热压玻璃透镜里的残余应力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种替代传统的光学玻璃透镜的制造方法,光学玻璃透镜的精密热压成型是一个有吸引力的工艺。它具有一次成型,高效率低成本,适应于玻璃透镜的规模生产,环境友好等优点。
     但是热压成型技术是一种在高温下对光学玻璃模压成型工艺,由于冷却过程中的温度不均匀,以及玻璃在其转变区域内的复杂状态变化,导致最后残余应力被冻结在玻璃透镜里。而残余应力的存在会使玻璃透镜产生双折射现象,以及折射率偏差,从而影响透镜的光学性能。
     为了研究热压成型透镜中的残余应力问题,本文分别采用实验和有限元仿真研究了玻璃透镜中的残余应力分布,并探索了利用退火工艺来改善玻璃透镜中的残余应力与折射率偏差的方法。
     为了理解玻璃透镜中的残余应力分布,实验搭建了圆偏光器(circular polariscope),分别对经过热处理后的圆柱透镜以及热压成型的非球面透镜进行了测量。测量过程中采取用六步左右相移法获得了被测透镜不同的光强图像,计算得到了被测透镜的等倾角与相位延迟。根据轴对称应力、以及弱双折射情况下的透镜中的应力与透镜等倾角与相位延迟关系,以及透镜的平衡方程以及一般性求和法则,利用编写的残余应力重建程序,重建了透镜中的残余应力分布。
     采用有限元仿真计算了圆柱透镜以及非球面透镜中的残余应力,并将仿真分析结果与实验测量计算进行了对比,研究表明,有限元仿真可以用来研究热压成型透镜中的残余应力。
     同时探讨了有限元计算仿真中玻璃材料的比热容,热膨胀系数对仿真结果的影响,对玻璃透镜冷却过程中的冷却速率进行了仿真研究,探索了冷却速率对透镜中残余应力以及透镜曲面形貌的影响。发现转折温度前的冷却速率对成型透镜的残余应力和曲面形貌影响较大,同时随着冷却速率的的减小,透镜中的残余应力在减小,但是曲面相貌偏差会变大。
     为了降低热压成型的非球面镜中的残余应力,本文还对非球面透镜进行了退火实验。并分别利用圆偏光器、基于Mach-Zehnder干涉仪的实验装置,以及轮廓仪测量了退火实验前、后透镜中的残余应力,折射率偏差以及透镜的非球面曲面形貌。研究表明,当退火温度在应变点附近时,能够减小透镜中的残余应力,但是对折射率偏差的影响不大;当退火温度在玻璃材料退火点附近时,透镜中的残余应力与折射率偏差都变小了;且在退火后透镜非球面的曲面形貌得到了较好的保存。
     最后根据文中的实验与仿真,提出了一种新的透镜热压成型工艺,即在透镜热压成型阶段针对透镜曲面面型进行优化工艺,透镜热压成型后,利用退火方式来降低透镜中的残余应力与折射率偏差,由于退火过程中只需要进行温度控制,因此可以对批量的透镜同时退火以提高生产效率。
As an alternative method for fabricating glass lenses, compression molding is a very attractive process. Compared to the conventional glass fabrication techniques, compression molding is an environmentally conscience process since it is an near net-shape process, high productively and low cost, suitable for mass production of glass lenses in industry.
     Compression molding is a hot forming method in which a glass blank was pressed by molds to create the lens shape. Residual stresses were frozen in the glass lens due to the nonuniform of temperature and complicated process when the glass lens went through its glass transition region during the cooling process. The existence of residual stresses in glass lenses lead to birefringence and refractive index variation which affect the optical performance of the glass lens.
     In this research, both experimental and numerical simulation methods were employed to study the residual stresses inside compression molded glass lenses. And annealing experiments of molded aspherical glass lenses were investigated to reduce the residual stresses and refractive index variation in the glass lenses.
     Residual stresses inside a cylindrical glass lens and compression molded aspherical glass lenses were measured in this research. The residual stresses inside the glass lenses were measured by a circular polariscope. With six-step left right phase shifting technique, isoclinic angle and optical retardation of the glass lens under test can be measured. Taking advantage of axisymmetrical properties of the residual stresses and weak birefrignece of the glass lens, the residual stresses can be reconstructed using the relations between stresses and parameters of photoelasticity, equilibrium equation and generalized sum rule.
