梯度折射率减反射光伏玻璃的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,在解决全球能源危机与实现社会可持续发展的双重难题下,清洁、环保、高效的新能源的利用面临机遇与挑战。太阳能作为一种取之不尽的清洁能源受到各国重视。利用太阳能最直接有效的方式是光伏转换,即将太阳能直接转换为电能。在每个太阳电池器件中,光伏玻璃作为一种具有高透光率的玻璃基体对提高光伏电池的光电转换效率具有重要作用。传统的光伏玻璃表面至少会有8%的入射光被反射而无法利用(70度角入射时,反射率增至27%)。因此设计出具有减反射功能的光伏玻璃以避免这部分反射造成的入射能量损失,是很有意义的。目前的减反射技术各有优缺点,磁控溅射法特点是精确可控,但是成本很高,工艺上也限制了镀制多层的宽带减反射膜,虽然从科学研究的角度没有问题,但是产业化生产是不可行的;溶胶-凝胶法的优势是能够相对简单的实现大面积玻璃镀膜,但是其膜层的折射率较为均匀,不能得到宽带减反射的效果。通过对光学减反射理论、方法、玻璃减反射技术的调研分析,研究发现梯度折射率薄膜可以实现宽波段、大角度减反射等优良的特性,而腐蚀法是可以实现这种特性并且可以产业化的光伏玻璃减反射技术。
     本文采用分层等效的方法,用一个由均质膜构成的多层膜堆等效梯度折射率减反射膜层,构造了多种折射率分布的梯度折射率减反射薄膜,使之能用现有的光学薄膜设计软件对其进行理论计算模拟研究。论文设计了不同的折射率曲线、层数、膜厚等参数,并将计算分为两个阶段:首先针对可见光波段,以110-880nm厚度、三种层数、五种类型折射率分布曲线为参数构建减反射薄膜进行计算,结果表明:在此计算相应参数条件下,200nm以上膜层厚度可以达到宽带减反射的效果;第二阶段,将研究扩展到整个太阳光谱,根据腐蚀法的实验特点和第一部分的结论,重新修订了300nm内的六个厚度、100-300范围内的五种层数、四种减反射曲线等参数。结果表明:在300nm厚度内100层以上层数变化的影响变得很小。在可见光波段和太阳光波段,余弦函数和直线函数分别具有最高的透过率分布,通过进一步计算可见光透射比和太阳光直接透射比这两个评价光伏效能的国标参数,余弦函数结果要好于直线或其它函数。
     另外,根据德鲁德、洛仑兹-洛伦茨、麦克劳德三种理论对折射率和密度的关系推导,得出了物质密度和折射率的对应关系,据此,提出通过腐蚀法控制玻璃材料表面层的密度使之逐渐变化得到折射率逐渐变化的梯度折射率薄膜,模拟了该梯度减反射薄膜的减反射特性,并与实验结果进行了比较。
     本文采用新的二次腐蚀梯度折射率薄膜制备方法,分两步对玻璃表层附近材料进行选择性脱除,第一步使用低浓度的酸液脱除表层的钙、钠等金属离子;第二步使用浓度较大的HF等酸液进一步脱除内层的金属离子,并且对光伏玻璃基体表层进行了由外而内的稀疏化处理,得到了一层厚度为200-300nm、具有渐变密度的多孔SiO2微结构层。这种微结构层的折射率呈梯度分布,并且具有优秀的减反射特性。在紫外到近红外1200nm的波长带宽内,透过率都在96%以上;在350-1084nm的双面总反射率小于1%(即单面反射率<0.5%),其中624-922nm的双面反射率低于0.2%(单面反射率<0.1%);并且390-1000nm波长带宽范围的平均透过率达到了99.22%。
     本文测试了该光伏玻璃透过率随入射角度的变化,测试结果表明:梯度折射率减反射光伏玻璃在入射角为70°时的透过率达到了95.43%,比未做减反射的光伏玻璃透过率高出了约23%。本文对几种不同折射率梯度轮廓膜层的减反射光谱进行了模拟,并与实验测试结果对比,发现余弦函数分布的折射率与实验结果基本吻合。
     通过对压花玻璃技术、溶胶-凝胶技术和腐蚀法技术三者的分析得知,压花玻璃与溶胶-凝胶技术的结合会填隙花纹从而削弱减反射效果,而腐蚀法制备技术不破坏压花玻璃表面微结构的减反射效果。本文在压花玻璃表面进行二次腐蚀法减反射的处理,得到了非常理想的减反射效果,在350至1100nm波长范围的透过率几乎达到了100%,是目前所有该类研究中最好的结果。膜层硬度测试表明,光伏玻璃减反射膜层的铅笔硬度达到2H以上,满足减反射光伏玻璃应用的基本要求。
Nowadays, the utilization of new energies with merits on clean, environmental-friendly,and efficient properties has met great opportunities and challenges under the dual difficultiesof solving global energy crisis and sustainable social development. Solar energy has been paidgrowing interests because it is a kind of unexhausted energy. The most efficient approachingof utilizing solar energy is photovoltaic conversion. In each solar cell, photovoltaic glass, aglass substrate with high optical transparency, is crutial for the enhancement oflight-to-electric conversion efficiency. In the traditional photovoltaic glass, at least8%ofincident light will be reflected by the polished surface (the reflectivity is27%at an incidentangle of70o). Therefore, it is of great significance to design a kind of photovoltaic glass withantireflection functions in order to avoid the incident light loss. Among current antireflectionapproaches, magnetron sputtering technique has a merit of controllability, but the fabricationexpense is high along with the limit in coating multilayer wide-band antireflection film.Althogh sol-gel method can be used to realize the preparation of antireflection films in a largerscale, the homogeneously distributed refractive index makes it unrealizable of wide-bandantiflection. After a careful survey in optical antiflection theories, methods, and techniques, weare inspired by the optical films with gradient refractive index (GRIN) to demonstrate thecharacteristics in wide-band, high-angle reflection et al. Among them, etching method is anefficient antireflection technique in realizing the above merits and commercialization.
