严振棨.Si-Mn-Cr型热轧双相钢相变和组织的研究[J].钢铁,1995,30(12):51~54.
    [16]张春玲,蔡大勇等.09CuPCrNi耐候钢双相化的研究[J].钢铁,2004,39(3):50~53.
    [17]T. Furukawa, M. Tanino, et al. Effects of Composition and Processing Factors on the Mechanical Properties of as-hot-rolled Dual-phase Steels[J]. Trans. ISIJ.1984(24): 113-121.
    [18]Tomita Y, Okabayashi K. Improvement in Lower Temperature Mechanical Properties of 0.40Pct C-Ni-Cr-Mo Ultrahigh Strength Steel with the Second Phase Lower Bainite [J]. Metall Trans,1983,14A(3):485-492.
    [19]Christian Bilgen.刘晓译.CSP线的双相钢生产工艺[J].世界钢铁,2004(4):11~14.
    [20]刘相华,王国栋等.一种抗拉强度540MPa级双相钢板及制造方法.专利号:200610045847.7,2007,7.
    [21]刘相华,王国栋等.一种抗拉强度600MPa级双相钢板及制造方法.专利号:200610045846.2,2007,7.
    [22]W. A. Johnson, K. F. Mehl. Reaction Kinetics in Processes of Nucleation and Growth[J]. Trans. Am. Inst. Mining Met. Eng.,1939(135):416-442.
    [23]M. Avrami, Kinetics of Phase Change. Ⅰ. General Theory[J]. J. Chem. Phys.,1939(7): 1103-1112.
    [24]M. Avrami, Kinetics of Phase Change. Ⅱ. Transformation-time Relations for Random Distribution of Nuclei[J], J. Chem. Phys.,1940(8):212-224.
    [25]M. Avrami, Kinetics of phase change. Ⅲ. Granulation, Phase Change and Microstructure[J], J. Chem. Phys.,1941(9):177-184.
    [26]徐祖耀.相变原理[M].北京,科学出版社,2000:30
    [27]徐祖耀.相变原理[M].北京,科学出版社,2000:31
    [28]余焜.材料结构分析基础[M].北京,科学出版社,2000:136~139,122~132.
    [29]林惠国,傅代直.钢的奥氏体转变曲线——原理、测试与应用[M].北京,机械工业出版社,1988:256~291.
    [30]F. Wever u. A. Rose, Atlas zur Warmbehandlung derstahle[M], Dusseldof, Verlag stahleisen M. B. H.,1958.
    [31]A. Rose u. H. P. Hougardy, Atlas zur Warmbehandlung derstahle[M], Dusseldof, Verlag stahleisen M. B. H.,1972.
    [32]G. Delbart, A. Constant & A. Clerc, Courbes de Transformation des Aciers de Fabrication Francaise[M], Saint Germain-en-laye, L'Institut de Recherches de la Siderurgie,1956.
    [33]M. Economopoulos, N. Lambert & L. Habraken, Diagrammers de Transformation des Aciers Fabriques daus le Benelux [M], Centre National de Recherches Metallurgiques, 1967.
    [34]本溪钢铁公司第一炼钢厂,清华大学机械系金属材料教研组编写.钢的过冷奥氏体转变曲线,第一图册[M].1978.
    [35]张世中.钢的过冷奥氏体转变曲线图集[M].北京,冶金工业出版社,1993.
    [36]林惠国,傅代直.钢的奥氏体转变曲线——原理、测试与应用[M].北京,机械工业出版社,1988.
    [37]徐卫红,刘亚秀.钢的连续冷却转变图的预测研究进展[J].华北科技学院学报,2005,2(4):69~73.
    [38]J. S. Kirkaldy, D. Venugopalan. Proceedings of an International Conference on Phase Transformations in Ferrous Alloys[A], AIME, edited by A. R. Marder, J. I. Goldstein, 1984.125~148.
    [39]M. Umemoto, A. Hiramatsu, A. Moriya, etc. Computer Modeling of Phase Transformation from Work-hardened Austenite[J]. ISIJ International,1992,32(3): 306~315.
    [40]Y. Van Leeuwen. Moving interfaces in Plain Carbon Steels, a Phase Transformation Model [D], Delft:Technical University of Delft,2000.
    [41]K. J. Lee, J. K. Lee. Modeling of γ/α Transformation in Niobium-containing Microalloyed Steels[J]. Scripta Materialia,1999,40(7):831~836.
    [42]B. Hildenwall, T. Ericsson. Phase Transformation in Low Carbon Steels[A]. TMS/AIME, Warrendale, PA,1978:579~606.
    [43]E. J. Rowland, J. R. Lyle. Effect of Purity on the Toughness of a Low-alloy High-strength Steel[J]. Trans. ASM,1946,37:27~47.
    [44]R. A. Grange, H. M. Stewart. Mechanism of Tempered Bainite Embrittlement in some Structural Steels[J]. Trans. AIME,1946,167:467~494.
