高速光时分复用(OTDM)系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十年来,随着互联网的普及,各种网络业务的相继开展对现有网络的带宽容量提出了更高的要求,通信容量几乎成指数增长。以高速光时分复用(OTDM)技术和密集波分复用(DWDM)技术为核心的全光通信网络,已成为国际上通信领域研究的热点,特别是超高速OTDM技术是实现超大容量(Tbit/s)通信传输速率的首选方案。与DWDM技术相比,OTDM技术具有很多优势:首先,由于OTDM中采用单波长技术,避免了多个波长在光纤中传输时非线性效应引起的信道串扰,对光源波长的稳定性要求降低,波长的管理和控制相对简单,这就避免了DWDM技术的众多缺点;其次,OTDM技术能提供按需分配的带宽服务(BOD),实现不同粒度的灵活的带宽分配,而DWDM的带宽分配则是波长级别的;第三,采用OTDM技术易于实现分组交换和路由,实现真正意义上的统计复用,并实现灵活的组网;最后,因为OTDM中采用的是归零码(RZ码),TDM本身的数字特性非常适合于全光数字信号处理,实现数字再生。由于OTDM技术的以上这些特点,它在中小型城域网、局域网中具有广阔的应用前景;而DWDM技术,由于其超大容量及超长距离的传输能力使得其在大型城域网以及广域网中具有较大优势。所以,未来超大容量的光通信网络必定是二者的结合,优势互补。
     本文围绕OTDM传输系统的关键技术,对基于SOA干涉仪的全光开关解复用技术、基于SOA四波混频效应的全光解复用技术以及信号色散检测技术进行了理论和实验研究,研究内容主要包括以下四个方面:
     一、基于干涉仪结构的OTDM全光解复用子系统的核心器件是半导体光放大器(SOA),对SOA的研究首先需要选择合适的基于半经典理论的SOA数学模型。本文在研究了多种面向脉冲传输的SOA模型基础上,选定了一种面向皮秒级光脉冲码流的SOA系统仿真模型。提出了一组层级递进、逐步优化的仿真方案,该组仿真方案为研究基于SOA材料色散、增益色散和二、三阶非线性效应的光信号处理提供了理论基础,也为本文第三章和第四章的研究工作提供了仿真工具。
     二、合理地选择和设定全光开关的性能参量是评价全光开关在OTDM解复用子系统中解复用性能的首要任务,本文选择全光开关中SOA平均线宽增强因子和器件有效线宽增强因子分析了基于SOA相位调制效应的干涉仪全光开关的性能。平均线宽增强因子是SOA的本征物理属性,它不随输入信号的改变而改变,而器件有效线宽增强因子则是系统相关的,它决定了脉冲的相位变化和增益变化的关联度,是研究基于SOA相位调制效应的光信号处理问题的基础。本文进一步设定了增强型积分对比率(EICR)以便分析光开关的整体积分特性和局部起伏特性,还设定了关联积分对比率(CICR)以便分析光开关上下路信号的分离隔离度,在此基础上,本文进行了基于超高速非线性干涉仪(UNI)光开关的三种时钟/信号波长配置的仿真研究,它们是:近波长光开关、同频光开关和远波长光开关,其中着重给出了详细的基于双波耦合波模型的近波长增益透明光开关研究结果。这里使用的SOA数学模型是J.M.Tang和K.A.Shore构建的宽带大信号模型。在同频光开关和远波长光开关中使用的SOA数学模型是M.Y.Hong等人构建的SOA宽带大信号模型。利用在本文第一章提出的仿真方案,我们具体分析了时钟脉冲能量、时钟脉冲脉宽、偏置时间、SOA腔长对窗口包络的影响。研究结果表明,近波长光开关在增益透明配置条件下相位变化和增益起伏的关联度较低,其xICR指标最好。在对近波长光开关进行仿真研究时,本文还分析了大相移、长时间偏置条件下全光开关窗口双峰效应的成因,并揭示了由带间载流子密度起伏(CDP)导致的光开关模式效应。
     三、对于基于频移型光开关的OTDM解复用技术,本文借用A.Mecozzi和J.Mork构建的分离扰动模型进行了面向高速OTDM大带宽、高能量的FWM仿真研究。该模型明显的理论意义在于能够给出抽运光和共轭波的独立表达项,这就使准确地计算SOA波长转换效率成为可能,也为滤波器的带宽设计提供了重要的参考依据。研究表明,不论是对单脉冲还是脉冲码流,FWM转换效率对抽运光脉宽都是很不敏感的,但是在单脉冲条件下,开关比(On-Off ratio)对抽运光脉宽非常敏感,虽然在脉冲码流条件下,其敏感度有所降低,但同时其开关比也会有大幅下降。另外,本文修正了N.K.Das对于模式效应的定义,引入了输出信号码流的能量起伏以及共轭波码流的能量起伏两个参量。研究表明,当把全光开关应用于OTDM系统解复用系统时,设定一个适当的时间余量是必要的,这样就可以避免因开关窗口幅度起伏造成的解复用信号强度起伏。
     四、高速信号具有很小的色散窗口,面向传统的低速光纤链路的色散图谱配置已经不能满足高速信号的色散容限要求。本文从信号色散的时域特性和频域特性两个角度提出并研究了两种色散检测方案。研究表明,基于相位-波形转换的时域方案具有较高的检测范围和检测灵敏度,但是系统代价较大,需要引入复杂的时延干涉阵列;基于边带功率检测的频域方案系统结构简单,操作方便,但是对光电检测器件的检测灵敏度要求较高。
     OTDM技术的含义是很广泛的,本文仅仅对物理层最基本的两项实现技术进行了初步的研究。除了在物理层涉及到的超窄脉冲信号的产生、多路复用、色散补偿、全光3R再生等关键技术以外,其它的诸如时隙分配、全光地址识别、复用节点和交换节点的设计等问题也都属于OTDM技术的范畴,是我们在该领域从事进一步的研究工作时需要面对的问题。
With the rapid advances of the commutative multi-media services, it becomes evident that the communication capability is being increased at exponential speed, so the higher demands are put forward for the transmission band-width nowaday. It has become a hotspot in the field of telecommunication research throughout the world, which is the all-optical network communication associated the ultra-high-speed optical-time-division-multiplexing (OTDM) technology with the dense-wave-division-multiplexing (DWDM) technology, in particular, the ultra-high-speed OTDM technology is the first choice for the ultra-high-speed and ultra-large-capability communications system (Tbit/s). Compared with DWDM, OTDM has at least four advantages. First of all, in OTDM the interference among different channels can be avoided due to the single wavelength. Consequently, the high level of the stabilization of the wavelength is not necessary. Secondly, DWDM could only provide bandwidth in wavelength level while OTDM could provide more flexible and finer bandwidth. Thirdly, OTDM make it easy to realize statistical multiplexing. Finnally, ODSP (Optical Digital Signal Processing) could be introduced in OTDM since the RZ code is used here.