     In order to simulate the antireflection films with GRIN by the current design softwares onoptical films, we have successfully designed a kind of GRIN films by replacing ahomogeneous film by multilayer film piles, where there is a single refractive index in eachlayer. The simulation computation can be divided into two steps by adjusting refractiveindexes, number of layer, and film thickness:(i) For visible-light region, film thickness of110-880nm, three layers (35,70, and140), and five types of flectivity (linear, cosine,arccosine, and double quadratic functions) are employed to simulate the resultantantireflection films, indicating that the film thickness of higher than200nm is required toobtain the purpose of wide-band antireflection.(ii) Another films with six thicknesses, fivelayers ranging from100to300, and four antireflection curves are employed to investigate the antireflection properties in the full solar spectrum, suggesting a low effect beyond100layers.The results indicate that cosine function and linear function have maximum opticaltransparency in visible-light and infrared-light regions, respectively, whereas cosine functionis better than linear function in assessing the visible light transmittance ratio and solarspectrum direct transmission ratio.
     Additionally, the relationships between density and refractivity are generated based onDrude, Lorentz-Lorenz, and Macleod theories. We launch an etching approach by controllingthe density of surface antireflection layer in order to obtain GRIN films and simulate theantiflection properties by sofewares.
     The proposed etching route comprises two steps: in the first step, calcium and sodium etal metal ions are removed by low-concentrated aqueous solution; In the second step, thedeep-positioned metal ions are dissolved using high-concentrated aqueous solution to obtain alayer of porous SiO2structure with thickness of200-300nm after rarefaction treatments on thephotovoltaic glass substrate. The resultant SiO2structure exhibit gradiently distributedrefractive index and excellent antireflection properties, referring an optical transparency ofabove96%in the wavelength ranging from ultraviolet to near infrared (1200nm) regions. Thebifacial reflectivity is lower than1%in350-1084nm, and it is lower than0.2%in thewavelength range of624-922nm. Notably, an average optical transparency of99.22%isobtained in the wavelength ranging from390to1000nm.
     The results on the dependence of optical transparency on incident angle indicate thetransparency is95.43%at an incident angle of70o, which is increased by23%in comparisonwith that for photovoltaic glass without antireflection. The antireflection spectra are finallysimulated by softwares and compared with experimental results, revealing a good agreement.
     The combination of patterned photovoltaic glass with sol-gel technique can fill thepatterns and therefore decrease the antireflection functions, whereas etching method willremain good antireflection effect becaust it will not destroy the microstructures of patternedphotovoltaic glass. An optical transparency of nearly100%has been measured after dubleetching treatments. To the best of our knowledge, it is the highest record for photovoltaic glass.The hardness measurements reveal the resultant antireflection layer on photovoltaic glass has ahardness of higher2H, which can meet the requirement for the applications of antireflectionphotovoltaic glass.