     Residual stresses inside the glass lenses were also studied by numerical simulation. The simulation results demonstrated a reasonable agreement with experiment results. It shows that numerical simulation can be used to predict the residual stresses of compression molded glass lenses.
     The influences of heat capacity and the coefficient of thermal expansion of the glass on residual stresses in numerical simulation were studied. The influences of cooling rates were also studied by numerical simulation. Based on the results, the cooling rate before break temperature of BK7Glass plays an important role in the cooling process. As the cooling rate decreased, the residual stresses became smaller but the surface deviation became bigger.
     In order to reduce the residual stresses inside the compression molded aspherical glass lenses, annealing experiments were conducted. The influence of annealing on the aspherical glass lenses was evaluated by the change of residual stresses, refractive index vaiation and aspherical surface curve deviation of the glass lens pre and post annealing experiement. The residual stresses were measured by the circular polariscope. The refractive index variation was measured by an optical setup based on Mach-Zehnder interferometer. And the aspherical surface curve deviation was measured by a profilometry. The results showed that the residual stresses can be reduced when the annealing temperature is lower than the glass's strain point, however the refractive index experienced a minor change. If the annealing temperature is near the glass's annealing point, both residual stresses and refractive index variation of the glass lens can be reduced. While the aspherical surface curve deviation has a minor change after annealing experiments.
     Based on the experiments and simulations shown in this research, a new compression molding process can be proposed. Once the glass lens was fabricated by compression molding, an annealing process could be used to reduce the residual stresses and the refractive index variation in the glass lens.
引文
Aben H, Ainola L, Anton J.2000. Integrated photoelasticity for nondestructive residual stress measurement in glass[J]. Optics and Lasers in Engineering,33 (1), 49-64.
    Aben H, Ainola L, Errapart A.2010. Application of the Abel inversion in case of a tensor field[J]. Inverse Problems in Science and Engineering,18 (2),241.
    Aben H, Ainola L, Errapart A.2011. Photoelastic Tomography as Hybrid Mechanics. Recent Advances in Mechanics. Springer Netherlands, Dordrecht,181-190.
    Aben H, Anton J, Errapart A.2008. Modern photoelasticity for residual stress measurement in glass[J]. Strain,44 (1),40-48.
    Aben H, Errapart A, Ainola L, Anton J.2005. Photoelastic tomography for residual stress measurement in glass[J]. Optical Engineering,44 (9),093601.
    Aben H, Errapart A, Ainola L.2006. On real and imaginary algorithms of optical tensor field tomography[C]. PROCEEDINGS-ESTONIAN ACADEMY OF SCIENCES PHYSICS MATHEMATICS,112.
    Aben H, Errapart A.2007. A Non-linear Algorithm of Photoelastic Tomography for the Axisymmetric Problem[J]. Experimental Mechanics,47 (6),821-830.
    Aben H, Guillemet C.1993. Photoelasticity of glass. Springer-Verlag.
    Aben H K, Idnurm S J, Josepson J, Kell K-J E, Puro A E.1992. Optical tomography of the stress tensor field[C].220-229.
    Aben H K, Josepson J I, Kell K-J E.1989. The case of weak birefringence in integrated photoelasticity [J]. Optics and Lasers in Engineering,11 (3),145-157.
    Aben H.1979. Integrated photoelasticityMcGraw Hill International Book Co.
    Ainola L, Aben H.2004. A new relationship for the experimental-analytical solution of the axisymmetric thermoelasticity problem[J]. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift fur Angewandte Mathematik und Mechanik,84 (3),211-215.
    Ainola L, Aben H.2004. On the optical theory of photoelastic tomography [J]. Journal of the Optical Society of America A,21 (6),1093-1101.
    Ajovalasit A, Barone S, Petrucci G.1998. A method for reducing the influence of quarter-wave plate errors in phase stepping photoelasticity[J]. The Journal of Strain Analysis for Engineering Design,33 (3),207-216.
    Ajovalasit A, Petrucci G, Scafidi M.2007. Phase shifting photoelasticity in white light[J]. Optics and Lasers in Engineering,45 (5),596-611.
    Alvarez R, Rodero A, Quintero M C.2002. An Abel inversion method for radially resolved measurements in the axial injection torch[J]. Spectrochimica Acta Part B:Atomic Spectroscopy,57 (11),1665-1680.
    Ananthasayanam B.2008. Computational Modeling of Precision Molding of Aspheric Glass Optics.
    Andrienko Y A, Dubovikov M S.1994. Optical tomography of tensor fields:the general case[J]. Journal of the Optical Society of America A,11 (5),1628-1631.