     In this work, all optical demultiplexing based on SOA interferometer switches, wavelength conversion based all optical switches in OTDM communication systems as well as all chromatic dispersion monitoring are studied theoretically, which include:
     (1). The pico-second optical pulse sequence oriented SOA system simulative model is established. A set of simulative schemes, which is developed and optimized gradually, is put forward. The simulative scheme is the theoretical foundation for the OSP (Optical Signal Processing) of SOA accounted with the material dispersion, the gain dispersion and the second nonlinear effect as well as the third nonlinear effect.
     (2). The average linewidth enhancement factor and the component effective linewidth enhancement factor are introduced for the performance analysis of interferometer all optical switches based on cross phase modulation of SOAs. The average linewidth enhancement is the latent physical attribute of SOA that is the groundwork to investigate the OSP based on cross phase modulation of SOA. The enhancement integrated contrast ratio (EICR) and the conjugate integrated contrast ratio (CICR) are introduced to investigate the general integral attribute and the isolate degree between down and pass signals of all optical switches, respectively. The simulative studies on three pump/probe wavelength configurations of UNI are shown. The gain-transparent all optical switches are investigated in detail where the two-wave coupling model is used that is established by J.M.Tang and K.A.Shore. The broadband and strong signal model built by M.Y.Hong is used in the simulation of same frequency and far wavelength all optical switches. The effect done to the switch window by the clock optical pulse energy, the clock optical pulse width, the time delay and the length of SOA are investigated, respectively. The results show that in the condition of gain-transparent the relationship between the phase-shift and the pulsation of the gain of near wavelength all-optical switch is relatively weak and then the xICR is high. The cause of formation of switch window double-peak effect in the condition of large phase shift and long time delay is given and the all-optical switch data pattern effects due to CDP (the carrier density pulsation) is disclosed.
     (3). The high speed, strong pulse OTDM signal FWM effect oriented simulative study is performed where the separate disturbing model built by A.Mecozzi and J.Mork is used. Since the pump signal and conjugate signal can be expressed separately, it is realized to calculate the conversion efficiency accurately and to select the appropriate filter bandwidth. The results show that the FWM conversion efficiency is unsensitivity to the pump pulse width no matter in the condition of single pulse or of the pulse train. The on-off ratio is keen to the pump pulse width in the condition of single pulse. In the condition of pulse train the on-off ratio is becoming not as keen as that of single pulse and at the same time the on-off ratio itself is decreasing dramatically. We have modified the definition of data pattern effect of N.K.Das and introduced the energy pulsations of output signal train as well as the conjugate signal pulse. The results show that an appropriate temporal residual is necessary for the application of demultiplexing.
     (4). High-speed signal has limited chromatic-dispersion window. The traditional low speed dispersion map configuration cannot meet the requirment high-speed signal transmission. We provide and investigate two chromatic dispersion monitoring methods from the perspective of CD temporal attribute and CD spectral attribute. The results shown that the former has the advantages of high monitoring range and monitoring sensitivity at the cost of complicated diff-delay interferometer array. The latter is configuration brief and operation simple, but a high sensitivity of O/E detector is required.
     The maning of OTDM is comprehensive. Our present work only involves two key techniques and both of them are localized within physical layer. Except for the signal generation, multiplexing, dispersion compensation and all optical 3R regeneration in physical layer, there are many problems required to be overcomed, such as time-slot assignment, all optical address recoganization, the design of multiplexing node and switching node.
引文
[1]. A. Beling, H. 4. Bach, D. Schmidt, G.G. Mekonnen, R. Ludwig, S. Ferher, C. Schubert, C. Boemer, B. Schmauss, J. Berger, C. Schmidt, U. Troppeiz and H.G. Weber, Monolithically integrated balanced photodetector and its application in OTDM 160 Gbit/s DPSK transmission. Electronics Letters, 2003. 39. Page(s) 1204-1205
    [2]. R.P.Davey, K.Smith, R.Wyatt, D.L.Williams, M.J.Holmes, D.M.Pataca, M.L.Rocha, P.Gunning, Subpicosecond pulse generation from a 1.3 um DFB laser gain-switched at 1 GHz. Electronics Letters, 1996. 32. Page(s) 349
    [3]. M.Miyamoto, M.Tsuchiya, H.F.Liu, T.Kamiya, Generation of ultrafast (~65 fs) pulses from 1.55 um gain-switched distributed feedback (DFB) laser with soliton compression by dispersion arrangements. JOURNAL OF APPLIED PHYSICS, 1996. 35.