引文
[1]王汉华.离子辅助沉积(1-x)TiO2-xTa2O5薄膜的光学性能研究[D].武汉理工大学,2007.1~2
    [2]尹树百.薄膜光学理论与实践.北京:科学出版社,1987.34~36
    [3]胡小锋.离子辅助蒸发Ti3O5制备光学薄膜的研究[D]武汉理工大学.2006.7~12
    [4]兰岚.工作在超短脉冲条件下的光学介质薄膜[D].四川大学,2006.1,13~17
    [5]谭嘉杰.等离子体增强化学气相沉积法制备优化TiO2薄膜及其光学性能研究[D].广东工业大学,2006.2,12~16
    [6]徐晨.太阳电池组件用封装材料的制备研究及其应用[D].浙江大学,2013.11~12
    [7] K H Guenther.Thin Solid Flims. Applied Optics,2010,34(1981):454
    [8]徐恩明.一种新型成像系统及回归反射材料的研究[M].安徽大学,2006.8~9
    [9]温海东.光折变相位图和相位元件[D].南开大学,2001.10~11
    [10] D T Moore.Applied Optics,19,p.1036,1980:223
    [11]孙晓红.掺铕聚合物光电子材料的近场光学特性研究[M].中国科学技术大学,2002.9~12
    [12]乔亚夫.梯度折射率光学.北京:科学出版社,1991.131
    [13] D LSteabler and J J Amodei. Applied Physics,43,1042(1972):44~46
    [14]邵瑞,陈力.梯度折射率光学的发展现状.巢湖学院学报,2006,8(3):59~61
    [15] K Matsushita,M Toyama.Applied Optics,19,1070(1980):332
    [16]乔亚夫.国外科学.科学技术文献出版社,1979.122
    [17]杨群.梯度折射率聚合物微球光纤准直器的研究[M].安徽大学,2004.28
    [18] I T Ritchieand B Window(1977).Applied Optics,16,143:80~9l.
    [19] J A Dobrowolski,D Lowe.Optical thin film synthesis program based on the use of fouriertransforms.Applied Optics.1978,17(19):3039~3050
    [20] Germain Boivin,Daniel St.Synthesis of gradient-index Profiles corresponding to spectral reflectancederived by inverse Fourier transform.Applied Optics.1987,26(19):4209~4213
    [21] G Bertrand,Bovard.Derivation of a matrix deseribing a rugate die1ectric thin film.AppliedOptics.1988,27(10):1998~2005
    [22] P G Verly,J A Dobrowolski,W J Wild,et al.Synthesis of high rejection filters with thefourier transformmethod.Applied Optics.1989,28(14):2864~2875
    [23] G Bertrand,Bovard.Rugate filter design:the modified fourier transform technique.AppliedOptics.1990,29(l):24~30
    [24]唐守利.大角度宽波带减反射薄膜的优化设计制备和表征[D].暨南大学,2012.13~14
    [25]董莹.渐变折射率薄膜光学常数测试与评价[D].西安工业大学,2013.3.9~10
    [26]陶俊.磁场电场本质.读与写:教育教学刊,2011:34
    [27]玻恩(德),沃耳夫(美)著,杨葭荪译.光学原理-光的传播干涉和衍射的电磁理论.北京:电子工业出版社,2009,10:121~122
    [28]肖任勤.电火花电解复合切割硅片的表面形貌及反射特性研究[D].南京航空航天大学,2009.13~17
    [29]李建涛.透明屏蔽ITO薄膜的制备与特性研究[D].太原科技大学,2009.9~13
    [30]张有润.制备ITO薄膜的工艺研究[D].电子科技大学,2005.5~10
    [31]梁松.FTO-SiO2复合透明导电薄膜的制备及性能研究[D].北京交通大学,2010.8~18
    [32]李嘉桦.氧化铟锡半导体材料表面吸附性质的密度泛函理论研究[D].北京交通大学,2010.9~21
    [33]董建华.透明导电In2O3:Sn和ZnO:Al薄膜的制备及其特性研究[D].重庆大学,2002.16~23
    [34]刘晓平.高效HIT非晶硅/单晶硅太阳能电池中透明导电膜的研究[D].河北工业大学,2007.18~19
    [35]赵秀玲.磷铝吸杂及HIT晶硅太阳能电池高转换效率机理研究[D].河北工业大学,2005.17~18
    [36]陈松生.投射式电容触摸屏研究[D].苏州大学,2003.7~12
    [37]李晓云.金属膜电阻器稳定性的研究[D].天津大学,2003.19~21
    [38]王树林.ITO薄膜的制备及性能研究[D].武汉理工大学,2004.6~12
    [39]王艳.Ti6A14V及其改性层的冲击磨损行为研究[D].西南交通大学,2010.8~17.