    Anton, Errapart A, Aben H, Ainola L.2008. A Discrete Algorithm of Integrated Photoelasticity for Axisymmetric Problems[J]. Experimental Mechanics,48 (5), 613-620.
    Brandt N M.1951. Annealing of 517.645 Borosilicate Optical Glass:I, Refractive Index[J]. Journal of the American Ceramic Society,34 (11),332-338.
    Braunecker B, Hentschel R, Tiziani H J.2008. Advanced optics using aspherical elements.
    Cernosek J.1980. Three-dimensional photoelasticity by stress freezing[J]. Experimental Mechanics,20 (12),417-426.
    Chen Y, Yi A Y, Su L, Klocke F, Pongs G.2008. Numerical Simulation and Experimental Study of Residual Stresses in Compression Molding of Precision Glass Optical Components[J]. Journal of Manufacturing Science and Engineering,130 (5),051012-051021.
    Deegan, J.2007. Precision Glass Molding Technical Brief. Rochester Precision Optics.
    Defrise M, Gullberg G T.2005.3D reconstruction of tensors and vectors.
    Doyle J F, Danyluk H T.1978. Integrated photoelasticity for axisymmetric problems[J]. Experimental Mechanics,18 (6),215-220.
    Errapart A, Aben H, Ainola L, Anton J.2011. Photoelastic tomography for the measurement of thermal and residual stresses in glass[J].9th International Congress on Thermal Stresses,.
    Errapart A, Aben H, Ainola L. Photoelastic Tomography in Linear Approximation.
    Fessler H.1992. An assessment of frozen stress photoelasticity [J]. The Journal of Strain Analysis for Engineering Design,27 (3),123-126.
    Fotheringham U, Baltes A, Fischer P, et al.2008. Refractive Index Drop Observed After Precision Molding of Optical Elements:A Quantitative Understanding Based on the Tool-Narayanaswamy-Moynihan Model[J]. Journal of the American Ceramic Society,91 (3),780-783.
    Fotheringham U, Muller R, Erb K, et al.2007. Evaluation of the calorimetric glass transition of glasses and glass ceramics with respect to structural relaxation and dimensional stability[J]. Thermochimica Acta,461 (1),72-81.
    Fujidie Co..2003. Material:Cemented Carbide Alloys, www.fujidie.co.jp
    Germaneau A, Doumalin P, Dupre J-C.2007.3D Photoelasticty and Digital Volume Correlation Applied to 3D Mechanical Studies[J]. Experimental Analysis of Nano and Engineering Materials and Structures,,89-90.
    Germaneau A, Doumalin P, Dupre J-C.2008. Comparison between X-ray micro-computed tomography and optical scanning tomography for full 3D strain measurement by digital volume correlation[J]. NDT & E International,41 (6), 407-415.
    Germaneau A, Doumalin P, Dupre J-C, et al.2010. Full 3D displacement field measurement by Optical Scanning Tomography and PIV Tomography[J]. EPJ Web of Conferences,6,35001.
    Ghiglia D C, Romero L A.1994. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods[J]. Journal of the Optical Society of America A,11 (1),107-117.
    Gueron S, Deutsch M.1994. A fast Abel inversion algorithm[J]. Journal of applied physics,75 (9),4313-4318.
    Haake S J, Patterson E A, Wang Z F.1996.2D and 3D separation of stresses using automated photoelasticity[J]. Experimental mechanics,36 (3),269-276.
    Hagy H E.1968. Fine Annealing of Optical Glass for Low Residual Stress and Refractive Index Homogeneity [J]. Applied Optics,7 (5),833-835.
    Hammer H, Lionheart W R.2005. Reconstruction of spatially inhomogeneous dielectric tensors through optical tomography [J]. J. Opt. Soc. Am. A,22 (2),250-255.
    He P, Wang F, Li L, et al.2011. Development of a low cost high precision fabrication process for glass hybrid aspherical diffractive lenses[J]. Journal of Optics,13 (8), 085703.
    Hecker F W, Morche B.1986. Computer-Aided Measurement of Relative Retardations in Plane PhotoelasticityIn H. Wieringa, ed., Experimental Stress Analysis. Springer Netherlands,535-542.
    Herman G T.2009. Fundamentals of Computerized Tomography:Image Reconstruction from ProjectionsSpringer.
