T2DM四种易感基因与临床表型分析及荧光编码微球标识检测方法建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2型糖尿病(type2diabetes mellitus,T2DM)是一种由多种基因协同作用、并且受环境因素影响的慢性代谢性疾病,随着病程的延长,其慢性并发症给患者带来了严重的精神和经济负担。因此对2型糖尿病发病机制及其靶向干预的研究一直是研究的重点,具有重要的意义。近年来,随着单核苷酸多态性(singlenucleotide polymorphism,SNP)检测技术的发展,以SNP作为遗传图谱定位糖尿病易感基因的研究已经得到了广泛的关注。目前报道的与2型糖尿病相关的易感基因SNP位点已近百个,但其基因型与临床表型之间的关系尚不十分清楚,明确两者之间的相关性可以很好的为2型糖尿病的早期诊断和临床防治奠定基础。现已建立了很多种检测SNP位点基因型的方法,综合技术的可靠性、操作的简便性、仪器的精密性、筛选的通量性等原因都没能应用于临床检测,因此临床中需要一种成本低廉、操作简单、高通量性等优点的2型糖尿病易感基因SNP位点的检测方法。
     连接酶检测反应(ligase detection reaction,LDR)技术是在较高温度下,耐高温的连接酶可以对SNP位点进行识别,当SNP位点上下游探针与待测DNA模板完全互补,并且两条探针之间没有空隙时,进行连接反应;而当基因突变使探针序列与DNA模板存在碱基错配时,连接反应则不能进行。不同SNP基因型所对应的探针长度不同,并且探针末端带有荧光标记,根据DNA测序原理通过荧光扫描扩增片段的长度,不同的SNP基因型会在相应的片段长度处产生荧光发射峰,根据荧光发射峰位置的差异,进行SNP位点基因型的判定。多重LDR技术即是在LDR原理的基础上,在同一检测体系中同时加入多个待测SNP位点的探针,能够同时进行多个SNP位点基因型的检测。虽然目前LDR检测技术的发展应用已经较为成熟,但仍需要DNA测序等步骤,价格较为昂贵,不适用于大规模临床应用推广。
     多色荧光编码微球(Multicolor encoded Fluorescent Microspheres,MFMs)的应用发展,为高通量检测技术开辟了更为广阔的空间。与传统有机染料相比,荧光纳米材料发光强度更强、稳定性更高,非常适合应用于生物荧光标记研究,多色荧光编码微球同时还具有生物相容性好、荧光性质优异等特点,作为可与各种生物分子相偶联的标记分子,尤其适用于多种生物大分子的高通量同步分析。特别是随着纳米材料表面修饰及其生物链接技术的成熟,更加促进了其在生物医学领域的进一步应用。应用多色荧光编码微球,可以使寡核苷酸探针在有限的长度范围内拥有更多颜色的组合形式,从而增加了在同一反应体系中同时检测更多SNP位点的能力。
     磁性纳米粒子(Magetic nanoparticls,MNP)在生物医学领域的应用范围非常广泛,利用磁性分离技术可以实现对生物分子的快速分离纯化。通过分子修饰技术,可以在磁性纳米粒子表面修饰各种功能基团,使其具有同偶联的生物大分子相同的特性。利用功能化磁性粒子表面配体-受体之间特异性作用,可以快速、有效地实现对DNA产物的纯化,该方法操作简单,不需要凝胶电泳回收等步骤,而且可以在后续实验步骤中随时快速提取纯化的产物。
     本课题应用连接酶检测反应技术、磁性纳米微粒高效纯化技术以及荧光编码微球标识技术的结合,对2型糖尿病四种易感基因SNP位点进行了检测,为分子病因学以及临床防治的结合建立了一种新型的检测技术。
     本研究分四个部分:1、LDR法检测SLC30A8、CDKN2A/2B、HHEX、TCF7L2基因SNP位点及其与T2DM的关系。应用LDR技术对T2DM患者的4个易感基因SNP即SLC30A8基因rs13266634位点、CDKN2A/2B基因rs10811661位点、HHEX基因rs1111875位点以及TCF7L2基因rs7903146位点基因型进行检测,在中国东北汉族人T2DM患者及正常人群中的分布频率进行分析,并以DNA测序法为标准印证LDR检测结果的准确性,同时探讨SLC30A8、CDKN2A/2B、HHEX和TCF7L2基因多态性与T2DM发病的相关性,以及其与糖代谢、脂代谢及慢性并发症之间的关系。2、磁性纳米微粒及荧光编码纳米微球的合成、修饰及其与DNA的偶联。应用共沉淀法制备了SiO2包覆的Fe3O4纳米粒子,并通过调控聚集体的大小和二氧化硅壳层厚度控制最终粒子的粒径和磁含量,得到SiO2基磁性纳米微球。通过共价偶联法、静电吸附法和聚电解质桥梁法等方法制备了4种染料掺杂的SiO2荧光纳米微球,即多色荧光编码微球。分别在磁性和荧光纳米微球的表面进行羧基修饰并与链霉亲和素偶联,制备成具有与生物大分子连接能力的SiO2基磁性及荧光纳米微球-链霉亲和素复合物。然后将其分别与5’端经生物素修饰的LDR上游探针、3’端经生物素修饰的LDR下游探针进行偶联反应。3、多重PCR-多重LDR法检测SNP位点体系的优化。运用多重PCR和多重LDR的技术原理,根据SLC30A8基因rs13266634位点、CDKN2A/2B基因rs10811661位点、HHEX基因rs1111875位点以及TCF7L2基因rs7903146位点,设计PCR引物及LDR探针,同时以全血基因组DNA为模板优化反应体系,探索最适反应条件,建立一种应用多重LDR法检测T2DM易感基因SNP位点的最佳反应体系。4、基于荧光编码微球标识的T2DM易感基因SNP检测体系的建立。以全血基因组DNA为模板,应用经过优化的多重LDR技术,磁性纳米微粒偶联LDR上游探针,快速、特异的分离出多重LDR扩增产物,去除反应体系中未参加连接反应的下游探针,荧光纳米微球标记LDR下游探针,通过对不同颜色的荧光的接收,有效地提高LDR检测的特异性,增加在同一多重LDR反应体系中同时检测更多SNP位点的能力。建立一种基于纳米材料多重LDR技术的T2DM易感基因SNP检测体系。
     本研究得到如下结论:
     1、应用LDR技术成功的对113例2型糖尿病和107例健康者的SLC30A8基因rs13266634位点、CDKN2A/2B基因rs10811661位点、HHEX基因rs1111875位点以及TCF7L2基因rs7903146位点基因型进行检测。发现SLC30A8基因rs13266634位点C等位基因与空腹胰岛素分泌不足、胰岛功能衰竭、胆固醇增高、心血管并发症的发病率相关;CDKN2A/2B基因rs10811661位点T等位基因与胰岛β细胞功能受损,胰岛素分泌减少及微血管并发症的发病率相关,HHEX基因rs1111875位点G等位基因与总胆固醇、低密度脂蛋白胆固醇增高及心血管并发症的发病率相关。
     2、成功合成了链酶亲和素修饰的SiO2复合磁性纳米微球和多色荧光编码微球,并分别将磁性纳米微球与LDR上游探针成功偶联、多色荧光编码微球与LDR下游探针成功偶联,国内外首次成功制备了用于2型糖尿病易感基因高通量检测的荧光编码微球标记的寡核苷酸探针。
     3、优化了多重PCR、多重LDR的反应条件,证明了适当增加反应体系中的MgCl2及dNTP浓度、调整各基因引物使用的比例、降低退火温度可以有效减少多重PCR中非特异性产物的产生、提高PCR产物含量;适当增加上游探针含量比例、减少探针使用量、降低退火温度有利于提高多重LDR的分辨率。为临床中2型糖尿病多个易感基因位点同时检测奠定了技术基础。
     4、将多重PCR-多重LDR技术结合磁性纳米微粒高效纯化技术,同时利用4种荧光编码微球标记的寡核苷酸探针对T2DM易感基因位点进行基因型检测,国内外率先证实了多色荧光编码微球可以用于标记寡核苷酸探针进行LDR检测,建立了一种可同时检测4种T2DM易感基因SNP位点基因型的检测方法,为进一步进行T2DM易感基因SNP位点基因型高通量检测奠定了实验基础。
     本研究结合了多重LDR检测体系的简便性、高通量性,磁性纳米微粒纯化技术的简便性、可重复性以及多色荧光编码微球的通量性等优点,建立了一种经济、简便、快速、高通量的T2DM易感基因SNP位点基因型的检测方法,可以有效地降低检测成本,适合用于临床推广,可将生物病因学研究与临床防治有效对接。
Type2diabetes mellitus (T2DM) is a chronic metabolic diseases, contributedsynergistically by multiple genes and environmental factors, and its chroniccomplications cause severe mental and financial burden to patients with a longduration. Therefore, the pathogenesis of and targeting interference against T2DM areof great importance and are focued on by T2DM researchers. Recently, with thedevelopment of single nucleotide polymorphism (SNP) technology, identification ofT2DM susceptibility genes has been extensively focused on, and there have beenmore than100SNP sites of T2DM susceptibility genes being reported. However,little is known about the correlation of these genetypes with their phenotypes, thoughthe identification of the correlation can facilitate the early diagnosis and clinicalprevention and treatment of T2DM. Nowadays, there have been multiple methods toidentify the SNPs, however, most of these methods are still on the way to clinicalassay, being limited by inadequate reliability, simplicity of operation, instrumentprecision, throughput of screening. Therefore, a novel method of low cost, simpleoperation and high throughput is in need to identify the SNPs of T2DMsusceptibility genes.
     Ligase detection reaction (LDR)is based on the specific binding of thermostableligase to SNP sites under high temperature. If there were a completecomplementation between the upstream, downstream probes and the SNP site,without gap between the two probes, the ligation completes; While the lagation fails,if the probe sequences mismatched the mutated SNP site. The lenghth of probe sequences varies with SNPs of genptypes, as can be identified by the fluorescencescanning of the fluorescence labeled at the end of various probes, basing on theemission peak of various SNP genotypes of various fragment length. Basing on theprinciple of LDR technology, multiple LDR developes, in which, there are multipleprobes targeting multiple SNPs, capable of multiple SNPs identificationsimultaneously. However, the LDR detection technology is restricted to large-scaleclinical application by its high cost, complicated procedures, including DNAsequencing.
     The development of Multicolor encoded Fluoresent Microspheres (MFMs) hasopened a novel area for high-throughput detection technology. Compared withconventional organic dyes, fluorescent nano-materials emission is stronger, morestable, therefore, more suitable for the fluorescent biomarker research. Moreover,because of their good biocompatibility, excellent fluorescence properties, MFMs areparticularly suitable for simultaneous high throughput analysis of multiple biologicalmacromolecules, by being coupled to a variety of biological molecules, Especially,the mature of surface modification of nano-materials and bio-link technologiespromote the further application of MFMs in the biomedical field. MFMs can giveoligonucleotide probes unique color, let along their length, thereby facilitating thesimutanuos detection of multiple SNPs in same reaction system.
     Magnetic nanoparticles (MNPs) have been widely applicated in the biomedicalfield, the magnetic separation technology can achieve rapid separation andpurification of biomolecules. And the molecular modification technique can couplethe MNPs to various biomolecules via multiple functional groups on MNPs, withoutchanging the characteristics of coupled molecules. Basing the functionalized specificligand-receptor interaction of magnetic nanoparticles, DNA products can be rapidlyand efficiently purified without procedures, such as gel electrophoresis recycling,and the DNA purification can be carried out in any subsequent experiments rapidly.
     In present study, we constructed a novel detection method for molecularetiology and for clinical prevention and treatment, basing on LDR, MNPs and MNPs, and then identified SNPs of four susceptibility genes to T2DM via the method.
     There are foure parts in this study:
     1. We determined the SNPs of SLC30A8, CDKN2A/2B, HHEX, TCF7L2gene, and analyzed the correlation of these SNPs with T2DM. LDR method wasadopted to identify the SNPs of four T2DM susceptability genes of T2DM patients,i.e. the site of rs13266634in SLC30A8, the site of rs10811661in CDKN2A/2B, thesite of rs1111875in HHEX and the site of rs7903146in TCF7L2. Then thedistribution frequency of each site was analyzed in T2DM patients of Han innortheast China. And the acuracy of LDR results were reconfirmed with DNAsequencing. In addition, we also determined the association of the polymorphisms inSLC30A8, CDKN2A/2B, HHEX and TCF7L2gene with the T2DM morbidity, aswell as with the abnormal glucose metabolism, abnormal lipid metabolism andchronic complications.
