植物形态三维扫描系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分析植物的形态结构对研究植物的生长规律具有重要的理论意义,对农业生产中选种、配种、套种和提高农业产量等有着重要的指导作用。随着计算机技术的快速发展,三维信息获取技术使获取植物形态的三维数字化模型成为可能,而这将为研究植物的生理形态、结构和功能提供非常有用的直观分析工具。
     本论文旨在研制一整套植物形态三维扫描系统,该系统能够建立植物形态的三维数字化模型,并在计算机中进行三维显示。其主要工作过程为,将植物固定在转台上,由计算机控制转台旋转,同时使用摄像机拍摄植物的全方位二维数字图像,采用基于图像的三维建模算法对采集的序列图像进行处理,得到植物的表面点的空间坐标信息,生成点云文件,将点云三角网格化,建立三维模型,显示三维立体模型,并将三维数字化结果生成标准格式文件以方便读取和显示。
     本论文设计了系统的总体方案,搭建了硬件平台,为图像采集和获取植物形态的三维数字化模型提供了必须的硬件条件;完成了软件系统,能够对硬件设备和扫描过程进行控制,实现了系统各个功能模块,包含有图像采集模块,定标模块、三维重建模块和三维显示模块。其中,本论文着重对三维扫描系统中的关键技术即三维重建算法开展了深入研究。
     真实植物形态的三维几何外形能够用可见外壳来表征,计算可见外壳的算法分为基于体索的三维重建算法和基于表面的三维重建算法两大类。基于体素的算法较简单稳定但重建结果不够准确,而基于表面的算法的重建结果较精确但鲁棒性不强。为了在利用了基于表而重建的这类方法的优点的同时,保持基于体素重建的这类方法的简单和稳健性,本文提出了一种基于可见边的三维重建快速算法。该方法首先提取植物形态的轮廓,计算每个轮廓顶点对应的可见射线,然后将三维空间中的相交问题映射到二维图像平而,计算可见边,最后由可见边抽取植物形态的三维数字化模型。该方法能够快速地重建出相对精确的三维数字化模型,实验证明了方法的重建速度较快,该方法适合于需要实时建立植物形态的三维数字化模型的应用场合。
     为了得到较精确的三维数字化模型,本文提出了一种基于线模型的三维重建准确算法。该方法从多个侧影轮廓重建出八叉树结构表示的包围盒,对每个边缘体索来建立线模型,计算出线模型上在轮廓上连续的点,由这些点构造出物体的三维数字化模型。该方法是基于体素的三维重建方法,但是它也采用了基于表面的三维重建方法的思想,通过线模型直接计算可见外壳的表面点。该方法综合了基于体素的三维重建方法和基于表面的三维重建方法的优点,避免了各自的缺点,能够重建出精确的三维数字化模型,并且较稳健,实验证明了该方法的重建结果精度较高,该方法适合于需要建立植物形态的精确三维数字化模型的应用场合。
     建立植物根茎的三维数字化模型在精细化农业中有着重要意义,为了快速地建立非常精准的植物根茎的三维数字化模型,本文提出了一种适用于重建植物根茎的三维重建快速算法。该方法属于基于体素的重建可见外壳的方法。该方法以植物的根茎的三维骨架上的点来构造线模型,这些基于植物根茎的三维骨架而构造的线模型表征了植物根茎所在的三维空间,并有效地将其离散化。根据图像中轮廓的连续性来切割每个线模型,以此来获取位于线模型上位于根茎的表而上的点。该方法能够兼顾速度和准确度,能在较短的时间内重建出精确的植物根茎的三三维数字化模型。实验证明了该方法速度快、精度高,重建结果逼近植物根茎的真实形态。
The research of morphology of plants has important theoretical significance in the research of study of plant growth pattern. The research plays an important role in guiding agricultural production, seed selection, breeding, intercropping, and increasing agricultural production. With the rapid development of computer technology, three-dimensional information acquisition technology can reconstruct three-dimensional digital model for plant morphology. The three-dimensional information acquisition technology provides a very useful visual analysis tools for studying plant physiological form, structure and function.
