氧化锌基纳米结构的制备表征及光电性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宽禁带半导体ZnO纳米结构的制备及应用是当今材料领域的研究热点之一。由于III族元素是ZnO最好的n型掺杂剂,探索III族元素相关的ZnO基纳米材料的制备,研究其潜在的物理、化学新属性,发展其相关的器件应用,无论在科学研究还是实际应用中均具有重要意义。III族元素在ZnO结构中的引入,可能与N共掺杂实现p型导电,也可能引起微观结构的变化,形成孪晶或InMO3(ZnO)m (M=In, Ga; m为整数)超晶格结构。因此,本论文采用化学气相沉积方法,合成了N-In共掺杂的ZnO纳米带、In/Ga掺杂的ZnO孪晶纳米结构以及InMO3(ZnO)m超晶格纳米结构,并研究了它们的物理性质。具体包括以下几个方面:
     研究了N-In共掺杂的ZnO纳米带的制备及光学性质。采用化学气相沉积方法合成了N-In共掺杂的ZnO纳米带。利用扫描电子显微镜、X射线能谱仪和微区拉曼光谱仪分别对合成纳米带的形貌、成分和拉曼光谱进行了分析,确定了纳米带的结构和成分。通过与未掺杂和In掺杂的ZnO低维纳米结构进行比较,拉曼光谱和光致发光谱同时证明了N的存在,确定合成产物为N-In共掺杂ZnO纳米带。纳米带的低温光致发光谱中,中性受主性束缚激子的发光峰占主导地位,受主为N与In元素形成的2NO-InZn受主复合体,复合体的受主束缚能约为112meV。
     研究了ZnO孪晶纳米结构的制备及光学性质。采用化学气相沉积方法合成了两种形貌新颖的ZnO孪晶纳米结构:一种是由三根简单纳米带同轴共生形成的In掺杂ZnO三刃纳米带;一种是由六角纳米片按一定规律组装在一起形成的In、Ga掺杂的ZnO串状六角片。利用扫描电子显微镜、X射线衍射仪和透射电子显微镜对纳米结构的形貌、晶体结构和微观结构分别进行了表征。两种纳米结构虽然具有不同的形貌,但均具有ZnO六角纤锌矿结构,构成两种纳米结构的基本单元的宽表面均为±(0001)面,且互成64o或116o,通过(0113)和(0111)孪晶界沿[2110]方向被组装在一起。基于两种纳米结构的形成过程,在Quadra孪晶核模型的基础上提出了(0113)和(0111)孪晶结构的形成机制。两种孪晶纳米结构的光致发光谱均由紫外发光峰和可见发光带两部分组成。可见发光明显强于紫外发光是由于结构中大量孪晶的出现所致。本研究内容为将简单纳米结构单元组装成复杂结构提供了一个新的方法,有利于高密度集成纳米功能器件的早日实现。
     研究了In2O3(ZnO)m材料的晶体结构和电子结构。应用第一性原理密度泛函理论提出了新的原子排布规则,构建了具有W调制结构的基态晶体结构模型。W调制结构的夹角对于不同的m值保持不变,而调制结构的周期性与m值成正比。W调制结构的稳定性明显优于“一”字形结构模型。通过对结构中电子态密度的计算,认为In2O3(ZnO)m的电子传输特性由In-5s和Zn-4s电子态决定。
     研究了ZnO/In2O3(ZnO)m异质结纳米带的制备及弯曲机制。采用化学气相沉积方法合成了ZnO/In2O3(ZnO)m (m=4,5)异质结纳米带。利用扫描电子显微镜、X射线能谱仪和透射电子显微镜对纳米结构的形貌、成分和微观结构分别进行了表征,纳米带呈弯曲状,由具有In2O3(ZnO)m超晶格结构的外弧部分和具有ZnO六角纤锌矿结构的内弧部分组成,两者通过(0001)面外延生长在一起。ZnO和In2O3(ZnO)m两种材料由于晶格常数的不同,在界面处产生了明显的晶格失配,因而引入弹性应变。这些应变,一部分通过在界面处形成位错进行了释放;其余部分则通过弯曲的形式进行释放,弯曲程度与纳米带的厚度有关。
     研究了In2-xGaxO3(ZnO)m四元超晶格纳米带的制备及场发射特性。通过优化实验参数,在三元超晶格的基础上,合成了具有不同Ga浓度的In2-xGaxO3(ZnO)m四元超晶格纳米带。应用X射线衍射仪、X射线能谱仪、元素分布图、X射线光电子能谱仪、超薄纳米切片技术和高分辨透射电子显微镜对纳米带的晶体结构、成分和微观结构分别进行了分析,证实了In2-xGaxO3(ZnO)3四元超晶格结构的形成。其X射线衍射的结果补充了粉末衍射标准联合委员会数据库中关于In2-xGaxO3(ZnO)3四元超晶格材料的相关数据。X射线光电子精细谱中,Zn-2p和In-3d的峰位向高能侧移动,而Ga-3d的峰位则向低能侧移动,说明In2-xGaxO3(ZnO)3结构中的电子由Zn和In向Ga原子过渡,引起了各元素有效电荷密度的变化。对In1.63Ga0.37O3(ZnO)3纳米带的场发射特性进行了研究,纳米带的开启电场为4.1V/μm、增强因子为1059,电流密度在应用电场为10V/μm的条件下、在4500秒内没有出现任何的衰减和震荡,表现出良好的稳定性。
ZnO is a wide-band-gap semiconductor. The research on the synthesis and application of ZnO nanostructures is one of the hot topics in material science. The exploretion of ZnO based nanostructures related to group III elements on their growth, potential physical and chemical properties and device applications has important significance not only to scientific research but also to practical application, because group III elements are the best n type dopants for ZnO. The introduction of group III elements into the structure of ZnO may provide an effective way to obtain p type ZnO material by codoping with element N, or lead to the changes of microstructure and cause the formation of twinning structure or InMO3(ZnO)m (M=In, Ga; m is integer) superlattice structure. In this thesis, N-In codoped ZnO nanostructures, In/Ga doped ZnO twinning nanostructures and InMO3(ZnO)m superlattice nanostructures are prepared in a controlled chemical vapor deposition process. Systematical studies on their preparation and properties are carried out. Major attention is paid to the following aspects:
     The synthesis and photoluminescence properties of N-In codoped ZnO nanobelts were investigated. N-In codoped ZnO nanobelts were prepared via chemical vapor deposition method. The morphology of the products was characterized by scanning electron microscopy (SEM), and the chemical composition of the products was analyzed by energy dispersive X-ray (EDX). Compared with undoped and In doped ZnO nanostructures, the appearance of the Raman shift at279cm-1in the Raman spectrum confirms that N is introduced into In-doped ZnO nanobelts and the products are N-In codoped ZnO nanobelts. The temperature dependent PL spectra and excitation power-dependent PL spectra at9K indicate that2No-InZn acceptor complexes are formed in N-In codoped ZnO nanobelts, the energy level of2No-InZn acceptor complex should be about112meV.
     The synthesis and photoluminescence properties of ZnO twinning nanostructures were investigated. Two kinds of ZnO twinning nanostructures with novel morphology were prepared by chemical vapor deposition method: one is In-doped ZnO three-edged nanobelt, and the other is In/Ga doped hexagonal-disk string. These nanostructures were characterized by SEM, X-ray powder diffraction (XRD), transmission electron microscopy (TEM). Although they have different morphologies, the two kinds of nanostructures have the same microstructures. They are both wurtzite structures of ZnO. The top/bottom surfaces of their building blocks, nanobelt or nanodisk, are the (0001) crystal plane. These building blocks are connected by {0113} and {0111} twin planes along [2110] direction. The intersection angle of different building blocks is64o or116o. According to the analysis of these twinning structures, the growth mechanism of (0113) and (0111) twin structure is proposed based on the Quadra model. The photoluminescence spectra of these two ZnO twinning nanostructures both consist of a UV emission peak and a broad emission band in visible region. The emission in visible region is stronger than that in UV region. This may be related to the formation of abundant twinning structures. The research work in this part may provide an effective path for assembling one-dimensional nanostructures into well-ordered, sophisticated nanostructures, which is helpful to achieve high density integrated optoelectronic circuits.
     The crystal and electronic structure of In2O3(ZnO)m were investigated by first principles. New atomic arrangement rules and ground state structural model for In2O3(ZnO)m were proposed. Zigzag modulated structure is believed to exist in the structure of In2O3(ZnO)m. The angle of Zigzag modulated structure remains the same, and the periodicity of the zigzag shape is linear to the value of m. The formation energy of In2O3(ZnO)m for the zigzag model is much smaller than that in the flat boundary structure model. The transmission of electron in the structure of In2O3(ZnO)m is related to the In-5s, and Zn-4s states.