     2. Synthesis, modification and DNA-conjugation of MNPs and MFMs.SiO2-coated Fe3O4nanoparticles were prepared by coprecipitation method, theSiO2-based magnetic nanoparticles were obtained under strict control of the particlesize and magnetic density by regulating the size and thickness of the silica shell to ofthe aggregates. By covalent coupling method, electrostatic adsorption andpolyelectrolyte bridges and other methods, we prepared four kinds of SiO2fluorescence coded nanoparticles with multi-color fluorescence, i.e. MFMs. Then themagnetic and fluorescent nanospheres surface was modified with carboxyl group andcoupled to streptavidin-biotin, and thus these particles were capable to bind tobiological macromolecules to develop SiO2-based magnetic or fluorescentnanoparticles-streptavidin-biotin complex. Thus, these particles were utilized toconjunct to the biotin modified5' end of LDR upstream probe, or the biotin modified3' end of LDR downstream probe.
     3. Optimization of multiple PCR-LDR assay for multiple SNPs. According tothe principles of multiple PCR and multiple LDR, PCR primers and LDR probeswere designed targeting the site of rs13266634in SLC30A8, the site of rs10811661 in CDKN2A/2B, the site of rs1111875in HHEX and the site of rs7903146inTCF7L2. The reaction conditions of the reaction system, with whole genomic DNAas template, were optimezed to establish the optimal reaction system for T2DMsusceptable SNPs identification, by multiple LDR.
     4. Establishment of the detection system for T2DM susceptable gene SNPs,basing on MFMs.The optimized multiple LDR technique was adopted, with wholeblood genomic DNA as template, magnetic and with nanoparticles coupled upstreamLDR probes, the amplificated product of multiple LDR was rapidly and specificallyisolated from the irrelevant downstream probe. The fluorescent nanospheres coupledLDR downstream probe effectively promoted the detection specificity basing on theabsorbance of the fluorescence with different color, and promoted the detectioncapbility of mutiple SNPs simultaneously in the same reaction system. Thus, weestablished a multi-LDR detection system for T2DM susceptibility gene SNPs,basing on nanomaterials technology.
     Research conclusions are as following:
     1We have successfully identified the SNP of rs13266634in SLC30A8,rs10811661in CDKN2A/2B, rs1111875in HHEX and rs7903146in TCF7L2, of113cases of T2DM patients and107healthy subjects. And we found that there was anassociation of C allele at rs13266634of SLC30A8gene with fasting insulinsecretion deficiency, Islet function failure, increased cholesterol and increasedincidence of cardiovascular complications. And we also found that there was anassociation of T allele at rs10811661of CDKN2A/2B gene with islet β celldysfunction, Islet function failure, insulin secretion reduction, increased incidence ofmicrovascular complications.
     2We have successfully synthesized the streptavidin-biotin-modifiedSiO2-composed magnetic nanospheres and multicolor fluorescence codedmicrospheres. And then we respectively coupled the magnetic nanospheres with theupstream LDR probe, coupled the multicolor fluorescence coded microspheres withthe downstream LDR probe. This is the first successful preparation of the oligonucleotide probes coupled with multicolor fluorescence coded microspheres forthe high throughput detection of T2DM susceptibility genes.
     3We have optimized the reaction conditions of multiple PCR and multipleLDR, and we found that non-specific PCR products could be significantly reduced,and the target PCR products could be elevated by appropriately increasing theconcentration of MgCl2and dNTP, adjusting the ratio of the primers pairs of eachgene, by reducing the amount of probe, or decreasing the annealing temperature ofthe reaction system to improving the resolution of multiple LDR. These findingslayed the technical foundation for the simultaneous detection of clinical T2DMsusceptibility gene SNPs.
     4We have identified the T2DM susceptability gene SNPs via the combinedusage of the multiple PCR, multiple LDR technology, the high efficient purificationtechnology with MNPs, and the oligonucleotide probes with four kinds of MFMs.We confirmed for the first time, MFMs could be utilezed to label the oligonucleotideprobes for LDR detection, and we established a detection method, simutaneouslyidentifying SNPs of four T2DM susceptability genes, laying the foundation forhigh-throughput detection of T2DM susceptibility gene SNPs.
     In present study, we established a cheap, simple, rapid, and high-throughputdetection method for the identification of T2DM susceptability gene SNPs, with thecombination of the simplicity, high-throughput of muliple LDR, the simplicity andrepeatability of MNPs, and the high-throughput of MFMs. It could effectively reducetesting costs, was suitable for clinical application, with an effective combination ofthe biological research and clinical prevention etiology.
引文
[1] Reina, G., E. Tamburri, S. Orlanducci, S. Gay, R. Matassa, V. Guglielmotti, T.Lavecchia, M. Letizia Terranova and M. Rossi, Nanocarbon surfaces forbiomedicine[J]. Biomatter,2014.4(1): e28537.
    [2] Xu, B., M. Xia, Y. Deng, C. Hu and Z. Xu.Nanotechnology&nanoparticlesand their advances of investigation and application in the fields ofbiomedicine[J]. Sheng wu yi xue gong cheng xue za zhi,2004.21(2):333-336.
    [3] Chan, W.C. and S. Nie. Quantum dot bioconjugates for ultrasensitivenonisotopic detection[J]. Science,1998.281(5385):2016-2018.
    [4] Jaiswal, J.K. and S.M. Simon. Potentials and pitfalls of fluorescent quantumdots for biological imaging[J]. Trends in cell biology,2004.14(9):497-504.
    [5] Singh, S., T. Shi, R. Duffin, C. Albrecht, D. van Berlo, D. H hr, B. Fubini, G.Martra, I. Fenoglio and P.J. Borm. Endocytosis, oxidative stress and IL-8expression in human lung epithelial cells upon treatment with fine andultrafine TiO2: Role of the specific surface area and of surface methylation ofthe particles[J]. Toxicology and applied pharmacology,2007.222(2):141-151.
    [6] Wang, J. Electrochemical glucose biosensors[J]. Chemical reviews,2008.108(2):814-825.
    [7] Gooding, J.,R. Wibowo, J. Liu, W. Yang, D. Losic, S. Orbons, F.J. Mearns,J.G. Shapter and D.B. Hibbert. Protein electrochemistry using aligned carbonnanotube arrays[J]. Journal of the American Chemical Society,2003.125(30):9006-9007.
    [8] Sund, J., H. Alenius, M. Vippola, K. Savolainen and A. Puustinen. Proteomiccharacterization of engineered nanomaterial–protein interactions in relationto surface reactivity[J]. ACS nano,2011.5(6):4300-4309.
    [9] Duffin, R., L. Tran, D. Brown, V. Stone and K. Donaldson.Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo andin vitro: highlighting the role of particle surface area and surface reactivity[J].Inhalation toxicology,2007.19(10):849-856.
    [10] Warheit, D.B., K.L. Reed and C.M. Sayes. A role for nanoparticle surfacereactivity in facilitating pulmonary toxicity and development of a base set ofhazard assays as a component of nanoparticle risk management[J]. Inhalationtoxicology,2009.21(S1):61-67.
    [11] Yang, K., L. Zhu and B. Xing. Adsorption of polycyclic aromatichydrocarbons by carbon nanomaterials[J]. Environmental science&technology,2006.40(6):1855-1861.
    [12] Pan, B., D. Lin, H. Mashayekhi and B. Xing. Adsorption and hysteresis ofbisphenol A and17α-ethinyl estradiol on carbon nanomaterials[J].Environmental science&technology,2008.42(15):5480-5485.
    [13] Panella, B., M. Hirscher and S. Roth. Hydrogen adsorption in differentcarbon nanostructures[J]. Carbon,2005.43(10):2209-2214.
    [14] Srinivas, G., Y. Zhu, R. Piner, N. Skipper, M. Ellerby and R. Ruoff.Synthesis of graphene-like nanosheets and their hydrogen adsorptioncapacity[J]. Carbon,2010.48(3):630-635.
    [15] Shen, J. Nanobiomaterials[J]. Zhongguo yi xue ke xue yuan xue bao. ActaAcademiae Medicinae Sinicae,2006.28(4):472.
    [16] Zhou, H., L. Liu, K. Yin, S. Liu and G. Li. Electrochemical investigation onthe catalytic ability of tyrosinase with the effect of nano titanium dioxide[J].Electrochemistry communications,2006.8(7):1168-1172.
    [17] Le Goff, A., V. Artero, B. Jousselme, P.D. Tran, N. Guillet, R. Métayé, A.Fihri, S. Palacin and M. Fontecave. From hydrogenases to noble metal–freecatalytic nanomaterials for H2production and uptake[J]. Science,2009.326(5958):1384-1387.
    [18] Xu, X., Y. Li, Y. Gong, P. Zhang, H. Li and Y. Wang. Synthesis of palladiumnanoparticles supported on mesoporous N-doped carbon and their catalyticability for biofuel upgrade[J]. Journal of the American Chemical Society,2012.134(41):16987-16990.
    [19]洪敏,朱进,尹汉东,纳米材料应用于DNA检测领域的研究进展[J].分析化学(FENXI HUAXUE),2011.39.
    [20] Moghimi, S.M., A.C. Hunter and J.C. Murray. Nanomedicine: current statusand future prospects[J]. The FASEB Journal,2005.19(3):311-330.
    [21] Wagner, V., A. Dullaart, A.-K. Bock and A. Zweck. The emergingnanomedicine landscape[J]. Nature biotechnology,2006.24(10):1211-1218.
    [22] Farokhzad, O.C. and R. Langer. Nanomedicine: developing smartertherapeutic and diagnostic modalities[J]. Advanced drug delivery reviews,2006.58(14):1456-1459.
    [23] Riehemann, K., S.W. Schneider, T.A. Luger, B. Godin, M. Ferrari and H.Fuchs. Nanomedicine—challenge and perspectives[J]. Angewandte ChemieInternational Edition,2009.48(5):872-897.
    [24] Nie, S. Understanding and overcoming major barriers in cancernanomedicine[J]. Nanomedicine,2010.5(4):523-528.
    [25] Gupta, A.K. and M. Gupta. Synthesis and surface engineering of iron oxidenanoparticles for biomedical applications[J]. Biomaterials,2005.26(18):3995-4021.
    [26] Bucak, S., D.A. Jones, P.E. Laibinis and T.A. Hatton. Protein separationsusing colloidal magnetic nanoparticles[J]. Biotechnology progress,2003.19(2):477-484.
    [27] Ma, Z.-Y., X.-Q. Liu, Y.-P. Guan and H.-Z. Liu. Synthesis of magnetic silicananospheres with metal ligands and application in affinity separation ofproteins[J]. Colloids and Surfaces A: Physicochemical and EngineeringAspects,2006.275(1):87-91.
    [28] Pankhurst, Q.A., J. Connolly, S. Jones and J. Dobson. Applications ofmagnetic nanoparticles in biomedicine[J]. Journal of physics D: Appliedphysics,2003.36(13): R167.
    [29] Lu, A.H., E.e.L. Salabas and F. Schüth. Magnetic nanoparticles: synthesis,protection, functionalization, and application[J]. Angewandte ChemieInternational Edition,2007.46(8):1222-1244.
    [30] Hu, J., C.Y. Wen, Z.L. Zhang, M. Xie, J. Hu, M. Wu and D.W. Pang.Optically encoded multifunctional nanospheres for one-pot separation anddetection of multiplex DNA sequences[J]. Anal Chem,2013.85(24):11929-11935.
    [31]官月平,姜波,朱星华,刘会洲.生物磁性分离研究进展(Ⅰ)磁性载体制备和表面化学修饰[J].化工学报,2000(S1).
    [32] Ito, A., M. Shinkai, H. Honda and T. Kobayashi. Medical application offunctionalized magnetic nanoparticles[J]. Journal of bioscience andbioengineering,2005.100(1):1-11.
    [33] Jain, K.K. Nanodiagnostics: application of nanotechnology in moleculardiagnostics[J]. Expert Review of Molecular Diagnostics,2003.3(2):153-161.
    [34] Bruce, I.J. and T. Sen. Surface modification of magnetic nanoparticles withalkoxysilanes and their application in magnetic bioseparations[J]. Langmuir,2005.21(15):7029-7035.
    [35] Jiang, K., A. Eitan, L.S. Schadler, P.M. Ajayan, R.W. Siegel, N. Grobert, M.Mayne, M. Reyes-Reyes, H. Terrones and M. Terrones. Selective attachmentof gold nanoparticles to nitrogen-doped carbon nanotubes[J]. Nano Letters,2003.3(3):275-277.
    [36] Sauzedde, F., A. Elaissari and C. Pichot. Hydrophilic magnetic polymerlatexes.1. Adsorption of magnetic iron oxide nanoparticles onto variouscationic latexes[J]. Colloid and polymer science,1999.277(9):846-855.