    [4]. D.D.Marcenac, A.D.Ellis, D.G.Moodie, 80 Gbit/s OTDM using electroabsorption modulators. ECOC, 1997. Page(s) 23-26
    [5]. E.Hashimoto, A.Takada, Y.Katagiri, Synchronization of subterahertz optical pulse train from PLL-controlled colliding pulse modelocked semiconductor laser. Electronics Letters, 1998. 34. Page(s) 580-582
    [6]. A.D.Ellis, T.Widdowson, X.Shan, G.E.Wickens, D.M.Spirit, Transmission of a true single polarization 40 Gbit/s soliton data signal over 205 km using a stabilised erbium fiber ring laser and 40 GHz electronic timing recovery. Electronics Letters, 1993. 29. Page(s) 990-992
    [7]. H.Takara, High-speed optical time-division-multiplexed signal generation. Lasers and Electro-Optics, 2000. Page(s) 234-235
    [8]. T.Ohara, H.Takara, I.Shake, K.Mori, S.Kawanishi, S.Mino, T.Yamada, M.Ishii, T.Kitoh, T.Kitagawa, K.R.Parameswaran, M.M.Fejer, 160-Gb/s Optical-Time-Division Multiplexing With PPLN Hybrid Integrated Planar Lightwave Circuit. PHOTONICS TECHNOLOGY LETTERS, 2003. 15(2). Page(s) 302-304
    [14]. S.Kawanishi, M.H.Chou, K.Fujiura, M.M.Fejer, T.Morioka, All-optical modulation and time-division-multiplexing of 100 Gbit/s signal using quasi-phase matched mixing in LiNbO3 waveguides. Electronics Letters, 2000. 18. Page(s) 1568-1569
    [10]. M.Eiselt, W.Pieper, H.G.Weber, All-optical high speed demultiplexing with a semiconductor laser amplifier in a loop mirror configuration. Electronics Letters, 1993. 29. Page(s) 1167-1168
    [11]. S.Kawanishi , O.Kamatani, All-optical time division multiplexing using four-wave mixing. Electronics Letters, 1994. 30. Page(s) 1697-1698
    [12]. S.Kawanishi, K.Okamoto, M.Ishii, O.Kamatani, H.Takara, K.Uchiyama, All-optical time division multiplexing of 100 Gbit/s signal based on four-wave mixing in a travelling-wave semiconductor laser amplifier. Electronics Letters, 1997. 33. Page(s) 976-977
    [13]. J.U.Kang, G.I.Stegeman, J.S.Aitchison, All-optical multiplexing of femtosecond signals using an AlGaAs nonlinear directional coupler. Electronics Letters, 1995. 31(2). Page(s) 118-119
    [14]. S.Ohteru, K.Inoue, Optical time-division multiplexer utilizing a modulation signal supplied to optical modulators as a reference. Photonics Technology Letters, 1996. 8(9). Page(s) 1181-1183
    [15]. S.J.Savage, B.S.Robinson, S.A.Hamilton, E.P.Ippen, All-optical pulseregeneration in an ultrafast nonlinear interferometer with Faraday mirror polarization control. CLEO, 2001. Page(s) 316-317
    [16]. B.S.Robinson, S.A.Hamilton, E.P.Ippen, Multiple wavelength demultiplexing using an ultrafast nonlinear interferometer. CLEO, 2001. Page(s) 528
    [17]. I.Kang, K.F.Dreyer, Sensitive 320 Gbit/s eye diagram measurements via optical sampling with semiconductor optical amplifier-ultrafast nonlinear interferometer. ELECTRONICS LETTERS, 2003. 39(14). Page(s) 1081-1083
    [18]. J.P.Turkiewicz, E.Tangdiongga, H.Rohde, W.Schairer, G.Lehmann, G.D.Khoe, H.de.Waardt, Simultaneous high speed OTDM add-drop multiplexing using GT-UNI switch. ELECTRONICS LETTERS, 2003. 39(10). Page(s) 795-796
    [19]. C.Bintjas, K.Vlachos, N.Pleros, H.Avramopoulos, Ultrafast Nonlinear Interferometer (UNI)-Based Digital Optical Circuits and Their Use in Packet Switching. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2003. 21(11). Page(s) 2629-2637
    [20]. C.Bintjas, M.Kalyvas, G.Theophilopoulos, T.Stathopoulos, H.Avramopoulos, L.Occhi, L.Schares, G.Guekos, S.Hansmann, R.D.Ara, 20 Gb/s All-Optical XOR with UNI Gate. PHOTONICS TECHNOLOGY LETTERS, 2000. 12(7). Page(s) 834-836
    [21]. C.Schubert, S.Diez, J.Berger, R.Ludwig, U.Feiste, H.G.Weber, G.Toptchiyski, K.Petermann, V.Krajinovic, 160-Gb/s All-Optical Demultiplexing Using a Gain-Transparent Ultrafast-Nonlinear Interferometer (GT-UNI). PHOTONICS TECHNOLOGY LETTERS, 2001. 13(5). Page(s) 475-477
    [22]. C.Schubert, J.Berger, U.Feiste, R.Ludwig, C.Schmidt, H.G.Weber, 160-Gb/s Polarization Insensitive All-Optical Demultiplexing Using a Gain-Transparent Ultrafast Nonlinear Interferometer (GT-UNI). PHOTONICS TECHNOLOGY LETTERS, 2001. 13(11). Page(s) 1200-1202
    [23]. B.S.Robinson, S.A.Hamilton, E.P.Ippen, Demultiplexing of 80-Gb/s Pulse-Position Modulated Data With an Ultrafast Nonlinear Interferometer. PHOTONICS TECHNOLOGY LETTERS, 2002. 14(2). Page(s) 206-208
    [24]. T.Sakamoto, H.C.Lim, K.Kikuchi, All-Optical Polarization-Insensitive Time-Division Demultiplexer Using a Nonlinear Optical Loop Mirror With a Pair of Short Polarization-Maintaining Fibers. PHOTONICS TECHNOLOGY LETTERS, 2002. 14(12). Page(s) 1737-1739
    [25]. C.S.Wong, H.K.Tsang, Polarization-Independent Time-Division Demultiplexing Using Orthogonal-Pumps Four-Wave Mixing. PHOTONICS TECHNOLOGY LETTERS, 2003. 15(1). Page(s) 129-131
    [26]. T.Morioka, M.Saruwatari, Ultrafast all-optical switching utilizing the optical Kerr effect in polarization-maintaining single-mode fibers. IEEE Journal on Selected Areas in Communications, 1988. 6(7). Page(s) 1186-1198
    [27]. K.Uchiyama, H.Takara, K.Mori, T.Morioka, 160 Gbit/s all-optical time-division demultiplexing utilising modified multiple-output OTDM demultiplexer (MOXIC). Electronics Letters, 2002. 38(20). Page(s) 1190-1191