    Hillar A, AINOLA L, ANTON J.1999. Half-Fringe Phase-Stepping with Separation of the Principal Stress Directions[C]. Proceedings of the Estonian Academy of Sciences, Engineering,198-211.
    Iqbal W.2009. Identifying the optimum process parameters of precision glass molding for aspherical lenses2009.
    Jacobs S D, Arrasmith S R, Kozhinova I A, et al.1999. MRF:computer-controlled optics manufacturing[J]. American Ceramic Society bulletin,78 (12),42-48.
    Jain A, Firestone G C, Yi A Y.2005. Viscosity Measurement by Cylindrical Compression for Numerical Modeling of Precision Lens Molding Process[J]. Journal of the American Ceramic Society,88 (9),2409-2414.
    Jain A, Yi A Y, Xie X, Sooryakumar R.2006. Finite element modelling of stress relaxation in glass lens moulding using measured, temperature-dependent elastic modulus and viscosity data of glass[J]. Modelling and Simulation in Materials Science and Engineering,14 (3),465-477.
    Jain A, Yi A Y.2005. Numerical Modeling of Viscoelastic Stress Relaxation During Glass Lens Forming Process[J]. Journal of the American Ceramic Society,88 (3), 530-535.
    Jain A, Yi A Y.2006. Finite Element Modeling of Structural Relaxation During Annealing of a Precision-Molded Glass Lens[J]. Journal of Manufacturing Science and Engineering,128 (3),683-690.
    Jain A.2006. Experimental study and numerical analysis of compression molding process for manufacturing precision aspherical glass lenses2006.
    Ji W, Patterson E A.1998. Simulation of errors in automated photoelasticity[J]. Experimental mechanics,38 (2),132-139.
    Jochs W W, Hoffmann H J, Neuroth N M.1988. The effects of thermal treatment below the glass transition temperature on the refractive index of optical glass[J]. Journal of Non-Crystalline Solids,102 (1-3),255-258.
    Karow H H.1993. Fabrication methods for precision optics. Wiley New York.
    Kemao Q.2007. Two-dimensional windowed Fourier transform for fringe pattern analysis:Principles, applications and implementations[J]. Optics and Lasers in Engineering,45 (2),304-317.
    Kihara T.1990. Automatic whole-field measurement of photoelasticity using linear polarized incident light[C]. Proc. of 9th Int. Conf. Exp. Mech,821-827.
    Kihara T.1997. A measurement method of scattered light photoelasticity using unpolarized light[J]. Experimental mechanics,37 (1),39-44.
    Li L, He P, Wang F, et al.2011. A hybrid polymer-glass achromatic microlens array fabricated by compression molding[J]. Journal of Optics,13 (5),055407.
    Li J H, Uhlmann D R.1970. The flow of glass at high stress levels:I. Non-Newtonian behavior of homogeneous 0.08 Rb2O·0.92 SiO2 glasses[J]. Journal of Non-Crystalline Solids,3 (1),127-147.
    Lillie H R, Ritland H N.1954. Fine Annealing of Optical Glass[J]. Journal of the American Ceramic Society,37 (10),466-473.
    Liu T, Asundi A, Boay C G.2001. Full field automated photoelasticity using two-load-step method[J]. Optical Engineering,40 (8),1629-1635.
    Loch H, Krause D.2002. Mathematical simulation in glass technologySpringer Verlag.
    Maschmeyer R O, Andrysick C A, Geyer T W, Meissner H E, Parker C J, Sanford L M.1983. Precision molded-glass optics[J]. Applied optics,22 (16),2410-2412.
    Mindlin R D.1937. Analysis of doubly refracting materials with circularly and elliptically polarized light[J]. J. Opt. Soc. Am,,27-288.
    Montgomery Smith L, Keefer S I, Dennis R.1988. Abel inversion using transform techniques [J]. Journal of Quantitative Spectroscopy and Radiative Transfer,39 (5),367-373.
    Morimoto Y, Hayashi T.1994. Separation of isochromatics and isoclinics using Fourier transform[J]. Experimental Techniques,18 (5),13-17.
    Moynihan C T, Easteal A J, De BOLT M A, Tucker J.1976. Dependence of the Fictive Temperature of Glass on Cooling Rate[J]. Journal of the American Ceramic Society,59 (1-2),12-16.
    Narayanaswamy O S.1971. A model of structural relaxation in glass[J]. Journal of the American ceramic society,54 (10),491-498.
    Ng T W.1997. Photoelastic stress analysis using an object step-loading method[J]. Experimental Mechanics,37 (2),137-141.