    [37] Stevens, P.D., J. Fan, H.M. Gardimalla, M. Yen and Y. Gao.Superparamagnetic nanoparticle-supported catalysis of Suzukicross-coupling reactions[J]. Organic letters,2005.7(11):2085-2088.
    [38] Homenick, C.M., G. Lawson and A. Adronov. Polymer Grafting of CarbonNanotubes Using Living Free‐Radical Polymerization[J]. Polymer Reviews,2007.47(2):265-290.
    [39] Liu, J., X. Peng, W. Sun, Y. Zhao and C. Xia. Magnetically separable Pdcatalyst for carbonylative Sonogashira coupling reactions for the synthesis ofα, β-alkynyl ketones[J]. Organic letters,2008.10(18):3933-3936.
    [40] Shang, H., W.-S. Chang, S. Kan, S.A. Majetich and G.U. Lee. Synthesis andcharacterization of paramagnetic microparticles through emulsion-templatedfree radical polymerization[J]. Langmuir,2006.22(6):2516-2522.
    [41] Liu, J.-f., Z.-s. Zhao and G.-b. Jiang. Coating Fe3O4magnetic nanoparticleswith humic acid for high efficient removal of heavy metals in water[J].Environmental science&technology,2008.42(18):6949-6954.
    [42] Ge, J., Q. Zhang, T. Zhang and Y. Yin. Core–satellite nanocomposite catalystsprotected by a porous silica shell: controllable reactivity, high stability, andmagnetic recyclability[J]. Angewandte Chemie,2008.120(46):9056-9060.
    [43] Hakami, O., Y. Zhang and C.J. Banks. Thiol-functionalised mesoporoussilica-coated magnetite nanoparticles for high efficiency removal andrecovery of Hg from water[J]. Water research,2012.46(12):3913-3922.
    [44] Saiyed, Z., C. Bochiwal, H. Gorasia, S. Telang and C. Ramchand.Application of magnetic particles (Fe3O4) for isolation of genomic DNA frommammalian cells[J]. Analytical biochemistry,2006.356(2):306-308.
    [45] Saiyed, Z., M. Parasramka, S. Telang and C. Ramchand. Extraction of DNAfrom agarose gel using magnetic nanoparticles (magnetite or Fe3O4)[J].Analytical biochemistry,2007.363(2):288-290.
    [46] Ashtari, P., X. He, K. Wang and P. Gong. An efficient method for recovery oftarget ssDNA based on amino-modified silica-coated magneticnanoparticles[J]. Talanta,2005.67(3):548-554.
    [47] Schluep, T. and C.L. Cooney. Purification of plasmids by triplex affinityinteraction[J]. Nucleic acids research,1998.26(19):4524-4528.
    [48] Zhu, Y., W. Zhao, H. Chen and J. Shi. A simple one-pot self-assembly routeto nanoporous and monodispersed Fe3O4particles with oriented attachmentstructure and magnetic property[J]. The Journal of Physical Chemistry C,2007.111(14):5281-5285.
    [49] Cannas, C., D. Gatteschi, A. Musinu, G. Piccaluga and C. Sangregorio.Structural and magnetic properties of Fe2O3nanoparticles dispersed over asilica matrix[J]. The Journal of Physical Chemistry B,1998.102(40):7721-7726.
    [50] Rudi, K., M. Kroken, O. Dahlberg, A. Deggerdal, K. Jakobsen and F. Larsen.Rapid, universal method to isolate PCR-ready DNA using magnetic beads[J].BioTechniques,1997.22(3):506-511.
    [51] Shen, H., M. Hu, Z. Yang, C. Wang and L. Zhu. Polymerase chain reaction ofAu nanoparticle-bound primers[J]. Chinese Science Bulletin,2005.50(18):2016-2020.
    [52] Sonti, S.V. and A. Bose. DNA isolation using avidin-coated magneticnanoclusters[J]. Colloids and Surfaces B: Biointerfaces,1997.8(4):199-204.
    [53] Gelsthorpe, A.R., K. Gelsthorpe and R.J. Sokol. Extraction of DNA usingmonoclonal anti-DNA and magnetic beads[J]. Biotechniques,1997.22(6):1080-1082.
    [54]谢欣,张旭,高华方,张欢,陈德朴,程京,费维扬.基于多功能纳米磁珠的DNA制备与基因分型[J].科学通报,2004.49(6):541-543.
    [55]向娟娟,聂新民,唐敬群,王延金,李征,甘凯,黄河,熊炜,李小玲,李桂源.磁性氧化铁纳米颗粒用于体外基因的转染及其外加磁场对于转染效率的影响[J].中华肿瘤杂志,2004.26(2):71-74.
    [56]杨娟,许世超,张纪梅,姚翠翠.磁性荧光复合粒子的合成,表征及DNA检测应用研究[J].科技信息,2010.3:025.
    [57] Elghanian, R., J.J. Storhoff, R.C. Mucic, R.L. Letsinger and C.A. Mirkin.Selective colorimetric detection of polynucleotides based on thedistance-dependent optical properties of gold nanoparticles[J]. Science,1997.277(5329):1078-1081.
    [58] Clapp, A.R., E.R. Goldman and H. Mattoussi. Capping of CdSe–ZnSquantum dots with DHLA and subsequent conjugation with proteins[J].Nature protocols,2006.1(3):1258-1266.
    [59] Algar, W.R. and U.J. Krull. Towards multi-colour strategies for the detectionof oligonucleotide hybridization using quantum dots as energy donors influorescence resonance energy transfer (FRET)[J]. Analytica chimica acta,2007.581(2):193-201.
    [60] Roullier, V., S. Clarke, C. You, F. Pinaud, G. Gouzer, D. Schaible, V.Marchi-Artzner, J. Piehler and M. Dahan. High-affinity labeling and trackingof individual histidine-tagged proteins in live cells using Ni2+tris-nitrilotriacetic acid quantum dot conjugates[J]. Nano letters,2009.9(3):1228-1234.
    [61] Medintz, I.L., L. Berti, T. Pons, A.F. Grimes, D.S. English, A. Alessandrini, P.Facci and H. Mattoussi. A reactive peptidic linker for self-assembling hybridquantum dot-DNA bioconjugates[J]. Nano Letters,2007.7(6):1741-1748.
    [62] Van Blaaderen, A., A. Imhof, W. Hage and A. Vrij. Three-dimensionalimaging of submicrometer colloidal particles in concentrated suspensionsusing confocal scanning laser microscopy[J]. Langmuir,1992.8(6):1514-1517.
    [63] Bagwe, R.P., L.R. Hilliard and W. Tan. Surface modification of silicananoparticles to reduce aggregation and nonspecific binding[J]. Langmuir,2006.22(9):4357-4362.
    [64] Zanarini, S., E. Rampazzo, L.D. Ciana, M. Marcaccio, E. Marzocchi, M.Montalti, F. Paolucci and L. Prodi. Ru (bpy)3covalently doped silicananoparticles as multicenter tunable structures for electrochemiluminescenceamplification[J]. Journal of the American Chemical Society,2009.131(6):2260-2267.
    [65] Zanarini, S., E. Rampazzo, S. Bonacchi, R. Juris, M. Marcaccio, M. Montalti,F. Paolucci and L. Prodi. Iridium Doped Silica PEG Nanoparticles:Enabling Electrochemiluminescence of Neutral Complexes in AqueousMedia[J]. Journal of the American Chemical Society,2009.131(40):14208-14209.
    [66] Wong, K.W., X.H. Li, N.C. Lam and K.M. Chan. Luminous Chitosan-DyeNanocomposite Particles with Enhanced Lifetime and Stability[C]. inMaterials Science Forum.2012,722:87-93.
    [67] Corr,S.A.,Y.P.Rakovich,Y.K.Gun’ko.Multifunctional magnetic-fluorescentnanocomposites for biomedical applications[J]. Nanoscale Research Letters,2008.3(3):87-104.
    [68] Kloust, H., E. P selt, S. Kappen, C. Schmidtke, A. Kornowski, W. Pauer,H.-U. Moritz and H. Weller. Ultrasmall Biocompatible Nanocomposites: ANew Approach Using Seeded Emulsion Polymerization for the Encapsulationof Nanocrystals[J]. Langmuir,2012.28(18):7276-7281.
    [69] Rizvi, S.B., S. Ghaderi, M. Keshtgar and A.M. Seifalian. Semiconductorquantum dots as fluorescent probes for in vitro and in vivo bio-molecular andcellular imaging[J]. Nano reviews,2010.1.
    [70] Jańczewski, D., Y. Zhang, G.K. Das, D.K. Yi, P. Padmanabhan, K.K. Bhakoo,T.T.Y. Tan and S.T. Selvan. Bimodal magnetic–fluorescent probes forbioimaging[J]. Microscopy research and technique,2011.74(7):563-576.
    [71]袁平凡.多色量子点荧光编码微球的制备及其生物医学应用[D].吉林:吉林大学,2009.
    [72] Kim, H.K., S.-J. Kang, S.-K. Choi, Y.-H. Min and C.-S. Yoon. Highlyefficient organic/inorganic hybrid nonlinear optic materials via sol-gelprocess: synthesis, optical properties, and photobleaching for channelwaveguides[J]. Chemistry of materials,1999.11(3):779-788.
    [73] Qhobosheane, M., S. Santra, P. Zhang and W. Tan. Biochemicallyfunctionalized silica nanoparticles[J]. Analyst,2001.126(8):1274-1278.
    [74] Zhao, X., R.P. Bagwe and W. Tan. Development of Organic‐Dye‐DopedSilica Nanoparticles in a Reverse Microemulsion[J]. Advanced Materials,2004.16(2):173-176.
    [75] Yao, G., L. Wang, Y. Wu, J. Smith, J. Xu, W. Zhao, E. Lee and W. Tan.FloDots: luminescent nanoparticles[J]. Analytical and bioanalytical chemistry,2006.385(3):518-524.
    [76] Theaker, B.J., K.E. Hudson and F.J. Rowell. Doped hydrophobic silicanano-and micro-particles as novel agents for developing latent fingerprints[J].Forensic Science International,2008.174(1):26-34.
    [77] St ber, W., A. Fink and E. Bohn. Controlled growth of monodisperse silicaspheres in the micron size range[J]. Journal of colloid and interface science,1968.26(1):62-69.
    [78] Das, S., T.K. Jain and A. Maitra. Inorganic–Organic Hybrid Nanoparticlesfrom n-Octyl Triethoxy Silane[J]. Journal of colloid and interface science,2002.252(1):82-88.
    [79] Yong, K.-T., I. Roy, M.T. Swihart and P.N. Prasad. Multifunctionalnanoparticles as biocompatible targeted probes for human cancer diagnosisand therapy[J]. Journal of Materials Chemistry,2009.19(27):4655-4672.
    [80] Kumar, R., I. Roy, T.Y. Ohulchanskky, L.A. Vathy, E.J. Bergey, M. Sajjadand P.N. Prasad. In vivo biodistribution and clearance studies usingmultimodal organically modified silica nanoparticles[J]. Acs Nano,2010.4(2):699-708.
    [81] Bonacchi, S., D. Genovese, R. Juris, M. Montalti, L. Prodi, E. Rampazzo andN. Zaccheroni. Luminescent silica nanoparticles: extending the frontiers ofbrightness[J]. Angewandte Chemie International Edition,2011.50(18):4056-4066.
    [82] Csaki, A., R. Moller, W. Straube, J.M. Kohler and W. Fritzsche. DNAmonolayer on gold substrates characterized by nanoparticle labeling andscanning force microscopy[J]. Nucleic Acids Res,2001.29(16): E81.
    [83] Tan, M., Z. Ye, G. Wang and J. Yuan. Preparation and time-resolvedfluorometric application of luminescent europium nanoparticles[J].Chemistry of materials,2004.16(12):2494-2498.
    [84] Ye, Z., M. Tan, G. Wang and J. Yuan. Development of functionalized terbiumfluorescent nanoparticles for antibody labeling and time-resolvedfluoroimmunoassay application[J]. Talanta,2005.65(1):206-210.
    [85] Tan, M., G. Wang, Z. Ye and J. Yuan. Synthesis and characterization oftitania-based monodisperse fluorescent europium nanoparticles forbiolabeling[J]. Journal of luminescence,2006.117(1):20-28.
    [86] Mirkin, C.A., R.L. Letsinger, R.C. Mucic and J.J. Storhoff. A DNA-basedmethod for rationally assembling nanoparticles into macroscopic materials[J].1996.
    [87] Alivisatos, A.P., K.P. Johnsson, X. Peng, T.E. Wilson, C.J. Loweth, M.P.Bruchez and P.G. Schultz. Organization of'nanocrystal molecules' usingDNA[J].1996.