    [45]A. E. Nehrenberg. Phosphorus Segregation in Austenite in Ni-Cr Steels[J]. Trans. AIME, 1946,167:494~501.
    [46]Wang Jiajun, Wolk Pieter J Van Der. Effects of Carbon Concentration and Cooling Rate on Continuous Cooling Transformations Predicted by Artificial Neural Network[J]. ISIJ International,1999,39(10):1038~1046.
    [47]W. G Vermeulen, P. F. Morris, S. vander Zwaag. Prediction of Continuous Cooling Transformation Diagram of some selected Steels using Artificial Neural Networks[J]. Steel Research,1997,68:72~79.
    [48]Pieter Van der Wolk. Modeling CCT-diagrams of Engineering Steels using Neural Networks[D]. Delft:Delft University Press,2001.
    [49]林惠国,傅代直.钢的奥氏体转变曲线——原理、测试与应用[M].北京,机械工业出版社,1988:248,258.
    [50]徐祖耀.相变原理[M].北京,科学出版社,2000:29.
    [51]徐祖耀.相变原理[M].北京,科学出版社,2000:31.
    [52]Von Erich Scheil. Anlaufzeit der Austenitumwandlung[J], Arch. Eisenhuttenwesen,1935, 8(12):565~567.
    [53]J. W. Christian. In The Theory of Transformationsin Metals and Alloys[C].3rd Edition. London:Pergamon,2002. PartⅠ Chp 10~12.
    [54]徐祖耀.材料塑性成形与热处理一体化工程的理论基础[J],中国工程科学,2004,6(1):17.
    [55]C. Verdi, A. Visintin. A mathematical model of the austenite-pearlite transformation in plain carbon steel based on the Scheil's additivity rule[J]. Acta Metallurgica,1987,35(11): 2711-2717.
    [56]T. Reti, I. Feldeb. A non-linear extension of the additivity rule[J]. Computational Materials Science,1999,15(4):466-482.
    [57]D. Homberg. A numerical simulation of the jominy end-quench test[J]. Acta Materialia, 1996,44(11):4375-4385.
    [58]Φ. Grong, O. R. Myhr. Additivity and isokinetic behaviour in relation to diffusion controlled growth[J]. Acta Materialia,2000,48(2):445-452.
    [59]Yu-Tuo Zhang, Dian-Zhong Li. Modeling of austenite decomposition in plain carbon steels during hot rolling[J]. Journal of Materials Processing Technology.2006,171(2): 175-179.
    [60]Xiao guang ZHOU. Modeling of Incubation Time for Austenite to Ferrite Phase Transformation[J]. Journal of Iron and Steel Research, International.2006,13(4):32-34.
    [61]Siamak Serajzadeh. Prediction of temperature distribution and phase transformation on the run-out table in the process of hot strip rolling[J]. Applied Mathematical Modelling. 2003,27(11):861-875.
    [62]M. Lusk, H.J. Jou. On the rule of additivity in phase transformation kinetics[J]. Metallurgical and Materials Transactions A,1997,28,287-291.
    [63]叶健松.应力状态下0138C-Cr-Mo钢的铁素体/珠光体相变动力学及其模拟[D].上海交通大学,2003.
    [64]徐祖耀.材料塑性成形与热处理一体化工程的理论基础[J],中国工程科学,2004,6(1):16.
    [65]T.Y. Hsu. Theory and Modeling of Phase Transformations under Stress in Steel[A]. Transactions of Materials and Heat Treatment Proceedings of the 14th IFHTSE Congress, 2004,25(5):1.
    [66]Ye J S, ChangHB, HsuTY. On the application of the additivity rule pearlitic transformation in low alloys[J]. Metall. Mater. Trans(A),2003,34A:1259-1264.
    [67]叶健松.应力状态下0138C-Cr-Mo钢的铁素体/珠光体相变动力学及其模拟[D].上海交通大学,2003.
    [68]徐祖耀.材料塑性成形与热处理一体化工程的理论基础[J],中国工程科学,2004,6(1):18~19.
    [69]T.Y. Hsu. Theory and Modeling of Phase Transformations under Stress in Steel[A]. Transactions of Materials and Heat Treatment Proceedings of the 14th IFHTSE Congress, 2004,25(5):1.
    [70]林惠国,傅代直.钢的奥氏体转变曲线——原理、测试与应用[M].北京,机械工业出版社,1988:262-263.
    [71]张世中.钢的过冷奥氏体转变曲线图集[M].北京,冶金工业出版社,1993.
    [72]王巍,孙晓光,M. T. Lusk.碳钢冷却过程热膨胀曲线的破译模型[A].2002年材料科学与工程新进展[C].中国材料研究学会,北京,冶金工业出版社,2003:1489-1490.
    [73]间野纯一郎.铁と钢.1982(68):1297~1305.
    [74]唐多光,冯峰等.载重汽车大梁用热轧双相钢[J].钢铁,1994,29(6):48~52.
    [75]刘晰棕.Si-Mn-Cr热轧双相钢板的生产[J].钢铁,1995,30(3):28~32.