    [28]. K.Uchiyama, T.Morioka, All-optical time-division demultiplexing experiment with simultaneous output of all constituent channels from 100Gbit/s OTDM signal. ELECTRONICS LETTERS, 2001. 37(10). Page(s) 642-643
    [29]. T.Morioka, S.Kawanishi, H.Takara, M.Saruwatari, Multiple-output, 100 Gbps all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly-chirped square pulse. Electronics Letters, 1994. 30(23). Page(s) 1959-1960
    [30]. K.Uchiyama, H.Takara, T.Morioka, S.Kawanishi, M.Saruwatari, 100 Gbps multiple-channel output all-optical demultiplexing based on TDM-WDM conversion in a nonlinear optical loop mirror. Electronics Letters, 1996. 32(21). Page(s)1989-1991
    [31]. S.L.Danielsen, C.Joergensen, M.Vaa, B.Mikkelsen, K.E.Stubkjaer, P.Doussiere, F.Pommerau, L.Goldstein, R.Ngo, M.Goix, 40 Gbit/s all-optical multi-functional signal processing by cross-gain modulation in a semiconductor optical amplifier. Optoelectronics and Communications, 1996. Page(s)
    [32]. S.Arahira, S.Sasaki, K.Tachibana, Y.Ogawa, All-Optical 160-Gb/s Clock Extraction With a Mode-Locked Laser Diode Module. PHOTONICS TECHNOLOGY LETTERS, 2004. 16(6). Page(s) 1558-1560
    [33]. J.Lasri, P.Devgan, R.Tang, P.Kumar, Ultralow Timing Jitter 40-Gb/s Clock Recovery Using a Self-Starting Optoelectronic Oscillator. PHOTONICS TECHNOLOGY LETTERS, 2004. 16(1). Page(s) 263-265
    [34]. O.Brox, S.Bauer, C.Bobbert, G.Bramann, J.Kreissl, B.Sartorius, M.Schmidt, K.Schuh, B.Junginger, E.Lach, 160 to 40Gbit/s demultiplexing using a self-pulsating laser based clock recovery. OFC, 2003. Page(s) 105-106
    [35]. J.Lasri, G.Eisenstein, Phase Dynamics of a Timing Extraction System Based on an Optically Injection-Locked Self-Oscillating Bipolar Heterojunction Phototransistor. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2002. 20(11). Page(s) 1924-1932
    [36]. M.Jinno, T.Matsumoto, M.Koga, All-optical timing extraction using an optical tank circuit. Photonics Technology Letters, 1990. 2(3). Page(s) 203-204
    [37]. T.Yamamoto, L.K.Oxenlowe, C.Schmidt, C.Schubert, E.Hilliger, U.Feiste, J.Berger, R.Ludwig, H.G.Weber, Clock recovery from 160 Gbit/s data signals using phase-locked loop with interferometric optical switch based on semiconductor optical amplifier. Electronics Letters, 2001. 37(8). Page(s) 509-510
    [38]. C.Boemer, C.Schubert, C.Schmidt, E.Hilliger, V.Marembert, J.Berger, S.Ferber, E.Diemich, R.Ludwig, B.Schmauss, H.G.Weber, 160 Gbit/s clock recovery with electrooptical PLL using bidirectionally operated electroabsorption modulator as phase comparator. ELECTRONICS LETTERS, 2003. 39(14). Page(s) 1071-1073
    [39]. D.T.K.Tong, K.L.Deng, B.Mikkelsen, G.Raybon, K.F.Dreyer, J.E.Johnson, 160 Gbit/s clock recovery using electroabsorption modulator-based phase-locked loop. Electronics Letters, 2000. 36(23). Page(s) 1951-1952
    [40]. I.D.Phillips, A.D.Ellis, T.Widdowson, D.Nesset, A.E.Kelly, D.Trommer, 100 Gbit/s optical clock recovery using electrical phaselocked loop consisting of commercially available components. Electronics Letters, 2000. 36(7). Page(s) 650-652
    [41]. S.Vehovc, M.Vidmar, A.Paoletti, 80 Gbit/s optical clock recovery with automatic lock acquisition using electrical phase-locked loop. Electronics Letters, 2003. 39(8). Page(s) 673-764
    [42]. E.S.Awad, P.S.Cho, N.Moulton, J.Goldhar, All-Optical Timing Extraction With Simultaneous Optical Demultiplexing From 40 Gb/s Using a Single Electroabsorption Modulator. PHOTONICS TECHNOLOGY LETTERS, 2003. 15(1). Page(s) 126-128
    [43]. E.S.Awad, P.Cho, J.Goldhar, High-Speed All-Optical AND Gate Using Nonlinear Transmission of Electroabsorption Modulator. PHOTONICS TECHNOLOGY LETTERS, 2001. 13(5). Page(s) 472-474
    [44]. E.S.Awad, C.J.K.Richardson, P.S.Cho, N.Moulton, J.Goldhar, Optical Clock Recovery Using SOA for Relative Timing Extraction Between Counterpropagating Short Picosecond Pulses. PHOTONICS TECHNOLOGY LETTERS, 2002. 14(3). Page(s) 396-398
    [45]. T.K.T.Dennis, B.Mikkelsen, G.Raybon, N.N.Torben, F.D.Kevin, E.J.John, Optoelectronic Phase-Locked Loop with Balanced Photodetection for Clock Recoveryin High-Speed Optical Time-Division-Multiplexed Systems. PHOTONICS TECHNOLOGY LETTERS, 2000. 12(8). Page(s) 1064-1066
    [46]. E.S.Awad, P.S.Cho, N.Moulton, J.Goldhar, Subharmonic Optical Clock Recovery From 160 Gb/s Using Time-Dependent Loss Saturation Inside a Single Electroabsorption Modulator. PHOTONICS TECHNOLOGY LETTERS, 2003. 15(12). Page(s) 1764-1766
    [47]. Kyriakos Vlachos, Nikos Pleros, Chris Bintjas, George Theophilopoulos, and Hercules Avramopoulos, Ultrafast Time-Domain Technology and Its Application in All-Optical Signal Processing. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2003. 21(9). Page(s) 1857-1868
    [48]. Saruwatari, Masatoshi, All-Optical Signal Processing for Terabit/Second Optical Transmission. JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS, 2000. 6(6). Page(s) 1363-1374
    [49]. V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, Optical Signal Processing Using Nonlinear Semiconductor Microring Resonators. JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2002. 8(3). Page(s) 705-713
    [50]. D.J.Blumenthal, Optical signal processing using semiconductor optical amplifiers and applications to packet and burst switching. Lasers and Electro-Optics Europe, 2003. Page(s) 770-771