    [88]徐欢.硅基荧光纳米粒子标记食源性病原菌检测方法研究[D].江南大学.2009.
    [89]段菁华,王柯敏,谭蔚泓,何晓晓,何春梅,刘斌,李杜,黄杉生,羊小海,莫远尧.新型有机荧光染料嵌合的核壳荧光纳米材料的研制[J].高等学校化学学报,2003.24(2):255-259.
    [90] Wang, Z., H. Xu, J. Wu, J. Ye and Z. Yang. Sensitive detection of Salmonellawith fluorescent bioconjugated nanoparticles probe[J]. Food Chemistry,2011.125(2):779-784.
    [91]谢文刚.二氧化硅生物荧光纳米颗粒的制备与应用[J].湖南农业大学学报(自然科学版),2007.33(4).
    [92] Boyer, J.-C., F. Vetrone, L.A. Cuccia and J.A. Capobianco. Synthesis ofcolloidal upconverting NaYF4nanocrystals doped with Er3+, Yb3+andTm3+, Yb3+via thermal decomposition of lanthanide trifluoroacetateprecursors[J]. Journal of the American Chemical Society,2006.128(23):7444-7445.
    [93] Chen, J. and J.X. Zhao. Upconversion nanomaterials: synthesis, mechanism,and applications in sensing[J]. Sensors,2012.12(3):2414-2435.
    [94]马小媛,李双,吴世嘉,段诺,王周平.基于上转换荧光标记和磁分离技术的沙门氏菌DNA检测新方法[J].食品与生物技术学报,2013(12):1303-1310.
    [95] Shen, J., L.-D. Sun and C.-H. Yan. Luminescent rare earth nanomaterials forbioprobe applications[J]. Dalton Transactions,2008(42):5687-5697.
    [96] Whiting, D.R., L. Guariguata, C. Weil and J. Shaw. IDF diabetes atlas: globalestimates of the prevalence of diabetes for2011and2030[J]. Diabetes ResClin Pract,2011.94(3):311-321.
    [97] Sladek, R., G. Rocheleau, J. Rung, C. Dina, L. Shen, D. Serre, P. Boutin, D.Vincent, A. Belisle, S. Hadjadj, B. Balkau, B. Heude, G. Charpentier, T.J.Hudson, A. Montpetit, A.V. Pshezhetsky, M. Prentki, B.I. Posner, D.J.Balding, D. Meyre, C. Polychronakos and P. Froguel. A genome-wideassociation study identifies novel risk loci for type2diabetes[J]. Nature,2007.445(7130):881-885.
    [98] Kim, J.B., P. Sarraf, M. Wright, K.M. Yao, E. Mueller, G. Solanes, B.B.Lowell and B.M. Spiegelman. Nutritional and insulin regulation of fatty acidsynthetase and leptin gene expression through ADD1/SREBP1[J]. Journal ofClinical Investigation,1998.101(1):1.
    [99] Jaenisch, R. and A. Bird. Epigenetic regulation of gene expression: how thegenome integrates intrinsic and environmental signals[J]. Nature genetics,2003.33:245-254.
    [100] Lillycrop, K.A., E.S. Phillips, A.A. Jackson, M.A. Hanson and G.C. Burdge.Dietary protein restriction of pregnant rats induces and folic acidsupplementation prevents epigenetic modification of hepatic gene expressionin the offspring[J]. The Journal of nutrition,2005.135(6):1382-1386.
    [101] Yamakawa-Kobayashi, K., M. Natsume, S. Aoki, S. Nakano, T. Inamori, N.Kasezawa and T. Goda. The combined effect of the T2DM susceptibilitygenes is an important risk factor for T2DM in non-obese Japanese: apopulation based case-control study[J]. BMC Med Genet,2012.13:11.
    [102] Weedon, M.N., P.E. Schwarz, Y. Horikawa, N. Iwasaki, T. Illig, R. Holle, W.Rathmann, T. Selisko, J. Schulze and K.R. Owen. Meta-analysis and a largeassociation study confirm a role for calpain-10variation in type2diabetessusceptibility[J]. American journal of human genetics,2003.73(5):1208.
    [103] Onuma, H., Y. Tabara, R. Kawamoto, I. Shimizu, R. Kawamura, Y. Takata, W.Nishida, J. Ohashi, T. Miki and K. Kohara. The GCKR rs780094polymorphism is associated with susceptibility of type2diabetes, reducedfasting plasma glucose levels, increased triglycerides levels and lowerHOMA-IR in Japanese population[J]. Journal of human genetics,2010.55(9):600-604.
    [104] Ryoo, H., J. Woo, Y. Kim and C. Lee. Heterogeneity of genetic associationsof CDKAL1and HHEX with susceptibility of type2diabetes mellitus bygender[J]. European Journal of Human Genetics,2011.19(6):672-675.
    [105] Narne, P., K.C. Ponnaluri, S. Singh, M. Siraj and M. Ishaq. Relationshipbetween NADPH oxidase p22phox C242T, PARP-1Val762Alapolymorphisms, angiographically verified coronary artery disease andmyocardial infarction in South Indian patients with type2diabetesmellitus[J]. Thromb Res,2012.130(5): e259-265.
    [106] Siitonen, N., L. Pulkkinen, J. Lindstrom, M. Kolehmainen, U. Schwab, J.G.Eriksson, P. Ilanne-Parikka, S. Keinanen-Kiukaanniemi, J. Tuomilehto and M.Uusitupa. Association of ADIPOR2gene variants with cardiovascular diseaseand type2diabetes risk in individuals with impaired glucose tolerance: theFinnish Diabetes Prevention Study[J]. Cardiovasc Diabetol,2011.10:83.
    [107] Lu, W. and B. Feng. The-374A allele of the RAGE gene as a potentialprotective factor for vascular complications in type2diabetes: ameta-analysis[J]. Tohoku J Exp Med,2010.220(4):291-297.
    [108] Chen, P.L. and W.S. Yang. Human genetics of diabetes mellitus in Taiwan[J].Front Biosci (Landmark Ed),2009.14:4535-4545.
    [109] Gill-Carey, O. and A.T. Hattersley. Genetics and type2diabetes in youth[J].Pediatr Diabetes,2007.8(9):42-47.
    [110] Yang, X., Y. Deng, H. Gu, X. Ren, N. Li, A. Lim, T. Snellingen, X. Liu, N.Wang and N. Liu. Candidate gene association study for diabetic retinopathyin Chinese patients with type2diabetes[J]. Mol Vis,2014.20:200-214.
    [111] Jiang, B., Y. Liu, Y. Liu, F. Fang, X. Wang and B. Li. Association of fourinsulin resistance genes with type2diabetes mellitus and hypertension in theChinese Han population[J]. Mol Biol Rep,2014.41(2):925-933.
    [112] Van Bergen, C.A., C.E. Rutten, E.D. Van Der Meijden, S.A. VanLuxemburg-Heijs, E.G. Lurvink, J.J. Houwing-Duistermaat, M.G. Kester, A.Mulder, R. Willemze, J.H. Falkenburg and M. Griffioen. High-throughputcharacterization of10new minor histocompatibility antigens by wholegenome association scanning[J]. Cancer Res,2010.70(22):9073-9083.
    [113] Peiffer, D.A. and K.L. Gunderson. Design of tag SNP whole genomegenotyping arrays[J]. Methods Mol Biol,2009.529:51-61.
    [114] Li, H., W. Gan, L. Lu, X. Dong, X. Han, C. Hu, Z. Yang, L. Sun, W. Bao, P.Li, M. He, L. Sun, Y. Wang, J. Zhu, Q. Ning, Y. Tang, R. Zhang, J. Wen, D.Wang, X. Zhu, K. Guo, X. Zuo, X. Guo, H. Yang, X. Zhou, X. Zhang, L. Qi,R.J. Loos, F.B. Hu, T. Wu, Y. Liu, L. Liu, Z. Yang, R. Hu, W. Jia, L. Ji, Y. Liand X. Lin. A genome-wide association study identifies GRK5andRASGRP1as type2diabetes loci in Chinese Hans[J]. Diabetes,2013.62(1):291-298.
    [115] Osmark, P., O. Hansson, A. Jonsson, T. Ronn, L. Groop and E. Renstrom.Unique splicing pattern of the TCF7L2gene in human pancreatic islets[J].Diabetologia,2009.52(5):850-854.
    [116] Grant, S.F., G. Thorleifsson, I. Reynisdottir, R. Benediktsson, A. Manolescu,J. Sainz, A. Helgason, H. Stefansson, V. Emilsson and A. Helgadottir. Variantof transcription factor7-like2(TCF7L2) gene confers risk of type2diabetes[J]. Nature genetics,2006.38(3):320-323.
    [117] van Vliet-Ostaptchouk, J., R. Shiri-Sverdlov, A. Zhernakova, E. Strengman, T.Van Haeften, M. Hofker and C. Wijmenga. Association of variants oftranscription factor7-like2(TCF7L2) with susceptibility to type2diabetesin the Dutch Breda cohort[J]. Diabetologia,2007.50(1):59-62.
    [118] Lehman, D.M., K.J. Hunt, R.J. Leach, J. Hamlington, R. Arya, H.E. Abboud,R. Duggirala, J. Blangero, H.H. Goring and M.P. Stern. Haplotypes oftranscription factor7-like2(TCF7L2) gene and its upstream region areassociated with type2diabetes and age of onset in Mexican Americans[J].Diabetes,2007.56(2):389-393.
    [119] Chandak, G.R., C.S. Janipalli, S. Bhaskar, S.R. Kulkarni, P. Mohankrishna,A.T. Hattersley, T.M. Frayling and C.S. Yajnik. Common variants in theTCF7L2gene are strongly associated with type2diabetes mellitus in theIndian population[J]. Diabetologia,2007.50(1):63-67.
    [120] Miyake, K., Y. Horikawa, K. Hara, K. Yasuda, H. Osawa, H. Furuta, Y.Hirota, K. Yamagata, Y. Hinokio, Y. Oka, N. Iwasaki, Y. Iwamoto, Y. Yamada,Y. Seino, H. Maegawa, A. Kashiwagi, K. Yamamoto, K. Tokunaga, J. Takeda,H. Makino, K. Nanjo, T. Kadowaki and M. Kasuga. Association of TCF7L2polymorphisms with susceptibility to type2diabetes in4,087Japanesesubjects[J]. J Hum Genet,2008.53(2):174-180.
    [121] Long, J., T. Edwards, L.B. Signorello, Q. Cai, W. Zheng, X.O. Shu and W.J.Blot.Evaluation of genome-wide association study-identified type2diabetesloci in African Americans[J]. Am J Epidemiol,2012.176(11):995-1001.
    [122] Shu, L., K. Zien, G. Gutjahr, J. Oberholzer, F. Pattou, J. Kerr-Conte and K.Maedler. TCF7L2promotes beta cell regeneration in human and mousepancreas[J]. Diabetologia,2012.55(12):3296-3307.
    [123] Yi, F., P.L. Brubaker and T. Jin. TCF-4mediates cell type-specific regulationof proglucagon gene expression by beta-catenin and glycogen synthasekinase-3beta[J]. J Biol Chem,2005.280(2):1457-1464.
    [124] Lyssenko, V., R. Lupi, P. Marchetti, S. Del Guerra, M. Orho-Melander, P.Almgren, M. Sjogren, C. Ling, K.F. Eriksson, A.L. Lethagen, R. Mancarella,G. Berglund, T. Tuomi, P. Nilsson, S. Del Prato and L. Groop. Mechanismsby which common variants in the TCF7L2gene increase risk of type2diabetes[J]. J Clin Invest,2007.117(8):2155-2163.
    [125] Damcott, C.M., T.I. Pollin, L.J. Reinhart, S.H. Ott, H. Shen, K.D. Silver, B.D.Mitchell and A.R. Shuldiner. Polymorphisms in the transcription factor7-like2(TCF7L2) gene are associated with type2diabetes in the Amish:replication and evidence for a role in both insulin secretion and insulinresistance[J]. Diabetes,2006.55(9):2654-2659.
    [126] Bonal, C. and P.L. Herrera. Genes controlling pancreas ontogeny[J]. Int JDev Biol,2008.52(7):823-835.
    [127] Wu, Y., H. Li, R.J. Loos, Z. Yu, X. Ye, L. Chen, A. Pan, F.B. Hu and X. Lin.Common variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, andHHEX/IDE genes are associated with type2diabetes and impaired fastingglucose in a Chinese Han population[J]. Diabetes,2008.57(10):2834-2842.