     A 3D scanning system for the plant morphology based on the non-contact surveying is introduced. It acquires 3D geometric information of the plant morphology surface through software processing with the body shape captured by visual equipments. The system is a high-tech product of abroad application. It can acquire automatically the coordinate information of the object surface points in 3D space, build 3D models of plant morphology surface, and save the acquired data as corresponding standard interface files. Several key problems of the 3D scanning system for the plant are emphasized:overall technical scheme of the system, software analysis of the system, spatial information acquisition from the scanned plant morphology, and so on.
     A systematical overview for the current status, technique points and future development trend of the art of 3D information acquisition technology at home and abroad is introduced. Hardware system and software modules of the system are summarized and detailed analysis on collection, pre-processing and acquisition of the 3D spatial information are deeply discussed, too.
     The method of the system is based on the idea of Image Based Modeling and Visual Hull which could satisfy all the practical working requirements with a low cost. The methods computing visual hulls are mainly classified into two categories:surface-based approaches and volume-based approaches. Surface-based approaches are precise and lack robustness while volume-based approaches are robust but inaccurate and work slowly. The paper proposes a novel method to compute visual hull rapidly. To this aim, the method is based on viewing edges. First, the viewing lines are computed from all the contours of the object from different viewpoints. Viewing edges are computed by simplifying the 3D intersection onto 2D image plane. Finally, a water-tight surface is extracted from the surface points on the visual hull. Experiments with real data are conducted to test the rapidity of the proposed method.
     A novel method is proposed to compute exact visual hull by taking advantage of surface-based approaches while retaining the simplicity and robustness of volume-based approaches. To this aim, a line-based model is built for each cube on the edge of octree volume structure of object. Convex surface points of visual hull in line-based model are searched by the idea of surface-based approaches. Experiments with real data are conducted to test the efficiency and exactness of our method.
     Modeling the 3D shape of plant stems is very important for the study of plant growth in precision agriculture. To construct 3D model of real plant stems from images fast, a novel volumetric method based on line-based models is proposed in this paper. The line-based models are constructed on the coarse 3D skeleton of the plant stems. Then the line-based models are carved with respect to silhouette consistency. The surface points on the plant stems are calculated from line-based models. Finally, a mesh surface model can be extracted from the surface points. The proposed method can give precise results together with low time complexity and space complexity. Experiments based on both synthetic data and real data are presented to evaluate the preciseness and spcediness of the proposed method.
引文
[1]H. Liao, G. Rubio, X. Yan Et Al. Effect of Phosphorus Availability On Basal Root Shallowness in Common Bean. Plant and Soil,2001,232:69~79.
    [2]刘灵,廖红,王秀荣,等.不同根构型大豆对低磷的适应性变化及其与磷效率的关系.中国农业科学,2008(04):1089-1099.
    [3]梁泉,廖红,严小龙.植物根构型的定量分析.植物学通报,2007(06):695-702.
    [4]刘鹏,区伟贞,王金祥,等.磷有效性与植物侧根的发生发育.植物生理学通讯,2006(03):395-400.
    [5]高家合,邓碧儿,曾秀成,等.烟草磷效率的基因型差异及其与根系形态构型的关系.西北植物学报,2010(08):1606-1613.
    [6]赵静,付家兵,等.大豆磷效率应用核心种质的根构型性状评价.科学通报,2004,49(13):1249-1257.
    [7]廖红,严小龙.高级植物营养学.科学出版社,2003.
    [8]P. A. Wilson, S. Chakrabrty. The Virtual Plant:A New Tool for the Study and Management of Plant Diseases.Crop Protection,1998,17(3):231-239.
    [9]P. M. Room, L. Maillette, J. S. Hanan. Module and Metamer Dynamics and Virtual Plants.Advances in Ecological Research,1994,25:105~157.
    [10]廖红,严小龙.根系生物学:农业研究领域的新热点.科学观察,2006(06):47.
    [11]袁清华,年海,陈达刚,等.大豆根系性状和磷效率的遗传规律研究.大豆科学,2006(02):158-163.