    [51]. S.H.Kim, J.H.Kim; C.W.Son; Y.Kim; Y.T.Byun; Y.M.Jhon; G.Lee; D.H.Woo, All-optical signal processing using semiconductor optical amplifier based logic gates. Lasers and Electro-Optics Europe, 2003. Page(s) WP9-WPO_4
    [52]. A.D.Ellis, A.E.Kelly, D.Nesset, D.Pitcher, D.G.Moodie, R.Kashyap, Error free 100 Gbit/s wavelength conversion using grating assistedcross-gain modulation in 2 mm long semiconductor amplifier. Electronics Letters, 1998. 34(20). Page(s) 1958-1959
    [53]. Y.H.Kao, T.J.Xia, M.N.Islam, Limitations on ultrafast optical switching in a semiconductor laser amplifier operating at transparency current. JOURNAL OF APPLIED PHYSICS, 1999. 86(9). Page(s)
    [54]. T.W.Berg, J.Mork, Ultrafast optical signal processing using semiconductor quantum dot amplifiers. Lasers and Electro-Optics Society, 2002. Page(s) 321-322
    [55]. R.J.Manning, I.D.Phillips, A.D.Ellis, A.E.Kelly, A.J.Poustie, K.J.Blow, 10 Gbit/s all-optical regenerative memory using single SOA-based logic gate. Electronics Letters, 1999. 35(2). Page(s) 158-159
    [56]. A.V.Uskov, J.R.Karin, J.E.Bowers, J.G.McInerney, J.L.Bihan, Effects of carrier cooling and carrier heating in saturation dynamics and pulse propagation through bulk semiconductor absorbers. JOURNAL OF QUANTUM ELECTRONICS, 1998. 34(11). Page(s) 2162-2171
    [57]. J.P.Turkiewicz, E.Tangdiongga, G.D.Khoe, H.de Waardt, Clock Recovery and Demultiplexing Performance of 160-Gb/s OTDM Field Experiments. PHOTONICS TECHNOLOGY LETTERS, 2004. 16. Page(s) 1555-1557
    [58]. E. Tangdiongga, J.P. Turkiewicz, H. Rohde, W. Schairer, G. Lehmann, E.S.R. Sikora, Y.R. Zhou, A. Lord, D. Payne, G.D. Khoe and H. de Waardt, 160 Gbit/s OTDM add-drop networking using 275km installed fibres. Electronics Letters, 2004. 40. Page(s) 552-554
    [59]. J.P. Turkiewicz, E. Tangdiongga, H. Rohde, W. Schairer, G. Lehmann, G.D. Khoe and H. de Waardt, Simultaneous high speed OTDM add-drop multiplexing using GT-UN1 switch. Electronics Letters, 2003. 39(10). Page(s) 795-796
    [60]. S.L. Jansen, M. Heid, S. Spalter, E. Meissner, C.-J. Weiske, A. Schopflin, D.Khoe and H. de Waardt, Demultiplexing 160 Gbit/s OTDM signal to 40Gbit/s by FWM in SOA. Electronics Letters, 2002. 38(17). Page(s) 978-980
    [61]. Wada, Tomoyuki Akiyama and Osamu, Beat-Detect OTDM Demultiplexer. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2001. 19. Page(s) 1326-1332
    [62]. T. Miyazaki, H. Sotobayashi, and W. Chujo, Synchronous Optical Demultiplexing and Sampling of 80-Gb/s OTDM Signals by Optically Recovered Clock Using Mode-Locked Laser Diode and Symmetric Mach–Zehnder Switch. PHOTONICS TECHNOLOGY LETTERS, 2002. 14. Page(s) 1734-1736
    [63]. T. Ohara, H. Takara, I. Shake, K. Mori, K. Sato, S. Kawanishi, S. Mino, T. Yamada, M. Ishii, I. Ogawa, T. Kitoh,K. Magari, M. Okamoto, R. V. Roussev, J. R. Kurz, K. R. Parameswaran, and M. M. Fejer, 160-Gb/s OTDM Transmission Using Integrated All-Optical MUX/DEMUX With All-Channel Modulation and Demultiplexing. PHOTONICS TECHNOLOGY LETTERS, 2004. 16. Page(s) 650-652
    [64]. T. Ohno, S. Kodama, T. Yoshimatsu, K. Yoshino and H. Ito, 160 Gbit/s OTDM receiver consisting of PD-EAM optical-gate and MLLD-based optical clock recovery device. Electronics Letters, 2004. 40. Page(s) 1285-1286
    [65]. A. H. Gnauck, G. Raybon, P. G. Bernasconi, J. Leuthold, C. R. Doerr, and L. W. Stulz, 1-Tb/s (6×170.6 Gb/s) Transmission Over 2000-km NZDF Using OTDM and RZ-DPSK Format. PHOTONICS TECHNOLOGY LETTERS, 2003. 15. Page(s) 1618-1620
    [66]. C.Schubert, J.Berger, S.Diez, H.J.Ehrke, R.Ludwig, U.Feiste, C.Schmidt, H.G.Weber, G.Toptchiyski, S.Randel, K.Petermann, Comparison of Interferometric All-Optical Switches for Demultiplexing Applications in High-Speed OTDM Systems. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2002. 20(4). Page(s) 618-624
    [67]. U. Feiste, R. Ludwig, C. Schubert, J. Berger, C. Schmdt, H.G. Weber, B. Schmauss, A. Munk, B. Buchold, D. Briggmann, F. Kueppers and F. Rumpf, 16OGbit/s transmission over 116 km fieldinstalled fibre using 16OGbit/s OTDM and 40Gbit/s ETDM. Electronics Letters, 2001. 37(7). Page(s) 443-445
    [68]. U.Feiste, R.Ludwig, C.Schubert, J.Berger, C.Schmidt, H.G.Weber, B.Schmauss, A.Munk, B.Buchold, D.Briggmann, F.Kueppers, F.Rumpf, 160 Gbit/s field transmission over 116 km standard single mode fibre using 160 Gbit/s OTDM and 40 Gbit/s ETDM demultiplexer. Optoelectronics, 2001. 148(4). Page(s) 171-175
    [69]. Mads L. Nielsen, Bengt-Erik Olsson, and Daniel J. Blumenthal, Pulse Extinction Ratio Improvement Using SPM in an SOA for OTDM Systems Applications. PHOTONICS TECHNOLOGY LETTERS, 2002(14). Page(s) 245-247
    [70]. Bengt-Erik Olsson, Lavanya Rau, and Daniel J. Blumenthal, WDM to OTDM Multiplexing Using an Ultrafast All-Optical Wavelength Converter. PHOTONICS TECHNOLOGY LETTERS, 2001. 13. Page(s) 1005-1007
    [71]. S. A. Hamilton, and B. S. Robinson, 40-Gb/s All-Optical Packet Synchronization and Address Comparison for OTDM Networks. PHOTONICS TECHNOLOGY LETTERS, 2002. 14. Page(s) 209-211
    [72]. G.P.Agrawal, N.A.Olsson, Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers. Journal of Quantum Electronics, 1989. 25(11). Page(s) 2297-2306
    [73]. A.Uskov, J.Mork, J.Mark, Theory of short-pulse gain saturation in semiconductor laser amplifiers. Photonics Technology Letters, 1992. 4(5). Page(s) 443-446