    [40]殷聪鹏.钌硼化物的制备、表征与性能研究[D].昆明金属研究所,2013.9~17
    [41]王玫.β-SiC薄膜的低温沉积及特性研究[D].北京工业大学,2002.12~14
    [42]孙鹏.多孔硅基氧化钨气敏传感器的研究[D].天津大学,2009.13~14
    [43]姜辉.中频非平衡磁控溅射制备DLC膜的工艺研究[D].四川大学,2007.15~18
    [44]邹利.碳纤维机织物在燃料电池扩散电极中的应用研究[D].江南大学,2007.9~14
    [45]吴桂芳.直流磁控溅射镀膜实验条件的选择.大学物理实验,2004:8~12
    [46]符杨.硅碳氮薄膜的制备与发光性能研究[D].天津大学,2006.4~9
    [47]刘云周.PIN型非晶硅太阳能电池ZnO:Al/Al复合背反射电极的研究[D].河北工业大学,2008.4~7
    [48]龙航宇.热致变色钒氧化物膜的制备结构与性能研究[D].中南大学,2010.5~7
    [49]张伟.光伏电池表面微结构制备及其抗反射性能研究[D].江苏大学,2012.35~38
    [50] Lord Rayleigh.On reflection of vibrations at the confines of two media between which the transition isgradual.Proceedings of the London Mathematical Society.1880,11:51~56
    [51]刘立强,张叔国等.梯度折射率宽带减反射光伏玻璃研究.功能材料,2012,3.0484:41
    [52] W H Southwell.Gradient-index antireflection coatings.Optical Letter,1983,8(11):584
    [53] H A Macleod.Thin-Film Optical Filters.Welford W T,ed.London:Institute of Physics Publishing2001.37~42
    [54] Chen M F,Chang H S,Allan S,Chang P,et,al.Design of optical path for wide-angle gradient-indexantireflection coatings.Applied Optics.2007,46(26):6533~6538
    [55] Xi J Q, M F Schubert. Optical thin-film materials with low refractive index for broadband eliminationof Fresnel reflection.Nature Photonics,2007,1(3):176~179
    [56] Huang Y F,et al.Improved broadband and quasiomni directional anti-reflection properties withbiomimetic silicon nanostructures. Nature Nanotechnology2007,2:770
    [57] H K Pulker著:仲永安等译.玻璃镀膜.北京:科学出版社,1988.5~9
    [58]查家明.宽波段分色膜研制[D].南京理工大学,2007.8~10
    [59] Zhou W,Tao M,Chen L,et al.Microstructured surface design for onmidirectional antireflection coatingson solar cells.Jounal ofApplied physics,2007,102(9):103~105
    [60] Loss,Chen C C,F Garwe.Broad-band anti-reflection coupler for a-Si thin-film solar cell.Jounal ofPhysics.Applied Physics,2007,40(3):754~758
    [61]徐芳.浅析磁控溅射玻璃镀膜原理.中国玻璃,2008,06:55~58
    [62]徐慢.玻璃基太阳能电池薄膜材料制备及其结构和性能研究[D].武汉理工大学,2006.42~50
    [63] Francois R Flory.Thin Films for Optical Systems.New York:Copyright by Marcel DekkerInc,1995.67~71
    [64] Hans Joachim.大面积玻璃镀膜.上海:上海交通大学出版社,TQ171.6,2006,04.45~50
    [65] Abdelhaldm,Mahdjoub.Graded refraction index antireflection coatings based on silicon and titaniumoxides.Semieonductor Physics.Quantum Electronics&Optielectronics,2007,10(l):60~66
    [66] M Farooq,M G Hutchins.A novel design in composities of various materials for solars electivecoatings.Solar Energy Materials&Solar Cells,2002,71(4):523~535
    [67] S Y Liena,D S Wuua,W C Yehb,et al.Tri-layer antireflection coatings(SiO2/SiO2-TiO2/YiO2)for siliconsolar cells using a sol-gel technique.Solar Energy Materials&Solar Cells,2006,90(16):2710~2719
    [68] B C Chakravartya,P N Vinoda,S N Singha,et al.Design and simulation of antireflection coating forapplication to silicon solar cells.Solar Energy Materials&Solar Cells,2002,73(l):59~61
    [69]张伟.光伏电池微结构及其抗反抗性能研究[D].江苏大学,2012.13~19
    [70]马志博.光学表面微结构抗反射特性与优化设计研究[D].西北工业大学,2011.9~10