    [76]钟定忠,彭涛等.控制冷却对热轧双相钢板组织及性能的影响[J].钢铁研究,1997(2):24~29.
    [77]张久信,王明微等.640MPa级直接热轧双相钢SX65的研制[J].鞍钢技术,1994(4):1~10.
    [78]Robert, Q.Barr. Alloys for the Eighties[A]. Climax Molybdenum Co., a Division of AMAX Inc.1981.37~57.
    [79]宋全义,阎振棨.无钼热轧双相钢相变和组织的研究[J].包头钢铁学院学报,1995,14(4):74~77.
    [80]A. J. Trowsdale. Dual Phase Steel-High Strength Fasteners without Heat Treatment. Corus Construction & Industrial, UK.
    [81]Wolfgang Bleck, Kriangyut Phiu-On. Grain Refinement and Mechanical Properties of Advanced High-Strength Sheet Steels[A]. HSLA Steels 2005 and ISUGS 2005, Sanya-China,2005(11)
    [82]田叶青.低膨胀合金的线膨胀系数测量方法——接触式干涉法[J].理化检验-物理分册.2003,39(3):135~137.
    [83]廖常柏.降低平均线膨胀系数测量结果系统偏差的研究[J].湖南冶金,2001,4:24~27.
    [84]林惠国,傅代直.钢的奥氏体转变曲线——原理、测试与应用[M].北京:机械工业出版社,1988:248.
    [85]同济大学数学教研室主编.高等数学(第四版)[M].北京,高等教育出版社,1996.
    [86]余永宁,刘国权.体视学:组织定量分析的原理和应用[M].北京,冶金工业出版社,1989.
    [87]彼里西阿浦迪,孙惠林,马继会.体视学和定量金相学[M].北京,机械工业出版社,1980.
    [88]Origin lab. Corporation. Feature list and tutorial manual, version 6.1[M], Northampton, MA, USA.1999.
    [89]王润.金属材料物理性能[M].北京,冶金工业出版社,1993.
    [90]徐祖耀.相变原理[M].北京,科学出版社,2000:30~31.
    [91]崔忠圻.金属学与热处理[M].北京,机械工业出版社,1996:10.
    [92]M. Avrami, Kinetics of phase change. Ⅲ. Granulation, Phase Change and Microestructure[J], J. Chem. Phys.1941(9):177-184.
    [93]徐祖耀.相变原理[M].北京,科学出版社,2000:412~419
    [94]Tamura I, Sekine H, Tanaka T, et al. Thermomechanical Processing of High-strength Low-alloy Steels[A]. London:Butterworth,1988(6):90
    [95]J. W. Cahn. The Kinetics of Grain Boundary Nucleated Reaction[J]. Acta Metall., 1956(4):449-459.
    [96]林惠国,傅代直.钢的奥氏体转变曲线——原理、测试与应用[M].北京,机械工业出版社,1988:217.
    [97]徐祖耀.相变原理[M].北京,科学出版社,2000:94~96
    [98]F. S. LePera. Improved etching technique to emphasize martensite and bainite in high-strength dual-phase steel[J], J. Met.,1980 (32):38~39.
    [99]F. S. LePera. Improved etching technique for determination of percent martensite. in high-strength dual-phase steels[J]. J. Met.,1979(12):263-268.
    [100]张世中.钢的过冷奥氏体转变曲线图集[M].北京,冶金工业出版社,1993.
    [101]骆宗安,苏海龙.一种新的物理模拟手段--MMS-100热力模拟实验机的研制[J].塑性工程学报,2003,10(5):57~59.
    [102]方鸿生,白秉哲等.粒状贝氏体和粒状组织的形态与相变[J].金属学报,1986,22(4):A283-287.
    [103]Kato, et al. Dual Phase-structured Hot Rolled High-tensile Strength Steel Sheet and A Method of Producing the Same(Patent). No.4561910, United States,1985,12
    [104]刘彦春,董瑞峰,屈文胜等.CSP线生产C-Mn系热轧双相钢的工业试验[J].轧钢,2006,23(4).
    [105]刘清友,孙新军等.普通碳素钢在CSP连轧过程中的组织演变[J].钢铁,2003(7):12~15.
    [106]刘相华,王国栋等.一种用于热轧带钢生产线的冷却装置(中国发明专利),专利号ZL 2006100456518,2007,9.
    [107]董瑞峰,闫波等.应用超快冷工艺开发540MPa级C-Mn双相钢试验[J].轧钢,2007,24(2).
    [108]G. Buzzichelli, E. Anelli. Present Status and Perspectives of European Research in the Field of Advanced Structural Steels [J]. ISIJ International,2002, (42):1354-1363.
    [109]A. Lucas, P. Simon, G. Bourdon. Metallurgical Aspects of Ultra Fast Cooling in front of the down-coiler [J]. Steel Research Int.,2004, (75):139-146.
    [110]P. Simon, J. P. Fischbach, Ph.Riche. Ultra-fast cooling on the run-out table of the hot strip mill [J]. La Revue de Metallurgie-CIT,1996,409-415.