    [74]. J. Mork, J. Mark, Carrier heating in InGaAsP laser amplifiers due to two-photon absorption. Applied Physics Letters, 1994. 64(17). Page(s)
    [75]. M.Y.Hong, Y.H.Chang, A.Dienes, J.P.Heritage, P.J.Delfyett, Subpicosecond pulse amplification in semiconductor laser amplifiers theory and experiment. Journal of Quantum Electronics, 1994. 30(4). Page(s) 1122-1131
    [76]. M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett, Sol Dijaili, F. G. Patterson, Femtosecond Self- and Cross-Phase Modulation in Semiconductor Laser Amplifiers. JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1996. 2(3). Page(s) 523-539
    [77]. N.K.Das, Y.Yamayoshi, H.Kawaguchi, Analysis of Basic Four-Wave Mixing Characteristics in a Semiconductor Optical Amplifier by the Finite-Difference Beam Propagation Method. JOURNAL OF QUANTUM ELECTRONICS, 2000. 36(10). Page(s) 1184-1192
    [78]. N.K.Das, T.Kawazoe, Y.Yamayoshi, H.Kawaguchi, Analysis of Optical Phase-Conjugate Characteristics of Picosecond Four-Wave Mixing Signals in Semiconductor Optical Amplifiers. JOURNAL OF QUANTUM ELECTRONICS, 2001. 37(1). Page(s) 55-62
    [79]. N.K.Das, Y.Yamayoshi, T.Kawazoe, H.Kawaguchi, Analysis of Optical DEMUX Characteristics Based on Four-Wave Mixing in Semiconductor Optical Amplifiers. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2001. 19(2). Page(s) 237-246
    [80]. H.K.Tsang, P.A.Snow, I.E.Day, I.H.White, R.V.Penty, Ail-optical modulation with ultrafast recovery at low pump energies in passlve lnGaAs/lnGaAsP multiquantum well waveguides. Applied Physics Letters, 1993. 62(13). Page(s)
    [81]. J.M.Tang, K.A.Shore, Strong Picosecond Optical Pulse Propagation in Semiconductor Optical Amplifiers at Transparency. JOURNAL OF QUANTUM ELECTRONICS, 1998. 34(7). Page(s) 1263-1269
    [82]. R.S.Grant, W.Sibbett, Observations of ultrafast nonlinear refraction in an InGaAsP optical amplifier. Applied Physics Letters, 1991. 58(11). Page(s)
    [83]. A.Bogoni, L.Poti, A.Bizzi, M.Scaffardi, A.Reale, Novel Extended SOAs Model for Applications in Very High-Speed Systems and Its Experimental Validation. PHOTONICS TECHNOLOGY LETTERS, 2002. 14(7). Page(s) 905-907
    [84]. A.Bogoni, L.Poti, A.Bizzi, Effective Model for the Design of Ultrafast All-Optical Signal Processors Based on Semiconductor Optical Amplifiers. PHOTONICS TECHNOLOGY LETTERS, 2003. 15(11). Page(s) 1576-1578
    [85]. A.Bogoni, L.Poti, C.Porzi, M.Scaffardi, P.Ghelfi, F.Ponzini, Modeling and Measurement of Noisy SOA Dynamics for Ultrafast Applications. JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2004. 10(1). Page(s) 197-205
    [86]. B.N.Gomatam, A.P.Defonzo, Theory of hot carrier effects on nonlinear gain in GaAs-GaAlAs lasers and amplifiers. Journal of Quantum Electronics, 1990. 26(10). Page(s) 1689-1704
    [87]. J.Mark, J. Mork., Subpicosecond gain dynamics in InGaAsP optical amplifiers Experiment and theory. Applied Physics Letters, 1992. 61(19). Page(s)
    [88]. J.M.Tang, K.A.Shore, Active Picosecond Optical Pulse Compression in Semiconductor Optical Amplifiers. JOURNAL OF QUANTUM ELECTRONICS, 1999. 35(1). Page(s) 93-100
    [89]. J.M.Tang, K.A.Shore, Characteristics of Optical Phase Conjugation of Picosecond Pulses in Semiconductor Optical Amplifiers. JOURNAL OF QUANTUM ELECTRONICS, 1999. 35(7). Page(s) 1032-1040
    [90]. J.M.Tang, P.S.Spencer, P.Rees, K.A.Shore, Pump-Power Dependence of Transparency Characteristics in Semiconductor Optical Amplifiers. IEEE JOURNALOF QUANTUM ELECTRONICS, 2000. 36(12). Page(s) 1462-1467
    [91]. P.Rees, H.D.Summers, P.Blood, Gain-current calculations for bulk GaInP lasers including many-body effects. Applied Physics Letters, 1991. 59(27). Page(s)
    [92]. G.Toptchiyski, Sebastian Randel, Klaus Petermann, Stefan Diez, Enno Hilliger, Carsten Schmidt, Colja Schubert, Reinhold Ludwig, and Hans G. Weber, Analysis of Switching Windows in a Gain-Transparent-SLALOM Configuration. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2000. 18(20): p. 2188-2195. Page(s) 2188-2195
    [93]. K.Obermann, S.Kindt, D.Breuer, K.Petermann, Performance Analysis of Wavelength Converters Based on Cross-Gain Modulation in Semiconductor-Optical Amplifiers. JOURNAL OF LIGHTWAVE TECHNOLOGY, 1998. 16(1). Page(s) 78-85
    [94]. M. Shtaif, G. Eisenstein, Analytical solution of wave mixing between short optical pulses in a semiconductor optical amplifier. Applied Physics Letters, 1995. 66(12). Page(s)
    [95]. J. Mork, A. Mecozzi, Theory of Nondegenerate Four-Wave Mixing Between Pulses in a Semiconductor Waveguide. JOURNAL OF QUANTUM ELECTRONICS, 1997. 33(4). Page(s) 545-555
    [96]. A. Mecozzi, J. Mork, Saturation Effects in Nondegenerate Four-Wave Mixing Between Short Optical Pulses in Semiconductor Laser Amplifiers. JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1997. 3(5). Page(s) 1190-1207
    [97]. Stefan Diez, Carsten Schmidt, Reinhold Ludwig, Hans G. Weber, Kristof Obermann, Stefan Kindt, Igor Koltchanov, Klaus Petermann, Four-Wave Mixing in Semiconductor Optical Amplifiers for Frequency Conversion and Fast Optical Switching. JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1997. 3(5). Page(s) 1131-1145