     The synthesis and bending mechanism of ZnO/In2O3(ZnO)m heterostructure nanobelts were investigated. ZnO/In2O3(ZnO)m (m=4,5) heterostructure nanobelts were prepared by chemical vapor deposition method. The morphology, ingredient, and microstructure of the nanobelts were characterized by SEM, EDX, and TEM. The nanobelts are bent in shape, and consist of an In2O3(ZnO)m subnanobelt and an ZnO subnanobelt. The outer subnanobelt is In2O3(ZnO)m, and the inner subnanobelt is ZnO. The two parts share the common (0001) plane. The different lattice constants for In2O3(ZnO)4and ZnO result in a lattice mismatch and introduces strain. In this case, the strain at the (0001) interface is released by the creation of mismatch dislocations and formation of the bent shape. The radius of curvature of ZnO/In2O3(ZnO)m heterostructure nanobelts is a function of their thickness.
     The synthesis and field emission properties of In2-xGaxO3(ZnO)m nanobelts were investigated. In2-xGaxO3(ZnO)m nanobelts were prepared by introducing element Ga into the structure of In2O3(ZnO)m. Those nanobelts were characterized by XRD, EDX, element mapping, X-ray photoelectron spectra (XPS), and HRTEM, confirming the formation of In2-xGaxO3(ZnO)3superlattice structure. The calculated XRD results enrich the JCPDS database. In XPS survey spectra, the binding energies of the Zn-2p and In-3d peaks both exhibit a positive shift in comparison to the standard values, while the binding energy of Ga-3d peak exhibits a negative shift. This could be attributed to the change of effective charge density of In2-xGaxO3(ZnO)3caused by an electron transfer from Zn and In to Ga. Field-emission measurements of In1.63Ga0.37O3(ZnO)3nanobelts were carried out, showing good field-emission performances. The turn-on electrical field is as low as4.1V/μm; and the field enhancement factor is1059. The emission current density shows a good stability for4500seconds without any current degradation or notable fluctuation.
引文
[1]王中林.纳米材料表征[M].北京:化学工业出版社,2005:1-7.
    [2]施利毅.纳米材料[M].上海:华东理工大学出版社,2007:1-5.
    [3]任红轩,鄢国平.纳米科技发展宏观战略[M].北京:化学工业出版社,2008:13-15.
    [4]卫英慧,韩培德,杨晓华.纳米材料概论[M].北京:化学工业出版社,2009:6-8.
    [5] M. Durrani. Map of Physics[J]. Phys. World,2008,21:36-7.
    [6]张跃.一维氧化锌纳米材料[M].北京:科学出版社,2010:5-10.
    [7] J. Y. Lao, J. Y. Huang, D. Z. Wang, et al. ZnO Nanobridges and Nanonails[J].Nano Lett.,2003,3:235-8.
    [8] B. Liu, H. C. Zeng. Fabrication of ZnO "Dandelions" via a Modified KirkendallProcess[J]. J. Am. Chem. Soc.,2004,126:16744-6.
    [9] Z. L. Wang, X. Y. Kong, J. M. Zuo. Induced Growth of AsymmetricNanocantilever Arrays on Polar Surfaces[J]. Phys. Rev. Lett.,2003,91:185502-1-4.
    [10] R. C. Wang, C. P. Liu, J. L. Huang, et al. ZnO Hexagonal Arrays of NanowiresGrown on Nanorods[J]. Appl. Phys. Lett.,2005,86:251104-1-3.
    [11] L. L. Wu, X. T. Zhang, Z. F. Wang, et al. Synthesis and Optical Properties ofZnO Nanowires with A Modulated Structure[J]. J. Phys. D: Appl. Phys.,2008,41:195406-1-5.
    [12] D. P. Li, G. Z. Wang, X. H. Han. Raman Property of In doped ZnO SuperlatticeNanoribbons[J]. J. Phys. D: Appl. Phys.,2009,42:175308-1-5.
    [13] C. W. Na, S. Y. Bae, J. Park. Short-period Superlattice Structure of Sn-dopedIn2O3(ZnO)4and In2O3(ZnO)5Nanowires[J]. J. Phys. Chem. B,2005,109:12785-90.
    [14] J. S. Jie, G. Z. Wang, X. H. Han, et al. Synthesis and Characterization of ZnO: InNanowires with Superlattice Structure[J]. J. Phys. Chem. B,2004,108:17027-31.