    [12]姜丽萍,陈树人.虚拟植物的研究进展.农机化研究,2006(04):4-6.
    [13]郭焱,李保国.虚拟植物的研究进展.科学通报,2001(04):273-280.
    [14]金刚.三维激光彩色扫描仪中目标的空间及色彩信息获取[硕士学位论文], 华中科技大学,1997.
    [15]叶建辉.三维激光彩色扫描系统硬件子系统研究:[硕士学位论文],华中科技大学,1998.
    [16]吴险峰.基于三维激光彩色扫描仪关键技术研究:[博士学位论文],华中科技大学,2004.
    []7] 高文,陈熙霖.计算机视觉---算法与系统原理.北京:清华大学出版社,1999.
    [18]马颂德,张正友.计算机视觉---计算理论与算法基础.北京:科学出版社,1998.
    [19]N. Snavely, S. Seitz, R. Szeliski. Modeling the World From Internet Photo Collections. International Journal of Computer Vision,2008,80(2):189~210.
    [20]熊联欢,三维彩色信息获取的原理,算法的研究:[博士学位论文],华中理工大学,1999.
    [21]温宇强,三维激光彩色扫描系统关键技术研究:[硕士学位论文],华中科技大学,2002.
    [22]M. Ishii,T. Nagata. Feature Extraction of Three-Dimensional Object and Processing in I land-Eye System Using Laser Tracker. Pattern Recognition,1976, L8(4):229~237.
    [23]R. A. Jarvis. A Perspective On Range Finding Techniques for Computer Vision, Ieee Trans.On Pa&Mi,March,1983,5(2):122~139.
    [24]金刚,周学泳,李德华.三维扫描技术的的应用.计算机世界,C7,1999.7.26.
    [25]金刚,陈振羽,宋昆.几种三维扫描设备.计算机世界,C12,1999.
    [26]胡寅.三维扫描仪与逆向工程关键技术研究:[博士学位论文],华中科技大学,2005.
    [27]C. H. Esteban, F. Schmitt. Silhouette and Stereo Fusion for 3D Object Modeling. Computer Vision and Image Understanding,2004,96(3 SPEC. ISS.):367~392.
    [28]李德华,胡汉平,金刚.从平面到立体--三维扫描技术.计算机世界,C3.1999.7.26.
    [29]B. Curless, M. Levoy. Volumetric Method for Building Complex Models From Range Images. Proceedings of the ACM SIGGRAPH Conference on Computer Graphics,1996:303~312.
    [30]M. Levoy, S. Rusinkiewicz, M. Ginztonet al. The Digital Michelangelo Project: 3D Scanning of Large Statues. in:2000.131~144.
    [31]朱洲.三维人体信息获取及虚拟服装试穿技术研究:[博士学位论文]。华中科技大学,2004.
    [32]叶建辉,三维重建及简化技术研究:[博士论文],华中科技大学,2003.
    [33]Y.I.Abdel-Aziz, H.M.Karara. Direct Linear Transformation From Comparator Coordinates Into Object Space Coordinates in Close-Range Photogrammetry. In U. Of Illinois Symposium On Close-Range Photogrammetry. Urbana:Univ.of Illinois at Urbana-Charnpaign,1971,1~8.
    [34]W. Faig. Calibration of Close-Range Photogrammetric Systems:Mathematical Formulation.Photogrammetric Eng. Remote Sensing,1975,41 (12):1479~1486.
    [35]K.W.Wong.Mathematical Foundation and Digital Analysis in Close-Range Photogrammetry.Photogrammetric Engineering and Remote Sensing,1975, 41(11):1355~1373.
    [36]范洪.3-D计算机视觉系统的高精度定标和三维运动信息的准确获取:[博士论文],北方交通大学,1992.
    [37]D.II.巴拉德,C.M.布郎.计算机视觉[M].北京:科学出版社,1987.
    [38]蒋向前,李柱,谢铁邦.全息光栅干涉法测量曲面形貌的理论研究.华中理工大学学报.1994,22(2).