    [98]. J.Mork, A.Mecozzi, G.Eisenstein, The Modulation Response of a Semiconductor Laser Amplifier. JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1999. 5(3). Page(s) 851-860
    [99]. G.Toptchiyski, S.Kindt, K.Petermann, S.Member, E.Hilliger, S.Diez, H.G.Weber, Time-Domain Modeling of Semiconductor Optical Amplifiers for OTDM Applications. JOURNAL OF LIGHTWAVE TECHNOLOGY, 1999. 17(20). Page(s) 2577-2583
    [100]. L.Schares, C.Schubert, C.Schmidt, H.G. Weber, L.Occhi, G.Guekos, Phase Dynamics of Semiconductor Optical Amplifiers at 10-40 GHz. Journal of Quantum Electronics, 2003. 39(11). Page(s) 1394-1408
    [101]. C.T.Hultgren, E.P.lppen, Ultrafast refractive index dynamics in AlGaAs diode laser amplifiers. Applied Physics Letters, 1991. 59(6). Page(s)
    [102]. I.Kang, C.Dorrer, Measurements of gain and phase dynamics of a semiconductor optical amplifier using spectrograms. Optical Fiber Communication Conference, 2004. 1. Page(s) 23-27
    [103]. R.J.Manning, A.E.Kelly, A.J.Poustie, K.J.Blow, Wavelength dependence of switching contrast ratio of semiconductor optical amplifier-based nonlinear loop mirror. Electronics Letters, 1998. 34(9). Page(s) 916-918
    [104]. J.Mork, A.Mecozzi, Response function for gain and refractive index dynamics in active semiconductor waveguides. Applied Physics Letters, 1994. 65(14). Page(s)
    [105]. C.H.Henry, Theory of the Linewidth of Semiconductor Lasers. JOURNAL OF QUANTUM ELECTRONICS, 1982. 18. Page(s) 259-264
    [106]. M.Osinski,J.Buus, Linewidth broadening factor in semiconductor lasers-An overview. Journal of Quantum Electronics, 1987. 23. Page(s) 9-29
    [107]. L.Occhi, R.Scollo, L.Schares, G.Guekos, Effective alpha factor in bulk semiconductor optical amplifiers of different lengths. Lasers and Electro-Optics Society, 2001. Page(s) 105-106
    [108]. H.J.S.Dorren, X.Yang, D.Lenstra, H.de.Waardt, G.D.Khoe, T.Simoyama, H.Ishikawa, H.Kawashima, T.Hasama, Ultrafast Refractive-Index Dynamics in a Multiquantum-Well Semiconductor Optical Amplifier. PHOTONICS TECHNOLOGY LETTERS, 2003. 15(6). Page(s) 792-794
    [109]. L.Occhi, L.Schares, G.Guekos, Phase Modeling Based on the Alfa-Factor in Bulk Semiconductor Optical Amplifiers. JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2003. 9(3). Page(s) 788-797
    [110]. N.Storkfelt, B.Mikkelsen, D.S.Olesen, M.Yamaguchi, K.E.Stubkjaer, Measurement of Carrier Lifetime and Linewidth Enhancement Factor for 1.5-um Ridge-Waveguide Laser Amplifier. PHOTONICS TECHNOLOGY LETTERS, 1991. 3(1). Page(s) 632-634
    [111]. T.Houbavlis, K.E.Zoiros, M.Kalyvas, G.Theophilopoulos, C.Bintjas, K.Yiannopoulos, N.Pleros, K.Vlachos, H.Avramopoulos, L.Schares, L.Occhi, G.Guekos, J.R.Taylor, S.Hansmann, W.Miller, All-Optical Signal Processing and Applications Within the Esprit Project DO_ALL. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2005. 23(2). Page(s) 781-801
    [112]. H.J.S.Dorren, X.l.Yang, A.K.Mishra, Z.G.Li, H.Ju, H.de.Waardt, G.D.Khoe, T.Simoyama, H.Ishikawa, H.Kawashima, T.Hasama, All-Optical Logic Based on Ultrafast Gain and Index Dynamics in a Semiconductor Optical Amplifier. JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2004. 10(5). Page(s) 1079-1092
    [113]. D.A.O.Davies, M.A.Fisher, D.J.Elton, S.D.Perrin, M.J.Adams, G.T.Kennedy, R.S.Grant, P.D.Roberts, W.Sibbett, Nonlinear switching in InGaAsP laser amplifier directional couplers biased at transparency. Electronics Letters, 1993. 29(19). Page(s) 1710-1711
    [114]. S.B.Mansoor, D.C.Hutchings, D.J.Hagan, E.W.V.Stryland, Dispersion of Bound Electronic Nonlinear Refraction in Solids. JOURNAL OF QUANTUM ELECTRONICS, 1991. 27(6). Page(s)
    [115]. C.T.Hultgren, D.J.Dougherty, E.P.lppen, Above- and below-band femtosecond nonlinearities in active AlGaAs waveguides. Applied Physics Letters, 1992. 61(23). Page(s)
    [116]. D.Cotter, R.J.Manning, K.J.Blow, A.D.Ellis, A.E.Kelly, D.Nesset, I.D.Phillips, A.J.Poustie, D.C.Rogers, Nonlinear optics for highspeed digital information processing. Science, 1999. 286. Page(s)
    [117]. Y.Fukuchi, K.Kikuchi, Novel Design Method for All-Optical Ultrafast Gate Switches Using Cascaded Second-Order Nonlinear Effect in Quasi-Phase Matched LiNbO3 Devices. PHOTONICS TECHNOLOGY LETTERS, 2002. 14(10). Page(s) 1409-1411
    [118]. C.Schubert, L.Schares, C.Schmidt, G.Guekos, H.-G.Weber, Phase dynamics in gain-transparent semiconductor optical amplifiers. ECOC, 2003. Page(s)
    [119]. Chidgey, P. E. Barnsley and P. J., All-optical wavelength switching from 1.3 pm to 1.55 pm WDM wavelength routed network: System results. Photonics Technology Letters, 1992. 4. Page(s) 91-94
    [120]. E. Lach, D. Baums, K. Daub, T. Feeser, W. Idler, C. Laube, G. Luz, M. Schilling, K. Wiiustel, 5 Gbit/s wavelength conversion with simultaneous regeneration of extinction ratio using Y-lasers. ECOC, 1993. 2. Page(s)
    [121]. T. Durhuus, R. J. S. Pedersen, B. Mikkelsen, K. E. Stubkjaer, M. Oberg, S.Nilsson, Optical wavelength conversion over 18 nm at 2.5 Gbit/s by DBR laser. Photonics Technology Letters, 1993. 5. Page(s) 86-89
    [122]. R. J. S. Pedersen, B. Mikkelsen, T. Durhuus, C. Braagaard, C. Joergensen, K. E. Stubkjaer, M. Obcrg, S. Nilsson, Simple wavelength conversion for bitrate independent operation up to 10 Gbit/s. OFC, 1994. Page(s)