    [128] Horikoshi, M., K. Hara, C. Ito, N. Shojima, R. Nagai, K. Ueki, P. Froguel andT. Kadowaki. Variations in the HHEX gene are associated with increased riskof type2diabetes in the Japanese population[J]. Diabetologia,2007.50(12):2461-2466.
    [129] Kifagi, C., K. Makni, M. Boudawara, F. Mnif, N. Hamza, M. Abid, C.Granier and H. Ayadi. Association of genetic variations in TCF7L2,SLC30A8, HHEX, LOC387761, and EXT2with Type2diabetes mellitus inTunisia[J]. Genet Test Mol Biomarkers,2011.15(6):399-405.
    [130] Pivovarova, O., V.J. Nikiforova, A.F. Pfeiffer and N. Rudovich. The influenceof genetic variations in HHEX gene on insulin metabolism in the GermanMESYBEPO cohort[J]. Diabetes Metab Res Rev,2009.25(2):156-162.
    [131] Pascoe, L., A. Tura, S.K. Patel, I.M. Ibrahim, E. Ferrannini, E. Zeggini, M.N.Weedon, A. Mari, A.T. Hattersley, M.I. McCarthy, T.M. Frayling and M.Walker. Common variants of the novel type2diabetes genes CDKAL1andHHEX/IDE are associated with decreased pancreatic beta-cell function[J].Diabetes,2007.56(12):3101-3104.
    [132] Chimienti, F., S. Devergnas, F. Pattou, F. Schuit, R. Garcia-Cuenca, B.Vandewalle, J. Kerr-Conte, L. Van Lommel, D. Grunwald, A. Favier and M.Seve. In vivo expression and functional characterization of the zinctransporter ZnT8in glucose-induced insulin secretion[J]. J Cell Sci,2006.119(Pt20):4199-4206.
    [133] Cauchi, S., S. Del Guerra, H. Choquet, V. D'Aleo, C.J. Groves, R. Lupi, M.I.McCarthy, P. Froguel and P. Marchetti. Meta-analysis and functional effectsof the SLC30A8rs13266634polymorphism on isolated human pancreaticislets[J]. Mol Genet Metab,2010.100(1):77-82.
    [134] Xu, M., Y. Bi, Y. Xu, B. Yu, Y. Huang, L. Gu, Y. Wu, X. Zhu, M. Li, T. Wang,A. Song, J. Hou, X. Li and G. Ning. Combined effects of19commonvariations on type2diabetes in Chinese: results from two community-basedstudies[J]. PLoS One,2010.5(11): e14022.
    [135] Omori, S., Y. Tanaka, A. Takahashi, H. Hirose, A. Kashiwagi, K. Kaku, R.Kawamori, Y. Nakamura and S. Maeda. Association of CDKAL1, IGF2BP2,CDKN2A/B, HHEX, SLC30A8, and KCNJ11with susceptibility to type2diabetes in a Japanese population[J]. Diabetes,2008.57(3):791-795.
    [136] Cauchi, S., C. Proenca, H. Choquet, S. Gaget, F. De Graeve, M. Marre, B.Balkau, J. Tichet, D. Meyre, M. Vaxillaire and P. Froguel. Analysis of novelrisk loci for type2diabetes in a general French population: the D.E.S.I.R.study[J]. J Mol Med (Berl),2008.86(3):341-348.
    [137] Boesgaard, T.W., J. Zilinskaite, M. Vanttinen, M. Laakso, P.A. Jansson, A.Hammarstedt, U. Smith, N. Stefan, A. Fritsche, H. Haring, M. Hribal, G.Sesti, D.P. Zobel, O. Pedersen and T. Hansen. The common SLC30A8Arg325Trp variant is associated with reduced first-phase insulin release in846non-diabetic offspring of type2diabetes patients--the EUGENE2study[J]. Diabetologia,2008.51(5):816-820.
    [138] Kirchhoff, K., F. Machicao, A. Haupt, S.A. Schafer, O. Tschritter, H. Staiger,N. Stefan, H.U. Haring and A. Fritsche. Polymorphisms in the TCF7L2,CDKAL1and SLC30A8genes are associated with impaired proinsulinconversion[J]. Diabetologia,2008.51(4):597-601.
    [139] Ingelsson, E., C. Langenberg, M.F. Hivert, I. Prokopenko, V. Lyssenko, J.Dupuis, R. Magi, S. Sharp, A.U. Jackson, T.L. Assimes, P. Shrader, J.W.Knowles, B. Zethelius, F.A. Abbasi, R.N. Bergman, A. Bergmann, C. Berne,M. Boehnke, L.L. Bonnycastle, S.R. Bornstein, T.A. Buchanan, S.J.Bumpstead, Y. Bottcher, P. Chines, F.S. Collins, C.C. Cooper, E.M. Dennison,M.R. Erdos, E. Ferrannini, C.S. Fox, J. Graessler, K. Hao, B. Isomaa, K.A.Jameson, P. Kovacs, J. Kuusisto, M. Laakso, C. Ladenvall, K.L. Mohlke,M.A. Morken, N. Narisu, D.M. Nathan, L. Pascoe, F. Payne, J.R. Petrie, A.A.Sayer, P.E. Schwarz, L.J. Scott, H.M. Stringham, M. Stumvoll, A.J. Swift,A.C. Syvanen, T. Tuomi, J. Tuomilehto, A. Tonjes, T.T. Valle, G.H. Williams,L. Lind, I. Barroso, T. Quertermous, M. Walker, N.J. Wareham, J.B. Meigs,M.I. McCarthy, L. Groop, R.M. Watanabe and J.C. Florez. Detailedphysiologic characterization reveals diverse mechanisms for novel geneticLoci regulating glucose and insulin metabolism in humans[J]. Diabetes,2010.59(5):1266-1275.
    [140] Steinthorsdottir, V., G. Thorleifsson, I. Reynisdottir, R. Benediktsson, T.Jonsdottir, G.B. Walters, U. Styrkarsdottir, S. Gretarsdottir, V. Emilsson, S.Ghosh, A. Baker, S. Snorradottir, H. Bjarnason, M.C. Ng, T. Hansen, Y.Bagger, R.L. Wilensky, M.P. Reilly, A. Adeyemo, Y. Chen, J. Zhou, V.Gudnason, G. Chen, H. Huang, K. Lashley, A. Doumatey, W.Y. So, R.C. Ma,G. Andersen, K. Borch-Johnsen, T. Jorgensen, J.V. van Vliet-Ostaptchouk,M.H. Hofker, C. Wijmenga, C. Christiansen, D.J. Rader, C. Rotimi, M.Gurney, J.C. Chan, O. Pedersen, G. Sigurdsson, J.R. Gulcher, U.Thorsteinsdottir, A. Kong and K. Stefansson. A variant in CDKAL1influences insulin response and risk of type2diabetes[J]. Nat Genet,2007.39(6):770-775.
    [141] Groenewoud, M.J., J.M. Dekker, A. Fritsche, E. Reiling, G. Nijpels, R.J.Heine, J.A. Maassen, F. Machicao, S.A. Schafer, H.U. Haring, L.M. t Hartand T.W. van Haeften. Variants of CDKAL1and IGF2BP2affect first-phaseinsulin secretion during hyperglycaemic clamps[J]. Diabetologia,2008.51(9):1659-1663.
    [142] Marzo, N., C. Mora, M. Fabregat, J. Martin, E. Usac, C. Franco, M. Barbacidand R. Gomis. Pancreatic islets from cyclin-dependent kinase4/R24C (Cdk4)knockin mice have significantly increased beta cell mass and arephysiologically functional, indicating that Cdk4is a potential target forpancreatic beta cell mass regeneration in Type1diabetes[J]. Diabetologia,2004.47(4):686-694.
    [143] Mettus, R.V. and S.G. Rane. Characterization of the abnormal pancreaticdevelopment, reduced growth and infertility in Cdk4mutant mice[J].Oncogene,2003.22(52):8413-8421.
    [144] Rane, S.G., P. Dubus, R.V. Mettus, E.J. Galbreath, G. Boden, E.P. Reddy andM. Barbacid. Loss of Cdk4expression causes insulin-deficient diabetes andCdk4activation results in β-islet cell hyperplasia[J]. Nature genetics,1999.22(1):44-52.
    [145] Perry, J.R. and T.M. Frayling. New gene variants alter type2diabetes riskpredominantly through reduced beta-cell function[J]. Curr Opin Clin NutrMetab Care,2008.11(4):371-377.
    [146] Buchanan, T.A. Pancreatic B-cell defects in gestational diabetes: implicationsfor the pathogenesis and prevention of type2diabetes[J]. Journal of ClinicalEndocrinology&Metabolism,2001.86(3):989-993.
    [147] Lewis, J.P., N.D. Palmer, P.J. Hicks, M.M. Sale, C.D. Langefeld, B.I.Freedman, J. Divers and D.W. Bowden. Association analysis in AfricanAmericans of European-derived type2diabetes single nucleotidepolymorphisms from whole-genome association studies[J]. Diabetes,2008.57(8):2220-2225.
    [148] Zeggini, E., M.N. Weedon, C.M. Lindgren, T.M. Frayling, K.S. Elliott, H.Lango, N.J. Timpson, J.R. Perry, N.W. Rayner, R.M. Freathy, J.C. Barrett, B.Shields, A.P. Morris, S. Ellard, C.J. Groves, L.W. Harries, J.L. Marchini, K.R.Owen, B. Knight, L.R. Cardon, M. Walker, G.A. Hitman, A.D. Morris, A.S.Doney, M.I. McCarthy and A.T. Hattersley. Replication of genome-wideassociation signals in UK samples reveals risk loci for type2diabetes[J].Science,2007.316(5829):1336-1341.
    [149] Cho, Y., T. Kim, S. Lim, S. Choi, H. Shin, H. Lee, K. Park and H. Jang. Type2diabetes-associated genetic variants discovered in the recent genome-wideassociation studies are related to gestational diabetes mellitus in the Koreanpopulation[J]. Diabetologia,2009.52(2):253-261.
    [150] Wolf, N., M. Quaranta, N.J. Prescott, M. Allen, R. Smith, A.D. Burden, J.Worthington, C. Griffiths, C. Mathew and J. Barker. Psoriasis is associatedwith pleiotropic susceptibility loci identified in type II diabetes and Crohndisease[J]. Journal of medical genetics,2008.45(2):114-116.
    [151] Palmer, N.D., M.O. Goodarzi, C.D. Langefeld, J. Ziegler, J.M. Norris, S.M.Haffner, M. Bryer-Ash, R.N. Bergman, L.E. Wagenknecht and K.D. Taylor.Quantitative trait analysis of type2diabetes susceptibility loci identifiedfrom whole genome association studies in the Insulin ResistanceAtherosclerosis Family Study[J]. Diabetes,2008.57(4):1093-1100.
    [152] Xu, M., X. Chen, L. Jin and W. Chen. A Meta-analysis on the associationbetween adiponectin gene45T/G/276G/T polymorphisms and type2diabetesin Chinese population][J]. Zhonghua liu xing bing xue za zhi=Zhonghualiuxingbingxue zazhi,2008.29(11):1132.
    [153] Yang, M., C.-C. Qiu, W. Chen, L.-L. Xu, M. Yu and H.-D. Xiang.Identification of a regulatory single nucleotide polymorphism in theadiponectin (APM1) gene associated with type2diabetes in Hannationality[J]. Biomedical and Environmental Sciences,2008.21(6):454-459.
    [154] Sun, H., Z.C. Gong, J.Y. Yin, H.L. Liu, Y.Z. Liu, Z.W. Guo, H.H. Zhou, J.Wu and Z.Q. Liu. The association of adiponectin allele45T/G and11377C/G polymorphisms with type2diabetes and rosiglitazone response inChinese patients[J]. British Journal of clinical pharmacology,2008.65(6):917-926.
    [155] Ochoa, M.C., J.L. Santos, C. Azcona, M.J. Moreno-Aliaga, M.A.Martínez-González, J.A. Martínez and A. Marti. Association between obesityand insulin resistance with UCP2–UCP3gene variants in Spanish childrenand adolescents[J]. Molecular genetics and metabolism,2007.92(4):351-358.
    [156] Gable, D.R., J.W. Stephens, J.A. Cooper, G.J. Miller and S.E. Humphries.Variation in the UCP2-UCP3gene cluster predicts the development of type2diabetes in healthy middle-aged men[J]. Diabetes,2006.55(5):1504-1511.
    [157] Ridderstr le, M. and E. Nilsson. Type2diabetes candidate gene CAPN10:first, but not last[J]. Current hypertension reports,2008.10(1):19-24.