    [39]强玉俊,蒋大真,盛康龙.工业CT研制进展.核物理动态,1994,11(4):28-31.
    [40]G. Slabaugh, B. Culbertson, T. Malzbenderet al. A Survey of Methods for Volumetric Scene Reconstruction From Photographs. International Workshop on Volume Graphics,2001:81~100.
    [41]金刚,三维扫描仪三维信息获取理论与技术研究:[博士学位论文],华中科技大学,2002.
    [42]B. Curless. From Range Scans to 3D Models. Computer Graphics,1999,33(4):38-41.
    [43]W. C. Chen, H. L. Chou, Z. Chen. A Quality Controllable Multi-View Object Reconstruction Method for 3D Imaging Systems. Journal of Visual Communication and Image Representation,2010,21(5-6):427~441.
    [44]A. Laurentini. Visual Hull Concept for Silhouette-Based Image Understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16(2): 150~162.
    [45]Z. Gillay, L. Fenyvesi.3D Reconstruction and Calculation of Surface Area and Volume of Bell Pepper. Progress in Agricultural Engineering Sciences,2007, 3(1):89~113.
    [46]Y. Yemez, Y. Sahillioglu. Shape From Silhouette Using Topology-Adaptive Mesh Deformation. Pattern Recognition Letters,2009,30(13):1198~1207.
    [47]R. Guerchouche, O. Bernier, T. Zaharia. Multiresolution Volumetric 3D Object Reconstruction for Collaborative Interactions. Pattern Recognition and Image Analysis,2008,18(4):621~637.
    [48]J. S. Franco, E. Boyer. Efficient Polyhedral Modeling From Silhouettes. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2009,31(3):414~427.
    [49]S. N. Sinha, M. Pollefcys. Multi-View Reconstruction Using Photo-Consistency and Exact Silhouette Constraints:A Maximum-Flow Formulation. Proc. of ICCV, 2005.
    [50]Y. Furukawa, J. Ponce. Carved Visual Hulls for Image-Based Modeling. International Journal of Computer Vision,2009,81(1):53~67.
    [51]W. N. Martin, J. K. Aggarwal. Volumetric Descriptions of Objects From Multiple Views. IEEE Transactions on Pattern Analysis and Machine Intelligence,1983, PAMI-5(2):150~158.
    [52]C. H. Chien, J. K. Aggarwal. Volume/Surface Octrees for the Representation of Three-Dimensional Objects. Computer vision, graphics, and image processing, 1986,36(1):100~113.
    [53]R. Szeliski. Rapid Octree Construction From Image Sequences. CVGIP:Image Understanding,1993,58(1):23~32.
    [54]E. L. William, E. C. Harvey. Marching Cubes:A High Resolution 3D Surface Construction Algorithm. SIGGRAPH Comput. Graph.,1987,21(4):163~169.
    [55]Y. Fang, H. Chou, Z. Chen.3D Shape Recovery of Complex Objects From Multiple Silhouette Images. Pattern Recogn. Lett.,2003,24(9-10):1279~1293.
    [56]Y. Yemez, F. Schmitt.3D Reconstruction of Real Objects with High Resolution Shape and Texture. Image and Vision Computing,2004,22(13):1137~1153.
    [57]L. Chen, W. Kwan-Yee. Exact Visual Hull From Marching Cubes, the Third International Conference on Computer Vision Theory and Applications,2008,2: 597~604.
    [58]L. Xin, L. G. Marina, R. Jon. Incorporating Object-Centered Sampling and Delaunay Tetrahedrization for Visual Hull Reconstruction. Vis. Comput.,2009, 25(5-7):381~389.
    [59]L. Xin, Y. Hongxun, C. Xilinet al. Shape From Silhouettes Based On a Centripetal Pentahedron Model. Graph. Models,2008,70(6):133~148.
    [60]E. Boyer, J. S. Franco. A Hybrid Approach for Computing Visual Hulls of Complex Objects. in:Proc. IEEE Conf. Comput. Vision Pattern Recogn.2003. 695~701.