    [123]. R. Ludwig, G. Raybon, BER measurements of frequency converted signals using four-wave mixing in a semiconductor laser amplifier at 1, 2.5, 5, and 10 Gbit/s. Electronics Letters, 1994. 30. Page(s) 338-339
    [124]. T. Durhuus, B. Mikkelsen, C. Joergensen, K. E. Stubkjaer, All optical wavelength conversion by semiconductor optical amplifiers. Journal of Lightwave Technology, 1996. 14. Page(s) 942-954
    [125]. M. Asghari, I. H. White, R. V. Penty, Wavelength conversion using semiconductor optical amplifiers. 1997. 15. Page(s)
    [126]. A.Hamie, A.Sharaiha, M.Guegan, B.Pucel, All-optical logic NOR gate using two-cascaded semiconductor optical amplifiers. Photonics Technology Letters, 2002. 14. Page(s) 1439-1441
    [127]. A.Hamie, A.Sharaiha, M.Guegan, J.Le Bihan, All-optical inverted and noninverted wavelength conversion using two-cascaded semiconductor optical amplifiers. Photonics Technology Letters, 2005. 17. Page(s) 1229-1231
    [128]. A.Sharaiha, A.Hamie, Cross gain modulation analysis in two cascaded semiconductor optical amplifiers. Lasers and Electro-Optics Europe, 2003. Page(s) 197
    [129]. D.Marcenac, A.Mecozzi, Switches and Frequency Converters Based on Cross-Gain Modulation in Semiconductor Optical Amplifiers. PHOTONICS TECHNOLOGY LETTERS, 1997. 9. Page(s) 749-751
    [130]. T. Morioka, H. Takara, S. Kawanishi, T. Kitoh, M. Saruwatari, Error-free 500 Gbit/s all-optical demultiplexing using low-noise, lowjitter supercontinuum short pulses. Electronics Letters, 1996. 32. Page(s) 833-834
    [131]. Raybon, R. Ludwig and G., All-optical demultiplexing using ultrafast four-wave-mixing in a semiconductor laser amplifier at 20 Gbit/s. ECOC, 1993. 3. Page(s)
    [132]. Matsumura, K. Kikuchi and K., Transmission of 2-ps optical pulses at 1550 nm over 40-km standard fiber using midspan optical phase conjugation in semiconductor optical amplifiers. Photonics Technology Letters, 1998. 10. Page(s) 1410-1412
    [133]. T. Morioka, H. Takara, S. Kawanishi, K. Uchiyama, and M. Saruwatari, Polarisation-independent demultiplexing up to 200 Gb/s using four-wave mixing in a semiconductor laser amplifier. Electronics Letters, 1996. 32. Page(s) 840-842
    [134]. Kawaguchi, Takashi Mori and Hitoshi, All-optical switching of 160 Gbit/s OTDM signal using FWM in SOA for wavelength routing. Lasers and Electro-Optics Europe, 2004. 2. Page(s) 2
    [135]. A.A.M.Saleh, I.M.I.Habbab, Effects of semiconductor-optical-amplifier nonlinearity on the performance of high-speed intensity-modulation lightwave systems. Communications, 1990(38). Page(s) 839-846
    [136]. H.S.Loka, P.W.E.Smith, Ultrafast All-Optical Switching in an Asymmetric Fabry–P′erot Device Using Low-Temperature-Grown GaAs. Photonics Technology Letters, 1998. 10(12). Page(s) 1733-1735
    [137]. Jay E. Sharping, Marco Fiorentino, Prem Kumar, and Robert S. Windeler, All-Optical Switching Based on Cross-Phase Modulation in Microstructure Fiber. PHOTONICS TECHNOLOGY LETTERS, 2002. 14(1). Page(s) 77-79
    [138]. Takasi Simoyama, Haruhiko Yoshida, Jun-ichi Kasai, Teruo Mozume, AchantaVenu Gopal, and Hiroshi Ishikawa, InGaAs–AlAs–AlAsSb Coupled Quantum Well Intersubband Transition All-Optical Switch With Low Switching Energy for OTDM Systems. PHOTONICS TECHNOLOGY LETTERS, 2003. 15(10). Page(s) 1363-1365
    [139]. C.S.Wong, and H.K.Tsang, Polarization-Independent Wavelength Conversion at 10 Gb/s Using Birefringence Switching in a Semiconductor Optical Amplifier. PHOTONICS TECHNOLOGY LETTERS, 2003. 15(1). Page(s) 87-89
    [140]. O.Leclerc, B.Lavigne, E.Balmefrezol, P.Brindel, L.Pierre, D.Rouvillain, F.Seguineau, Optical regeneration at 40 Gb/s and beyond. Journal of Lightwave Technology, 2003. 21(11). Page(s) 2779-2790
    [141]. K.Smith, J.K.Lucek, All-optical clock recovery using a mode-locked laser. Electronics Letters, 1992. 28(19). Page(s) 1814-1816
    [142]. D.M.Patrick, R.J.Manning, 20Gbit/s all-optical clock recovery using semiconductor nonlinearity. Electronics Letters, 1994. 30(2). Page(s) 151-152
    [143]. E.S.Awad, P.S.Cho, C.Richardson, N.Moulton, J.Goldhar, Optical 3R regeneration using a single EAM for all-optical timing extraction with simultaneous reshaping and wavelength conversion. Photonics Technology Letters, 2002. 14(9). Page(s) 1378-1380
    [144]. Biao, F. and H. Rongqing, Fiber chromatic dispersion and polarization-mode dispersion monitoring using coherent detection. Photonics Technology Letters, IEEE, 2005. 17(7): p.1561-1563.
    [145]. Kuen Ting, T. and W.I. Way, Chromatic-dispersion monitoring using an optical delay-and-add filter. Lightwave Technology, Journal of, 2005.23(11): p.3737-3747.
    [146]. Nezam, S.M.R.M., et al., Enhancing the monitoring range and sensitivity in CSRZ chromatic dispersion monitors using a dispersion-biased RF clock tone. Photonics Technology Letters, IEEE, 2004. 16(5): p.1391-1393.
    [147]. Sung-Man, K. and L. Chang-Hee, The efficient clock-extraction methods of NRZ signal for chromatic dispersion monitoring. Photonics Technology Letters, IEEE, 2005. 17(5): p.1100-1102.
    [148]. Takushima, Y., et al., In-service dispersion monitoring in 32×10.7 Gbps WDM transmission system over transatlantic distance using optical frequency-modulation method. Lightwave Technology, Journal of, 2004. 22(1): p.257-257.