    [158] Horikawa, Y., N. Oda, N.J. Cox, X. Li, M. Orho-Melander, M. Hara, Y.Hinokio, T.H. Lindner, H. Mashima and P.E. Schwarz. Genetic variation inthe gene encoding calpain-10is associated with type2diabetes mellitus[J].Nature genetics,2000.26(2):163-175.
    [159] Dong, C., L. He, J. Li, F. Ye, M. He and Y. Wang. Association of thePro12Ala and C1431T polymorphism of the PPAR gamma2gene and theirhaplotypes with obesity and type2diabetes][J]. Zhonghua yi xue yi chuanxue za zhi,2008.25(4):447.
    [160] Linlin,Li. Genetic Polymorphism of Peroxisome Proliferator-ActivatedReceptor-[gamma]2Pro12Ala on Ethnic Susceptibility to Diabetes inUygurs, Kazaks and Hans Subjects[J].2007.
    [161] Aiping, Z., Z. Muxun, Z. Jianhua, Y. Yikai and X. Junhui. The influence ofthe Pro12Ala mutation of PPARγ2receptor gene on β-cells restoration andinsulin resistance in type2diabetes with hypertension[J]. Journal ofHuazhong University of Science and Technology [Medical Sciences],2005.25(6):648-650.
    [162] Li, L.L., X.L. Ma, J.X. Ran, X.F. Sun, L.M. Xu, J. Ren and X.M. Mao.GENETIC POLYMORPHISM OF PEROXISOME PROLIFERATOR‐ACTIVATED RECEPTOR‐γ2PRO12ALA ON ETHNICSUSCEPTIBILITY TO DIABETES IN UYGUR, KAZAK AND HANSUBJECTS[J]. Clinical and Experimental Pharmacology and Physiology,2008.35(2):187-191.
    [163] Kubaszek, A., J. Pihlajam ki, V. Komarovski, V. Lindi, J. Lindstr m, J.Eriksson, T.T. Valle, H. H m l inen, P. Ilanne-Parikka and S.Kein nen-Kiukaanniemi. Promoter Polymorphisms of the TNF-α (G-308A)and IL-6(C-174G) Genes Predict the Conversion From Impaired GlucoseTolerance to Type2Diabetes The Finnish Diabetes Prevention Study[J].Diabetes,2003.52(7):1872-1876.
    [164] Abbas, M., K. Srivastava, M. Imran and M. Banerjee. Association ofCYP1A1gene variants rs4646903(T>C) and rs1048943(A>G) with cervicalcancer in a North Indian population[J]. Eur J Obstet Gynecol Reprod Biol,2014.
    [165] Zermeno-Rivera, J.J., J.P. Astocondor-Perez, Y. Valle, J.R. Padilla-Gutierrez,R. Orozco-Castellanos, L.E. Figuera and B.E. Gutierrez-Amavizca.Association of the FTO gene SNP rs17817449with body fat distribution inMexican women[J]. Genet Mol Res,2014.13(AOP).
    [166] Abdolmohammadi, A. and P. Zamani. SNP exploring in the middle andterminal regions of the IGF-1gene and association with production andreproduction traits in Holstein cattle[J]. Gene,2014.540(1):92-95.
    [167] Nie, Y., C. Zhang, H. Jiao, Z. Zhao and H. Zhou. Development of a multiplexPCR system of59mitochondrial SNPs and genetic analysis in Chinesepopulation[J]. Electrophoresis,2014.
    [168] Duan, X., L. Liu and S. Wang. Homogeneous and one-step fluorescentallele-specific PCR for SNP genotyping assays using conjugatedpolyelectrolytes[J]. Biosens Bioelectron,2009.24(7):2095-2099.
    [169] Koizumi, M., K. Morita, M. Takagi, H. Yasumo and A. Kasuya. SNPgenotyping by allele-specific PCR using ENA primers[J]. Nucleic AcidsSymp Ser (Oxf),2005(49):47-48.
    [170] Heidari, M.M., M. Khatami and J. Pourakrami. Novel Point Mutations inFrataxin Gene in Iranian Patients with Friedreich's Ataxia[J]. Iran J ChildNeurol,2014.8(1):32-36.
    [171] Aali, M., M. Moradi-Shahrbabak, H. Moradi-Shahrbabak and M. Sadeghi.Detecting novel SNPs and breed-specific haplotypes at calpastatin gene inIranian fat-and thin-tailed sheep breeds and their effects on proteinstructure[J]. Gene,2014.537(1):132-139.
    [172] Li, W., L. Han, P. Yu, C. Ma, X. Wu and J. Xu. Nested PCR-denaturinggradient gel electrophoresis analysis of human skin microbial diversity withage[J]. Microbiol Res,2014.
    [173] Wang, S., L. Guo, C.J. Seneviratne, B. Huang, J. Han, L. Peng, X. Liu and C.Zhang. Biofilm formation of salivary microbiota on dental restorativematerials analyzed by denaturing gradient gel electrophoresis andsequencing[J]. Dent Mater J,2014.
    [174] Alderborn, A., A. Kristofferson and U. Hammerling. Determination ofsingle-nucleotide polymorphisms by real-time pyrophosphate DNAsequencing[J]. Genome research,2000.10(8):1249-1258.
    [175] McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A.Kernytsky, K. Garimella, D. Altshuler, S. Gabriel and M. Daly. The GenomeAnalysis Toolkit: a MapReduce framework for analyzing next-generationDNA sequencing data[J]. Genome research,2010.20(9):1297-1303.
    [176] Zhou, G.H., M. Gotou, T. Kajiyama and H. Kambara. Multiplex SNP typingby bioluminometric assay coupled with terminator incorporation (BATI)[J].Nucleic Acids Res,2005.33(15): e133.
    [177] Sauer, S., D. Lechner, K. Berlin, H. Lehrach, J.-L. Escary, N. Fox and I.G.Gut. A novel procedure for efficient genotyping of single nucleotidepolymorphisms[J]. Nucleic acids research,2000.28(5): e13.
    [178] Irizarry, R.A., B.M. Bolstad, F. Collin, L.M. Cope, B. Hobbs and T.P. Speed.Summaries of Affymetrix GeneChip probe level data[J]. Nucleic acidsresearch,2003.31(4): e15.
    [179] Lemieux, B., A. Aharoni and M. Schena. Overview of DNA chiptechnology[J]. Molecular Breeding,1998.4(4):277-289.
    [180] Afshari, C.A., E.F. Nuwaysir and J.C. Barrett. Application of complementaryDNA microarray technology to carcinogen identification, toxicology, anddrug safety evaluation[J]. Cancer Research,1999.59(19):4759-4760.
    [181] Heller, M.J.DNA microarray technology: devices, systems, andapplications[J]. Annual review of biomedical engineering,2002.4(1):129-153.
    [182] Liang, Z., M. Dong, Q. Cheng and D. Chen. Gestational diabetes mellitusscreening based on the gene chip technique[J]. Diabetes Res Clin Pract,2010.89(2):167-173.
    [183] Liu, C.-h., W.-l. Ma, R. Shi, Y.-q. Ou, B. Zhang and W.-l. Zheng. Possibilityof using DNA chip technology for diagnosis of human papillomavirus[J].Journal of biochemistry and molecular biology,2003.36(4):349-353.
    [184] Liu, J., J.Y. Gao, J.P. Zhang, P.Q. Li, J.X. Liu, J. Liu and X.D. Xie.Evaluation of the association between retinal binding protein4polymorphisms and type2diabetes in Chinese by DHPLC[J]. Endocrine,2008.34(1-3):23-28.
    [185] Meyer, K. and P.M. Ueland. Use of matrix-assisted laserdesorption/ionization time-of-flight mass spectrometry for multiplexgenotyping[J]. Adv Clin Chem,2011.53:1-29.
    [186] Caprioli, R.M., T.B. Farmer and J. Gile. Molecular imaging of biologicalsamples: localization of peptides and proteins using MALDI-TOF MS[J].Analytical Chemistry,1997.69(23):4751-4760.
    [187] Kondo, T., S. Sawa, A. Kinoshita, S. Mizuno, T. Kakimoto, H. Fukuda and Y.Sakagami. A plant peptide encoded by CLV3identified by in situMALDI-TOF MS analysis[J]. Science,2006.313(5788):845-848.
    [188] Sparbier, K., S. Koch, I. Kessler, T. Wenzel and M. Kostrzewa. Selectiveisolation of glycoproteins and glycopeptides for MALDI-TOF MS detectionsupported by magnetic particles[J]. Journal of biomolecular techniques: JBT,2005.16(4):407.
    [189] Florez, J.C., C.M. Agapakis, N.P. Burtt, M. Sun, P. Almgren, L. Rastam, T.Tuomi, D. Gaudet, T.J. Hudson, M.J. Daly, K.G. Ardlie, J.N. Hirschhorn, L.Groop and D. Altshuler. Association testing of the protein tyrosinephosphatase1B gene (PTPN1) with type2diabetes in7,883people[J].Diabetes,2005.54(6):1884-1891.
    [190] Semiz, S., T. Dujic, B. Ostanek, Z. Velija-Asimi, B. Prnjavorac, T. Bego, M.Malenica, B. Mlinar, B. Heljic, J. Marc and A. Causevic. Association ofNAT2polymorphisms with type2diabetes in a population from Bosnia andHerzegovina[J]. Arch Med Res,2011.42(4):311-317.
    [191]陈琰,刘桂锋,吴玫,张桂珍.2型糖尿病易感基因单核苷酸多态性分析技术的研究进展[J].中国老年学杂志,2013.33(024):6346-6347.
    [192] Shi, Z., J. Liu, Q. Guo, X. Ma, L. Shen, S. Xu, H. Gao, X. Yuan and J. Zhang.Association of TRB3gene Q84R polymorphism with type2diabetes mellitusin Chinese population[J]. Endocrine,2009.35(3):414-419.
    [193] Predojevic, A., M. Jezek, T. Huber, H. Jayakumar, T. Kauten, G.S. Solomon,R. Filip and G. Weihs. Efficiency vs. multi-photon contribution test forquantum dots[J]. Opt Express,2014.22(4):4789-4798.
    [194] Man, M.T. and H.S. Lee. Carrier transfer and thermal escape in CdTe/ZnTequantum dots[J]. Opt Express,2014.22(4):4115-4122.
    [195] Chatterjee, S. and T.K. Mukherjee. Spectroscopic investigation of interactionbetween bovine serum albumin and amine-functionalized silicon quantumdots[J]. Phys Chem Chem Phys,2014.
    [196] Zaitsev, S.Y., E.P. Lukashev, D.O. Solovyeva, A.A. Chistyakov and V.A.Oleinikov. Controlled influence of quantum dots on purple membranes atinterfaces[J]. Colloids Surf B Biointerfaces,2014.117C:248-251.
    [197]吴玫.一种基于荧光量子点标识技术的糖尿病易感基因通量筛选方法的基础研究[D],吉林:吉林大学中日联谊医院,2009.
    [198] Li, Y.Q., L.Y. Guan, J.H. Wang, H.L. Zhang, J. Chen, S. Lin, W. Chen andY.D. Zhao. Simultaneous detection of dual single-base mutations by capillaryelectrophoresis using quantum dot-molecular beacon probe[J]. BiosensBioelectron,2011.26(5):2317-2322.
    [199] Ahlqvist, E., T.S. Ahluwalia and L. Groop. Genetics of type2diabetes[J].Clinical chemistry,2011.57(2):241-254.
    [200] Manolio, T.A., F.S. Collins, N.J. Cox, D.B. Goldstein, L.A. Hindorff, D.J.Hunter, M.I. McCarthy, E.M. Ramos, L.R. Cardon, A. Chakravarti, J.H. Cho,A.E. Guttmacher, A. Kong, L. Kruglyak, E. Mardis, C.N. Rotimi, M. Slatkin,D. Valle, A.S. Whittemore, M. Boehnke, A.G. Clark, E.E. Eichler, G. Gibson,J.L. Haines, T.F. Mackay, S.A. McCarroll and P.M. Visscher. Finding themissing heritability of complex diseases[J]. Nature,2009.461(7265):747-753.