    Ohmori H, Takahashi I, Bandyopadhyay B P.1996. Ultra-precision grinding of structural ceramics by electrolytic in-process dressing (ELID) grinding[J]. Journal of materials processing technology,57 (3),272-277.
    Oi T, Takashi M.2002. An approach to general 3-D stress analysis by multidirectional scattered light technique[C]. IUTAM Symposium on Advanced Optical Methods and Applications in Solid Mechanics,57-64.
    Osswald T A.1998. Polymer processing fundamentalsHanser Verlag.
    Park Y, Paek U-C, Kim D Y.2002. Complete determination of the stress tensor of a polarization-maintaining fiber by photoelastic tomography[J]. Optics Letters,27 (14),1217-1219.
    Patterson E A, Ji W, Wang Z F.1997. On image analysis for birefringence measurements in photoelasticity[J]. Optics and lasers in engineering,28 (1),17-36.
    Patterson E A, Wang Z F.1991. Towards full field automated photoelastic analysis of complex components[J]. Strain,27 (2),49-53.
    Puro A E, Kell K-J.1992. Complete determination of stress in fiber preforms of arbitrary cross section[J]. Journal of Lightwave Technology,10 (8),1010-1014.
    Puttick K E, Rudman M R, Smith K J, Franks A, Lindsey K.1989. Single-point diamond machining of glasses[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences,426 (1870),19-30.
    Quan C, Bryanston-Cross P J, Judge T R.1993. Photoelasticity stress analysis using carrier fringe and FFT techniques[J]. Optics and lasers in engineering,18 (2),79-108.
    Ramesh K, Kasimayan T, Neethi Simon B.2011. Digital photoelasticity-A comprehensive review[J]. The Journal of Strain Analysis for Engineering Design, 46 (4),245-266.
    Ramji M, Prasath R G R.2011. Sensitivity of isoclinic data using various phase shifting techniques in digital photoelasticity towards generalized error sources[J]. Optics and Lasers in Engineering,49 (9-10),1153-1167.
    Ritland H N.1955. Relation Between Refractive Index and Density of a Glass at Constant Temperature[J]. Journal of the American Ceramic Society,38 (2),86-88.
    Sai Prasad V, Madhu K R, Ramesh K.2004. Towards effective phase unwrapping in digital photoelasticity[J]. Optics and lasers in engineering,42 (4),421-436.
    Saotome Y, Imai K, Sawanobori N.2003. Microformability of optical glasses for precision molding[J]. Journal of Materials Processing Technology,140 (1-3), 379-384.
    Scherer G W.1991. Relaxation in Glass and Composites. Krieger Pub. Co.
    Schupp D.1997. Determination of 3D stress by optical sensor field tomography[C]. Proceedings of SPIE,431.
    Schupp D.1999. Optical tensor field tomography for the determination of 3D stress in photoelastic materials[C].1st World Congress on Industrial Process Tomography,494-501.
    Schott North America, Inc. Products and Applications, www.schott.de
    Schott North America, Inc.2004. TIE-27 Stress in optical glass2004. http://www.us.schott.com.
    Schott North America, Inc.2007. TIE-40 Optical glass for precision molding, http://www.us. schott. com.
    Schott North America, Inc.2007. TIE-29:Refractive Index and Dispersion. http://www.us.schott.com.
    Sharafutdinov V A.1994. Integral geometry of tensor fields VSP.
    Shorey A B, Kordonski W, Tricard M.2004. Magnetorheological finishing of large and lightweight optics [C]. Optical Science and Technology, the SPIE 49th Annual Meeting,99-107.
    Solaguren-Beascoa Fernandez M, Alegre Calderon J, Bravo Diez P, Cuesta Segura I. 2010. Stress-separation techniques in photoelasticity:A review[J]. The Journal of Strain Analysis for Engineering Design,45 (1),1.
    Soules T F, Busbey R F, Rekhson S M, Markovsky A, Burke M A.1987. Finite-Element Calculation of Stresses in Glass Parts Undergoing Viscous Relaxation[J]. Journal of the American Ceramic Society,70 (2),90-95.
    Spilman A K, Brown T G.2007. Stress birefringent, space-variant wave plates for vortex illumination[J]. Applied Optics,46 (1),61-66.
    Storn R.1996. On the usage of differential evolution for function optimization[C]. Fuzzy Information Processing Society,1996. NAFIPS.1996 Biennial Conference of the North American,519-523.