    [61]P. Song, X. Wu, M. Y. Wang. Volumetric Stereo and Silhouette Fusion for Image-Based Modeling. Visual Computer,2010,26(12):1435~1450.
    [62]A. Kanezaki, T. Harada, Y. Kuniyoshi. Partial Matching of Real Textured 3D Objects Using Color Cubic Higher-Order Local Auto-Correlation Features. Visual Computer,2010,26(10):1269-1281.
    [63]S. Prakash, A. Robles-Kelly. A Semi-Supervised Approach to Space Carving. Pattern Recognition,2010,43(2):506~518.
    [64]H. Zhong, W. S. Lau, W. F. Szeet al. Shape Recovery From Turntable Sequence Using Rim Reconstruction. Pattern Recognition,2008,41(11):3295~3301.
    [65]Y. Sahillioglu, Y. Yemez. Coarse-to-Fine Surface Reconstruction From Silhouettes and Range Data Using Mesh Deformation. Computer Vision and Image Understanding,2010,114(3):334~348.
    [66]K. M. Cheung, S. Baker, T. Kanade. Visual Hull Alignment and Refinement Across Time:A 3D Reconstruction Algorithm Combining Shape-From-Silhouette with Stereo. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2003.
    [67]H. Zhong, W. S. Lau, W. F. Szeet al. Shape Recovery From Turntable Sequence Using Rim Reconstruction. Pattern Recognition,2008,41(11):3295~3301.
    [68]M. Goesele, B. Curless, S. M. Seitz. Multi-View Stereo Revisited. in:2006. 2402~2409.
    [69]B. G. Baumgart. Geometric Modeling for Computer Vision. Geometric Modeling for Computer Vision,1974.
    [70]M. Wojciech, B. Chris, M. Leonard. Polyhedral Visual Hulls for Real-Time Rendering:Springer-Verlag,2001.
    [71]S. Lazebnik, E. Boyer, J. Ponce. On Computing Exact Visual Hulls of Solids Bounded by Smooth Surfaces. in:2001.
    [72]L. Svetlana, F. Yasutaka, P. Jean. Projeclive Visual Hulls. Int. J. Comput. Vision, 2007,74(2):137~165.
    [73]C. Liang, K. K. Wong.3D Reconstruction Using Silhouettes From Unordered Viewpoints. Image and Vision Computing,2010,28(4):579~589.
    [74]Y. Furukawa, J. Ponce. Accurate, Dense, and Robust Multivicw Stereopsis. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2010,32(8): 1362~1376.
    [75]周学成,罗锡文,严小龙,等.基于遗传算法的原位根系CT图像的模糊阈值分割.中国图象图形学报,2009(04):681-687.
    [76]罗锡文,周学成,严小龙,等.基于XCT技术的植物根系原位形态可视化研究.农业机械学报,2004(02):104-106.
    [77]向子云,罗锡文,周学成,等.多层螺旋CT三维成像技术观测植物根系的实验研究.CT理论与应用研究,2006(03):1-5.
    [78]严小龙,周学成,罗锡文.基于阈值分析与区域生长相结合的根系CT序列图像分割算法.见:2005年中国农业工程学会学术年会.中国广东广州:2005.
    [79]朱同林,方素琴,李志垣,等.基于图像重建的根系三维构型定量分析及其在大豆磷吸收研究中的应用.科学通报,2006(16):1885-1893.
    [80]G. Zeng, S. Paris, L. Quanet al. Accurate and Scalable Surface Representation and Reconstruction From Images. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(1):141~158.
    [81]K. K. Chiang, K. L. Chan. Volumetric Model Reconstruction From Unrestricted Camera Views Based On the Photo-Consistency of 3D Voxel Mask. Machine Vision and Applications,2006,17(4):229~250.
    [82]G. Vogiatzis, C. Hernandez. Practical 3D Reconstruction Based On Photometric Stereo. Studies in Computational Intelligence,2010,285:313~345.