    [201] Voight, B.F., L.J. Scott, V. Steinthorsdottir, A.P. Morris, C. Dina, R.P. Welch,E. Zeggini, C. Huth, Y.S. Aulchenko, G. Thorleifsson, L.J. McCulloch, T.Ferreira, H. Grallert, N. Amin, G. Wu, C.J. Willer, S. Raychaudhuri, S.A.McCarroll, C. Langenberg, O.M. Hofmann, J. Dupuis, L. Qi, A.V. Segre, M.van Hoek, P. Navarro, K. Ardlie, B. Balkau, R. Benediktsson, A.J. Bennett, R.Blagieva, E. Boerwinkle, L.L. Bonnycastle, K. Bengtsson Bostrom, B.Bravenboer, S. Bumpstead, N.P. Burtt, G. Charpentier, P.S. Chines, M.Cornelis, D.J. Couper, G. Crawford, A.S. Doney, K.S. Elliott, A.L. Elliott,M.R. Erdos, C.S. Fox, C.S. Franklin, M. Ganser, C. Gieger, N. Grarup, T.Green, S. Griffin, C.J. Groves, C. Guiducci, S. Hadjadj, N. Hassanali, C.Herder, B. Isomaa, A.U. Jackson, P.R. Johnson, T. Jorgensen, W.H. Kao, N.Klopp, A. Kong, P. Kraft, J. Kuusisto, T. Lauritzen, M. Li, A. Lieverse, C.M.Lindgren, V. Lyssenko, M. Marre, T. Meitinger, K. Midthjell, M.A. Morken,N. Narisu, P. Nilsson, K.R. Owen, F. Payne, J.R. Perry, A.K. Petersen, C.Platou, C. Proenca, I. Prokopenko, W. Rathmann, N.W. Rayner, N.R.Robertson, G. Rocheleau, M. Roden, M.J. Sampson, R. Saxena, B.M. Shields,P. Shrader, G. Sigurdsson, T. Sparso, K. Strassburger, H.M. Stringham, Q.Sun, A.J. Swift, B. Thorand, J. Tichet, T. Tuomi, R.M. van Dam, T.W. vanHaeften, T. van Herpt, J.V. van Vliet-Ostaptchouk, G.B. Walters, M.N.Weedon, C. Wijmenga, J. Witteman, R.N. Bergman, S. Cauchi, F.S. Collins,A.L. Gloyn, U. Gyllensten, T. Hansen, W.A. Hide, G.A. Hitman, A. Hofman,D.J. Hunter, K. Hveem, M. Laakso, K.L. Mohlke, A.D. Morris, C.N. Palmer,P.P. Pramstaller, I. Rudan, E. Sijbrands, L.D. Stein, J. Tuomilehto, A.Uitterlinden, M. Walker, N.J. Wareham, R.M. Watanabe, G.R. Abecasis, B.O.Boehm, H. Campbell, M.J. Daly, A.T. Hattersley, F.B. Hu, J.B. Meigs, J.S.Pankow, O. Pedersen, H.E. Wichmann, I. Barroso, J.C. Florez, T.M. Frayling,L. Groop, R. Sladek, U. Thorsteinsdottir, J.F. Wilson, T. Illig, P. Froguel, C.M.van Duijn, K. Stefansson, D. Altshuler, M. Boehnke and M.I. McCarthy.Twelve type2diabetes susceptibility loci identified through large-scaleassociation analysis[J]. Nat Genet,2010.42(7):579-589.
    [202] McIntyre, E.A. and M. Walker. Genetics of type2diabetes and insulinresistance: knowledge from human studies[J]. Clin Endocrinol (Oxf),2002.57(3):303-311.
    [203] Agrawal, S., N. Dimitrova, P. Nathan, K. Udayakumar, S.S. Lakshmi, S.Sriram, N. Manjusha and U. Sengupta. T2D-Db: an integrated platform tostudy the molecular basis of Type2diabetes[J]. BMC Genomics,2008.9:320.
    [204] Scott, L.J., K.L. Mohlke, L.L. Bonnycastle, C.J. Willer, Y. Li, W.L. Duren,M.R. Erdos, H.M. Stringham, P.S. Chines, A.U. Jackson, L.Prokunina-Olsson, C.J. Ding, A.J. Swift, N. Narisu, T. Hu, R. Pruim, R. Xiao,X.Y. Li, K.N. Conneely, N.L. Riebow, A.G. Sprau, M. Tong, P.P. White, K.N.Hetrick, M.W. Barnhart, C.W. Bark, J.L. Goldstein, L. Watkins, F. Xiang, J.Saramies, T.A. Buchanan, R.M. Watanabe, T.T. Valle, L. Kinnunen, G.R.Abecasis, E.W. Pugh, K.F. Doheny, R.N. Bergman, J. Tuomilehto, F.S.Collins and M. Boehnke. A genome-wide association study of type2diabetesin Finns detects multiple susceptibility variants[J]. Science,2007.316(5829):1341-1345.
    [205] Saxena, R., L. Gianniny, N.P. Burtt, V. Lyssenko, C. Giuducci, M. Sj gren,J.C. Florez, P. Almgren, B. Isomaa and M. Orho-Melander. Common singlenucleotide polymorphisms in TCF7L2are reproducibly associated with type2diabetes and reduce the insulin response to glucose in nondiabeticindividuals[J]. Diabetes,2006.55(10):2890-2895.
    [206] Ng, M.C., C.H. Tam, V.K. Lam, W.Y. So, R.C. Ma and J.C. Chan.Replication and identification of novel variants at TCF7L2associated withtype2diabetes in Hong Kong Chinese[J]. J Clin Endocrinol Metab,2007.92(9):3733-3737.
    [207] Chang, Y.C., T.J. Chang, Y.D. Jiang, S.S. Kuo, K.C. Lee, K.C. Chiu and L.M.Chuang. Association study of the genetic polymorphisms of the transcriptionfactor7-like2(TCF7L2) gene and type2diabetes in the Chinesepopulation[J]. Diabetes,2007.56(10):2631-2637.
    [208] Faghih, H., S.R. Khatami, N. Azarpira and A.M. Foroughmand. SLC30A8gene polymorphism (rs13266634C/T) and type2diabetes mellitus in southIranian population[J]. Mol Biol Rep,2014:1-7.
    [209] Zheng, X., W. Ren, S. Zhang, J. Liu, S. Li, J. Li, P. Yang, J. He, S. Su and P.Li. Association of type2diabetes susceptibility genes (TCF7L2, SLC30A8,PCSK1and PCSK2) and proinsulin conversion in a Chinese population[J].Mol Biol Rep,2012.39(1):17-23.
    [210] Turki, A., G.S. Al-Zaben, M. Khirallah, H. Marmouch, T. Mahjoub and W.Y.Almawi. Gender-dependent associations of CDKN2A/2B, KCNJ11, POLI,SLC30A8, and TCF7L2variants with type2diabetes in (North African)Tunisian Arabs[J]. Diabetes Res Clin Pract,2014.
    [211] Chen, G., Y. Xu, Y. Lin, X. Lai, J. Yao, B. Huang, Z. Chen, H. Huang, X. Fu,L. Lin, S. Lai and J. Wen. Association study of genetic variants of17diabetes-related genes/loci and cardiovascular risk and diabetic nephropathyin the Chinese She population[J]. J Diabetes,2013.5(2):136-145.
    [212] Sattar, N.Revisiting the links between glycaemia, diabetes and cardiovasculardisease[J]. Diabetologia,2013.56(4):686-695.
    [213] McLin, V.A., S.A. Rankin and A.M. Zorn. Repression of Wnt/beta-cateninsignaling in the anterior endoderm is essential for liver and pancreasdevelopment[J]. Development,2007.134(12):2207-2217.
    [214] Wang, Y., W. Qiao, X. Zhao and M. Tao. Quantitative assessment of theinfluence of hematopoietically expressed homeobox variant (rs1111875) ontype2diabetes risk[J]. Mol Genet Metab,2011.102(2):194-199.
    [215] Nerima, B., E. Matovu, G.W. Lubega and J.C. Enyaru. Detection of mutantP2adenosine transporter (TbAT1) gene in Trypanosoma brucei gambienseisolates from northwest Uganda using allele‐specific polymerase chainreaction[J]. Tropical Medicine&International Health,2007.12(11):1361-1368.
    [216] Hezard, N., P. Cornillet, A. Vallade and P. Nguyen. Detection of factor VLeiden using ASO (allele specific oligonucleotide)[J]. Thromb Haemost,1997.78(4):1296.
    [217] Garros, C., L.L. Koekemoer, M. Coetzee, M. Coosemans and S. Manguin. Asingle multiplex assay to identify major malaria vectors within the AfricanAnopheles funestus and the Oriental An. minimus groups[J]. Am J Trop MedHyg,2004.70(6):583-590.
    [218]沈星灿,何锡文,梁宏.纳米粒子特性与生物分析[J].分析化学,2003.7.
    [219] Su, X., X. Zhan, F. Tang, J. Yao and J. Wu. Magnetic nanoparticles in braindisease diagnosis and targeting drug delivery[J]. Current Nanoscience,2011.7(1):37-46.
    [220] He, X., J. Duan, K. Wang, W. Tan, X. Lin and C. He. A novel fluorescentlabel based on organic dye-doped silica nanoparticles for HepG liver cancercell recognition[J]. Journal of nanoscience and nanotechnology,2004.4(6):585-589.
    [221] Golub, T.R., D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J.P.Mesirov, H. Coller, M.L. Loh, J.R. Downing and M.A. Caligiuri. Molecularclassification of cancer: class discovery and class prediction by geneexpression monitoring[J]. science,1999.286(5439):531-537.
    [222] Abrams, G.A., S.L. Goodman, P.F. Nealey, M. Franco and C.J. Murphy.Nanoscale topography of the basement membrane underlying the cornealepithelium of the rhesus macaque[J]. Cell Tissue Res,2000.299(1):39-46.
    [223] Liu, X., Y. Guan, Z. Ma and H. Liu. Surface modification andcharacterization of magnetic polymer nanospheres prepared by miniemulsionpolymerization[J]. Langmuir,2004.20(23):10278-10282.
    [224] Van Blaaderen, A. and A. Vrij. Synthesis and characterization of colloidaldispersions of fluorescent, monodisperse silica spheres[J]. Langmuir,1992.8(12):2921-2931.
    [225] Yoon, H.J., M. Kozminsky and S. Nagrath. Emerging Role of Nanomaterialsin Circulating Tumor Cell Isolation and Analysis[J]. ACS Nano,2014.
    [226] Kumar, C.S. and F. Mohammad. Magnetic nanomaterials forhyperthermia-based therapy and controlled drug delivery[J]. Advanced drugdelivery reviews,2011.63(9):789-808.
    [227] Tsuboyama, M. and I. Maeda. Combinatorial parallel display of polypeptidesusing bacteriophage T7for development of fluorescent nano-bioprobes[J]. JBiosci Bioeng,2013.116(1):28-33.
    [228] Dorfman, A., N. Kumar and J.-i. Hahm. Nanoscale ZnO‐EnhancedFluorescence Detection of Protein Interactions[J]. Advanced Materials,2006.18(20):2685-2690.
    [229] Freed, L.E., J.C. Marquis, A. Nohria, J. Emmanual, A.G. Mikos and R.Langer. Neocartilage formation in vitro and in vivo using cells cultured onsynthetic biodegradable polymers[J]. J Biomed Mater Res,1993.27(1):11-23.
    [230] Tartaj, P. and C.J. Serna. Synthesis of monodisperse superparamagneticFe/silica nanospherical composites[J]. Journal of the American ChemicalSociety,2003.125(51):15754-15755.
    [231] Gupta, A.K. and M. Gupta. Cytotoxicity suppression and cellular uptakeenhancement of surface modified magnetic nanoparticles[J]. Biomaterials,2005.26(13):1565-1573.
    [232] Ren, F., J. Chen, Y. Jiang and Z. Chen. Preparation and characterization ofpolybutylcyanoacrylate magnetic nanoparticles[J]. Di1jun yi da xue xuebao=Academic journal of the first medical college of PLA,2004.24(2):161.
    [233] Lin, C.-L., C.-F. Lee and W.-Y. Chiu. Preparation and properties of poly(acrylic acid) oligomer stabilized superparamagnetic ferrofluid[J]. Journal ofcolloid and interface science,2005.291(2):411-420.
    [234] Arias, J.L., V. Gallardo, F. Linares-Molinero and A.V. Delgado. Preparationand characterization of carbonyl iron/poly(butylcyanoacrylate) core/shellnanoparticles[J]. J Colloid Interface Sci,2006.299(2):599-607.
    [235] Pich, A., S. Bhattacharya, A. Ghosh and H.-J. Adler. Composite magneticparticles:2. Encapsulation of iron oxide by surfactant-free emulsionpolymerization[J]. Polymer,2005.46(13):4596-4603.
    [236] Lu, Z., G. Wang, J. Zhuang and W. Yang. Effects of the concentration oftetramethylammonium hydroxide peptizer on the synthesis of Fe3O4/SiO2core/shell nanoparticles[J]. Colloids and surfaces. A, Physicochemical andengineering aspects,2006.278(1-3):140-143.
    [237] Philipse, A.P. and D. Maas. Magnetic colloids from magnetotactic bacteria:chain formation and colloidal stability[J]. Langmuir,2002.18(25):9977-9984.