    [71] J Son,S Kundu,L K Verma,M Sakhuja,A J Danner,C S Bhatia,and H Yang.A practical superhydrophilicself-cleaning and anti-reflective surface for outdoor photovoltaic applications.Solar Energy Materials andSolar Cells,2011,98:36~51
    [72] Wang S D and Luo S S.Fabrication of transparent superhydrophobic silica-Based film on a glasssubstrate.Applied Surface Science,2012,258(14):5443~5450
    [73]陈兰武.浅议超白坡璃的生产与质量要求.门窗,2011,6(4):45~51
    [74] C A Ohlin,E M Villa,J R Rustad,and W H Casey.Dissolution of insulating oxide materials at themolecular scale.Nature Materials,2010,9(1):11~19
    [75] C Cailleteau,F Angeli,F Devreux,S Gin,J Jestin,P Jollivet,and O Spalla.Insight into silicate-glasscorrosion mechanisms.Nature Materials,2008,7(12):978~983
    [76] F H Elbatal,M A Azooz,and Y M Hamdy.Preparation and characterization of some multicomponentsilicate glasses and their glass-ceramics derivatives for dental applications.Ceramics International,2009,35(3):1211~1218
    [77]沈自才,沈建,刘世杰等.渐变折射率薄膜的分层等效评价探讨.物理学报,2007,56(03):1325~1328
    [78] Born M,Wolf E.Principle of Optics. London:Cambridge University,7th expanded edition,1999.62
    [79] Shen J,Liu S H, Shen Z C,et al.Acta Phys.Sin.54,4920(in Chinese),2005.44
    [80] TFCalc中文版说明书.光研科技有限公司,2013
    [81]沈自才,邵建达,王英剑等.斜角入射沉积法制备渐变折射率薄膜的理论探讨.物理学报,2005,54(7):3069~3074
    [82] Xi J Q,et al.Optical thin-film materials with low refractive index for broadband elimination of Fresnelreflection.Nature Photonics2007,1:176
    [83] H Nagel,et al.Porous SiO2films prepared by remote plasma-enhanced chemical vapour deposition anovel antireflection coating technology for photovoltaic modules.Solar Energy Materials&Solar Cells,2001,65:71
    [84]ABeganskiene,et al.Sol-gel derived antireflective coating with controlled thickness and reflectiveindex.Materials Science-Poland2007,25:817
    [85] LiY F,et al.Biomimetic Surfaces for High-Performance Optics.Advanced Materials,2009,21:4731
    [86] B C Bunker.Ceramic thin-film formation on functionalized interfaces through biomimeticProcessing.Journal of Non-Crystal Solids,1994,264(5155):48~55
    [87]A.Tournie,P.Ricciardi,and P.Colomban.Glass corrosion mechanisms:a multiscale analysis.Solid StateIonics,2008,179(38):2142~2154
    [88]荣林艳.太阳能电池TiO2陷光膜材料的制备与特性研究[D].中南大学,2010.6~11
    [89]余俊.溅射法制备ZAO透明导电薄膜及其光电性能研究[D].武汉理工大学,2004.5~12
    [90]张君.预先镀SiO2膜玻璃基片SnO2:Sb薄膜的溶胶凝胶法制备及表征[D].武汉理工大学,2005.7~9
    [91]张有润.制备ITO薄膜的工艺研究[D].电子科技大学,2005.3~7
    [92]陈谦.FTO薄膜的热处理过程中的表面演化及性能研究[D].燕山大学,2011.4~11
    [93]左克军循环经济与中国钢铁产业的发展.江苏冶金,2006,12:30
    [94]茆姝.热光伏转换中光学滤波器红外选择特性研究[D].南京理工大学,2007.6~10
    [95] Essential MacLeod,光学薄膜分析与设计软件.激光与光电子进展,2008:132
    [96]洪媛.基于PMMA的微结构聚合物减反射薄膜[D].浙江大学,2007.5~11
    [97] H AMacleod.Thin Film Optical Filters.Bristol,UK:Institute of Physics,2001,154
    [98]杨文华,李红波,吴鼎祥.太阳电池减反射膜设计与分析.上海大学学报(自然科学版),2004(01):22~25
    [99]杨宏,王鹤,于化丛,奚建平,胡宏勋,陈光德.常压化学汽相沉积TiOX纳米光学薄膜及其用于太阳电池减反射膜的研究.太阳能学报,2002(04):33~36
    [100]鄢秋荣,黄伟,张云洞.傅里叶合成法设计渐变折射率薄膜.红外与激光工程.2007(S1):54~57