    [83]C. Hernandez, G. Vogiatzis. Shape From Photographs:A Multi-View Stereo Pipeline. Studies in Computational Intelligence,2010,285:281~311.
    [84]J. Kilner, J. Starck, J. Y. Guillemautet al. Objective Quality Assessment in Free-Viewpoint Video Production. Signal Processing:Image Communication, 2009,24(1-2):3~16.
    [85]S. Fang, X. Yan, H. Liao.3D Reconstruction and Dynamic Modeling of Root Architecture in Situ and its Application to Crop Phosphorus Research. The Plant Journal,2009,60(6):1096~1108.
    [86]W. Faig. Calibration of Close-Range Photogrammetric Systems:Mathematical Formulation. Photogrammetric Engineering & Remote Sensing.1975,41 (12):1479~1486.
    [87]K.W. Wong. Mathematical Foundation and Digital Analysis in Close-Rang Photogrammetry. In Proc. Of 13Th Congress of the Int'L Society of Photogrammetry,1976:1355~1486.
    [88]O. Faugeras. Three-Dimensional Computer Vision:A Geometric Viewpoint. Mit Press,1992.
    [89]D. Daucher, M. Dhome, J, Lapreste. Camera Calibration Form Spheres Images. In Proc. Of European Conf. Computer Vision,1994:449~454.
    [90]H. Zhang, G. Zhang, K. Wong. Camera Calibration with Spheres:Linear Approaches. In Proc. Int'L Conf. Image Processing,2005:1150~1153.
    [91]X. Meng, H. Li, Z. Hu. A New Easy Camera Calibration Technique Based On Circular Points. In Proc. British Machine Vision Conf.,2000:496~505.
    [92]R. Tsai. A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf Tv Cameras and Lenses. Ieee Journal of Robotics and Automation,1987,3(4):323~344.
    [93]Z. Zhang. Flexible Camera Calibration by Viewing a Plane From Unknown Orientations. In Proc.Int'L Conf. Computer Vision,1999:666~673.
    [94]Z. Zhang. A Flexible New Technique for Camera Calibration. Ieec Trans. Pattern Analysis and Machine Intelligence,2000,22(11):1330-1334.
    [95]Z. Zhang. Camera Calibration with One-Dimensional Objects. Iccc Trans. Pattern Analysis and Machine Intelligence,2004,26(7):892~899.
    [96]Y. I. Abdel-Aziz and H. M. Karara, Direct Linear Transformation Into Object Space Coordinates in Close-Range Photogrammetry, Proc.Symp. Close-Range Photogrammetry, Jan.1971,1~18.
    |97] R. Y. Tsai. An Efficient and Accurate Camera Calibration Technique for 3D Machine Vision. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,1986:364~374.
    [98]A. Nina, C. Sunghee, K. Ravi Krishna. The Power Crust:6th ACM Symposium on Solid Modeling.:ACM,2001,249~260.
    [99]P. A. L. Hendrik, H. Wolfgang, S. Hans-Peter. A Silhouette-Based Algorithm for Texture Registration and Stitching. Graph. Models,2001,63(4):245~262.
    [100]K. Kalin, K. Maria, B. Thomaset al. Continuous Global Optimization in Multiview 3D Reconstruction. Int. J. Comput. Vision,2009,84(1):80~96.
    [101]D. Cremers. "Data". http://wwwcremers.in.tum.de/index.php?nav=main,2010.
    [102]J. Bresenham. Algorithm for Computer Control of a Digital Plotter. IBM Systems Journal,1965,4(1):25-30.
    [103]Y. Chen. Hidden Deletable Pixel Detection Using Vector Analysis in Parallel Thinning to Obtain Bias-Reduced Skeletons. Computer Vision and Image Understanding,1998,71(3):294~311.
    [104]C. Teng, Y. Chen, W. Hsu. Constructing a 3D Trunk Model From Two Images. Graph. Models,2007,69(1):33~56.
    [105]K. Fredrik, A. Jonas. Multiview Reconstruction of Space Curves:Proc.9th IEEE Conf. Comput. Vision.2003,1017~1024.