    Su L, Chen Y, Yi A Y, Klocke F, Pongs G.2008. Refractive index variation in compression molding of precision glass optical components[J]. Applied Optics, 47 (10),1662-1667.
    Su L, Yi A Y.2011. Investigation of the effect of coefficient of thermal expansion on prediction of refractive index of thermally formed glass lenses using FEM simulation[J]. Journal of Non-Crystalline Solids,357 (15),3006-3012.
    Su L, Yi A Y.2012. Finite Element Calculation of Refractive Index in Optical Glass Undergoing Viscous Relaxation and Analysis of the Effects of Cooling Rate and Material Properties[J]. International Journal of Applied Glass Science,3 (3), 263-274.
    Su L.2010. Experimental and numerical analysis of thermal forming processes for precision optics2010.
    Swinson W, Turner J, Ranson W.1980. Designing with scattered-light photoelasticity[J]. Experimental Mechanics,20 (11),397-402.
    Takeda M, Ina H, Kobayashi S.1982. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[J]. Journal of the Optical Society of America,72 (1),156-160.
    Tamrakar D, Ramesh K.2001. Simulation of error in digital photoelasticity by Jones calculus[J]. Strain,37 (3),105-112.
    Tomlinson R A, Hammer H, Lionheart W R B.2004. The Development of a Novel Methodology for Tomographic Photoelasticity.
    Venkatesh V C.2003. Precision manufacture of spherical and aspheric surfaces on plastics, glass, silicon and germanium[J]. CURRENT SCIENCE-BANGALORE-,84(9),1211-1218.
    Viskanta R, Lim J M.2001. Theoretical investigation of heat transfer in glass forming[J]. Journal of the American Ceramic Society,84 (10),2296-2302.
    Vogt H.2007. Precision molding provides compact consumer optics[J]. Laser focus world,43 (7).
    Wang F, Chen Y, Klocke F, Pongs G, Yi A Y.2009. Numerical Simulation Assisted Curve Compensation in Compression Molding of High Precision Aspherical Glass Lenses[J]. Journal of Manufacturing Science and Engineering,131 (1), 011014-6.
    Wijerathne MLL, Oguni K, Hori M.2002. Tensor field tomography based on 3D photoelasticity[J]. Mechanics of Materials,34 (9),533-545.
    Wijerathne MLL, Oguni K, Hori M.2008. Stress field tomography based on 3D photoelasticity[J]. Journal of the Mechanics and Physics of Solids,56 (3),1065-1085.
    Wolfe J, Chipman R.2004. Reducing symmetric polarization aberrations in a lens by annealing[J]. Optics Express,12 (15),3443-3451.
    Yan J, Zhou T, Masuda J, Kuriyagawa T.2009. Modeling high-temperature glass molding process by coupling heat transfer and viscous deformation analysis[J]. Precision Engineering,33 (2),150-159.
    Yi A Y, Chen Y, Klocke F, et al.2006. A high volume precision compression molding process of glass diffractive optics by use of a micromachined fused silica wafer mold and low Tg optical glass [J]. Journal of Micromechanics and Microengineering,16 (10),2000-2005.
    Yi A Y, Jain A.2005. Compression Molding of Aspherical Glass Lenses-A Combined Experimental and Numerical Analysis[J]. Journal of the American Ceramic Society,88 (3),579-586.
    Yin S H, Zhu K J, Wang Y F, Chen F J, Wang Y.2010. Numerical simulation on two-step isothermal glass lens molding[J]. Advanced Materials Research,126,564-569.
    Zhao W, Chen Y, Shen L, Yi A Y.2009. Investigation of the refractive index distribution in precision compression glass molding by use of 3D tomography[J]. Measurement Science and Technology,20 (5),055109.
    Zhao W, Chen Y, Shen L, Yi A Y.2009. Refractive index and dispersion variation in precision optical glass molding by computed tomography[J]. Applied Optics,48 (19),3588-3595.
    Zhou H, Xi G, Li D.2006. Modeling and Simulation of Shrinkage During the Picture Tube Panel Forming Process[J]. Journal of Manufacturing Science and Engineering,129 (2),380-387.
    赵玮(Zhao W).2009.精密热成型光学玻璃透镜的折射率场偏差及矫正方法研究.博士学位论文(中国科学技术大学)
    尹韶辉,王玉方,朱科军,et al.2010.微小非球面玻璃透镜超精密模压成型数值模拟[J].光子学报,39(11),2020.