    [238] Gref, R., P. Couvreur, G. Barratt and E. Mysiakine. Surface-engineerednanoparticles for multiple ligand coupling[J]. Biomaterials,2003.24(24):4529-4537.
    [239] Yang, H.-H., S.-Q. Zhang, X.-L. Chen, Z.-X. Zhuang, J.-G. Xu and X.-R.Wang. Magnetite-containing spherical silica nanoparticles for biocatalysisand bioseparations[J]. Analytical chemistry,2004.76(5):1316-1321.
    [240] Makrides, S.C., C. Gasbarro and J.M. Bello. Bioconjugation of quantum dotluminescent probes for Western blot analysis[J]. Biotechniques,2005.39(4):501.
    [241] Geho, D., N. Lahar, P. Gurnani, M. Huebschman, P. Herrmann, V. Espina, A.Shi, J. Wulfkuhle, H. Garner and E. Petricoin, Pegylated,steptavidin-conjugated quantum dots are effective detection elements forreverse-phase protein microarrays[J]. Bioconjugate chemistry,2005.16(3):559-566.
    [242] Slim, M., N. Durisic, P. Grutter and H.F. Sleiman. DNA–Protein NoncovalentCross‐Linking: Ruthenium Dipyridophenazine Biotin Complex for theAssembly of Proteins and Gold Nanoparticles on DNA Templates[J].ChemBioChem,2007.8(7):804-812.
    [243] Feng, B., H. Matsui and K. Tomizawa. Nanoparticle-based drug deliverysystems for solid brain tumors[J]. Current Nanoscience,2011.7(1):47-54.
    [244] Weissleder, R., A. Bogdanov, E.A. Neuwelt and M. Papisov. Long-circulatingiron oxides for MR imaging[J]. Advanced Drug Delivery Reviews,1995.16(2):321-334.
    [245] Chertok, B., B.A. Moffat, A.E. David, F. Yu, C. Bergemann, B.D. Ross andV.C. Yang. Iron oxide nanoparticles as a drug delivery vehicle for MRImonitored magnetic targeting of brain tumors[J]. Biomaterials,2008.29(4):487-496.
    [246] McLachlan, S.J., M.R. Morris, M.A. Lucas, R.A. Fisco, M.N. Eakins, D.R.Fowler, R.B. Scheetz and A.Y. Olukotun. Phase I clinical evaluation of a newiron oxide MR contrast agent[J]. Journal of Magnetic Resonance Imaging,1994.4(3):301-307.
    [247] Gordon, R., J. Hines and D. Gordon. Intracellular hyperthermia a biophysicalapproach to cancer treatment via intracellular temperature and biophysicalalterations[J]. Medical Hypotheses,1979.5(1):83-102.
    [248] Ow, H., D.R. Larson, M. Srivastava, B.A. Baird, W.W. Webb and U. Wiesner.Bright and stable core-shell fluorescent silica nanoparticles[J]. Nano letters,2005.5(1):113-117.
    [249] Chen, Y., K. Munechika and D.S. Ginger. Dependence of fluorescenceintensity on the spectral overlap between fluorophores and plasmon resonantsingle silver nanoparticles[J]. Nano letters,2007.7(3):690-696.
    [250] Sapsford, K.E., L. Berti and I.L. Medintz. Materials for fluorescenceresonance energy transfer analysis: beyond traditional donor–acceptorcombinations[J]. Angewandte Chemie International Edition,2006.45(28):4562-4589.
    [251] Zhao, X., R. Tapec-Dytioco and W. Tan. Ultrasensitive DNA detection usinghighly fluorescent bioconjugated nanoparticles[J]. Journal of the AmericanChemical Society,2003.125(38):11474-11475.
    [252] Zhao, X., L.R. Hilliard, S.J. Mechery, Y. Wang, R.P. Bagwe, S. Jin and W.Tan. A rapid bioassay for single bacterial cell quantitation usingbioconjugated nanoparticles[J]. Proceedings of the National Academy ofSciences of the United States of America,2004.101(42):15027-15032.
    [253] Tapec, R., X.J. Zhao and W. Tan. Development of organic dye-doped silicananoparticles for bioanalysis and biosensors[J]. J Nanosci Nanotechnol,2002.2(3-4):405-409.
    [254] Hilliard, L.R., X. Zhao and W. Tan. Immobilization of oligonucleotides ontosilica nanoparticles for DNA hybridization studies[J]. Analytica ChimicaActa,2002.470(1):51-56.
    [255] Wang, L., C. Yang and W. Tan. Dual-luminophore-doped silica nanoparticlesfor multiplexed signaling[J]. Nano letters,2005.5(1):37-43.
    [256] Maeda, H., N. Ishida, H. Kawauchi and K. Tuzimura. Reaction offluorescein-isothiocyanate with proteins and amino acids: I. Covalent andnon-covalent binding of fluorescein-isothiocyanate and fluorescein toproteins[J]. Journal of biochemistry,1969.65(5):777-783.
    [257] Oh, J.M., S.J. Choi, G.E. Lee, J.E. Kim and J.H. Choy. Inorganic MetalHydroxide Nanoparticles for Targeted Cellular Uptake Through Clathrin‐Mediated Endocytosis[J]. Chemistry–An Asian Journal,2009.4(1):67-73.
    [258] Chang, Z., J. Zhou, K. Zhao, N. Zhu, P. He and Y. Fang. Ru (bpy)32+dopedsilica nanoparticle DNA probe for the electrogenerated chemiluminescencedetection of DNA hybridization[J]. Electrochimica Acta,2006.52(2):575-580.
    [259] Li, X., J.L. Coffer, Y. Chen, R.F. Pinizzotto, J. Newey and L.T. Canham.Transition metal complex-doped hydroxyapatite layers on porous silicon[J].Journal of the American Chemical Society,1998.120(45):11706-11709.
    [260] Luo, J., D.E. Bergstrom and F. Barany. Improving the fidelity of Thermusthermophilus DNA ligase[J]. Nucleic Acids Res,1996.24(15):3071-3078.
    [261] Consolandi, C. High-throughput multiplex HLA-typing by ligase detectionreaction (LDR) and universal array (UA) approach[J]. Methods Mol Biol,2009.496:115-127.
    [262] Consolandi, C., L. Palmieri, M. Severgnini, E. Maestri, N. Marmiroli, C.Agrimonti, L. Baldoni, P. Donini, G. De Bellis and B. Castiglioni. Aprocedure for olive oil traceability and authenticity: DNA extraction,multiplex PCR and LDR–universal array analysis[J]. European food researchand technology,2008.227(5):1429-1438.
    [263] De Bellis, G., B. Castiglioni, R. Bordoni, A. Mezzelani, E. Rizzi, A. Frosini,E. Busti, C. Consolandi, L. Rossi Bernardi and C. Battaglia. Ligase detectionreaction (LDR) and universal array (zip code): application to DNAgenotyping[J]. Minerva Biotecnologica,2002.14(3/4):247-252.
    [264] Khanna, M., W. Cao, M. Zirvi, P. Paty and F. Barany. Ligase detectionreaction for identification of low abundance mutations[J]. Clin Biochem,1999.32(4):287-290.
    [265] Khanna, M., P. Park, M. Zirvi, W. Cao, A. Picon, J. Day, P. Paty and F.Barany. Multiplex PCR/LDR for detection of K-ras mutations in primarycolon tumors[J]. Oncogene,1999.18(1):27-38.
    [266] Gerry, N.P., N.E. Witowski, J. Day, R.P. Hammer, G. Barany and F. Barany.Universal DNA microarray method for multiplex detection of low abundancepoint mutations[J]. Journal of molecular biology,1999.292(2):251-262.
    [267] Rondini, S., M. Pingle, S. Das, R. Tesh, M. Rundell, J. Hom, S. Stramer, K.Turner, S. Rossmann and R. Lanciotti, Development of multiplex PCR-ligasedetection reaction assay for detection of West Nile virus[J]. Journal ofclinical microbiology,2008.46(7):2269-2279.
    [268] Elnifro, E.M., A.M. Ashshi, R.J. Cooper and P.E. Klapper. Multiplex PCR:optimization and application in diagnostic virology[J]. Clinical MicrobiologyReviews,2000.13(4):559-570.
    [269] Schoske, R., P.M. Vallone, C.M. Ruitberg and J.M. Butler. Multiplex PCRdesign strategy used for the simultaneous amplification of10Y chromosomeshort tandem repeat (STR) loci[J]. Anal Bioanal Chem,2003.375(3):333-343.
    [270] Chamberlain, J.S., R.A. Gibbs, J.E. Ranier, P.N. Nguyen and C.T. Caskey,Deletion screening of the Duchenne muscular dystrophy locus via multiplexDNA amplification[J]. Nucleic Acids Res,1988.16(23):11141-11156.
    [271] Markoulatos, P., N. Siafakas and M. Moncany.Multiplex polymerase chainreaction: a practical approach[J]. J Clin Lab Anal,2002.16(1):47-51.
    [272] Nakamura, T., P. Vrinten, M. Saito and M. Konda, Rapid classification ofpartial waxy wheats using PCR-based markers[J]. Genome,2002.45(6):1150-1156.
    [273] Henegariu, O., N.A. Heerema, S.R. Dlouhy, G.H. Vance and P.H. Vogt.Multiplex PCR: critical parameters and step-by-step protocol[J].Biotechniques,1997.23(3):504-511.
    [274] Ma, W., W. Zhang and K. Gale.Multiplex-PCR typing of high molecularweight glutenin alleles in wheat[J]. Euphytica,2003.134(1):51-60.
    [275] Shuber, A.P., V.J. Grondin and K.W. Klinger. A simplified procedure fordeveloping multiplex PCRs[J]. Genome Research,1995.5(5):488-493.
    [276] Wang,Y.Z.,J.H. Xiao, L.H. Ruan, H.Y. Zhang, M. Chen, X.K. Pu, H.Y. Shenand G.X. Wu, Detection of the rtA181V/T and rtN236T mutations associatedwith resistance to adefovir dipivoxil using a ligase detection reaction assay[J].Clin Chim Acta,2009.408(1-2):70-74.
    [277]于小丽,徐维平,马旖旎,王艳萍,张莉.纳米技术在肿瘤治疗中的应用[J].安徽医药,2011.15(5):542-544.
    [278] Gu, H., K. Xu, C. Xu and B. Xu, Biofunctional magnetic nanoparticles forprotein separation and pathogen detection[J].Chemical Communications,2006(9):941-949.
    [279] Morisset, D.,D. Stebih, K. Cankar, J.Zel and K. Gruden.Alternative DNAamplification methods to PCR and their application in GMO detection: areview[J].European Food Research and Technology,2008.227(5):1287-1297.
    [280] Syv nen,A.-C.Accessing genetic variation: genotyping single nucleotidepolymorphisms[J]. Nature Reviews Genetics,2001.2(12):930-942.
    [281] Peano, C., R. Bordoni, M. Gulli, A. Mezzelani, M. Samson, G.D. Bellis andN. Marmiroli.Multiplex polymerase chain reaction and ligation detectionreaction/universal array technology for the traceability of geneticallymodified organisms in foods[J]. Analytical biochemistry,2005.346(1):90-100.
    [282] Barany, F. and M. Lubin.Detection of nucleic acid sequence differences usingcoupled ligase detection and polymerase chain reactions.2000, GooglePatents.
    [283] Candela, M., C. Consolandi, M. Severgnini, E. Biagi, B. Castiglioni, B. Vitali,G. De Bellis and P. Brigidi.High taxonomic level fingerprint of the humanintestinal microbiota by ligase detection reaction-universal array approach[J].BMC microbiology,2010.10(1):116.
    [284] Nakayama, T., H.M. Hiep, S. Furui, Y.Yonezawa, M. Saito, Y. Takamura andE. Tamiya, An optimal design method for preventing air bubbles inhigh-temperature microfluidic devices[J]. Analytical and bioanalyticalchemistry,2010.396(1):457-464.
    [285] Yi, P., Z. Chen, L. Yu, Y. Zheng, G. Liu, H. Xie, Y. Zhou, X. Zheng, J. Hanand L.Li.Development of a PCR/LDR/capillary electrophoresis assay withpotential for the detection of a beta-thalassemia fetal mutation in maternalplasma[J].Journal of Maternal-Fetal and Neonatal Medicine,2010.23(8):920-927.
    [286] Lowe, A.J., Y.S. Huh, A.D. Strickland, D. Erickson and C.A. Batt.Multiplexsingle nucleotide polymorphism genotyping utilizing ligase detectionreaction coupled surface enhanced Raman spectroscopy[J]. Analyticalchemistry,2010.82(13):5810-5814.