    [15]宋词,杭寅,徐军.氧化锌晶体的研究进展[J].人工晶体学报,2004,33:81-7.
    [16] K. Vanheusden, C. H. Seager, W. L. Warren. Correlation betweenPhotoluminescence and Oxygen Vacancies in ZnO Phosphors[J]. Appl. Phys.Lett.,1996,68:403-6.
    [17] D. C. Reynolds, D. C. Look, B. Jogai, et al. Time-resolved PhotoluminescenceLifetime Measurements of the Γ5and Γ6Free Excitons in ZnO[J]. J. Appl. Phys.,2000,88:2152-3.
    [18] X. Q. Wei, B. Y. Man, M. Liu, et al. Blue Luminescent Centers andMicrostructural Evaluation by XPS and Raman in ZnO Thin Films Annealed inVacuum N2and O2[J]. Physica B,2007,388:145-52.
    [19] Z. B. Fang, Y. Y. Wang, D. Y. Xu, et al. Blue Luminescent Center in ZnO FilmsDeposited on Silicon Substrates[J]. Opt. Mater.,2004,26:239-42.
    [20] L. J. Brillson, Y. Dong, D. Doutt, et al. Massive Point Defect Redistribution nearSemiconductor Surfaces and Interfaces and Its Impact on Schottky BarrierFormation[J]. Physica B,2009,404:4768-73.
    [21] X. D. Zhang, C. L. Liu, Z Wang, et al. Photoluminescence and ElectricalProperties of N-implanted ZnO Films[J]. Nucl. Instrum. Methods Phys. Res.,Sect. B,2007,254:83-6.
    [22] A. B. Djurisic, A. M. C. Ng, X. Y. Chen. ZnO Nanostructures forOptoelectronics: Material Properties and Device Applications[J]. Prog. QuantumElectron.,2010,34:191-259.
    [23] L. Schmidt-Mende, J. L. MacManus-Driscoll. ZnO-nanostructures, Defects, andDevices[J]. Mater. Today,2007,10:40-8.
    [24] A. F. Kohan, G. Ceder, D. Morgan. First-principles Study of Native PointDefects in ZnO[J]. Phys. Rev. B,2000,61:15019-27.
    [25] G. Chris, V. D. Walle. Hydrogen as A Cause of Doping in Zinc Oxide[J]. Phys.Rev. Lett.,2000,85:1012-5.
    [26] Z. Yang, D. C. Look, J. L. Liu. Ga-related Photoluminescence Lines in Ga-dopedZnO Grown by Plasma-assisted Molecular-beam Epitaxy[J]. Appl. Phys. Lett.,2009,94:072101-1-3.
    [27]陈建林,陈荐,何建军.氧化锌透明导电薄膜及其应用[M].北京:化学工业出版社,2011:35-8.
    [28] Z. W. Pan, Z. R. Dai, Z. L. Wang. Nanobelts of Semiconducting Oxides[J].Science,2001,291:1947-9.
    [29] M. H. Huang, S. Mao, H. Feick, et al. Room-temperature Ultraviolet NanowireNanolasers[J]. Science,2001,292:1897-9.
    [30] Y. W. Zhu, H. Z. Zhang, X. C. Sun, et al. Efficient Field Emission from ZnONanoneedle Arrays[J]. Appl. Phys. Lett.,2003,83:144-6.
    [31] X. Y. Kong, Y. Ding, R. Yang, et al. Nanoribbon Waveguides for SubwavelengthPhotonics Integration[J]. Science,2004,305:1269-73.
    [32] Z. L. Wang, J. Song. Piezoelectric Nanogenerators Based on Zinc OxideNanowire Arrays[J]. Science,2006,312:242-6.
    [33] J. C. Johnson, H. Q. Yan, P. D. Yang, et al. Optical Cavity Effects in ZnONanowire Lasers and Waveguides[J]. J. Phys. Chem. B,2003,107:8816-28.
    [34] Y. W. Heo, L. C. Tien, D. P. Norton, et al. Pt/ZnO Nanowire Schottky Diodes[J].Appl. Phys. Lett.,2004,85:3107-9.
    [35] Q. H. Li, Y. X. Liang, Q. Wan, et al. Oxygen Sensing Characteristic of IndividualZnO Nanowire Transistors[J]. Appl. Phys. Lett.,2004,85:6389-91.
    [36] C. X. Xu, X. W. Sun, C. Yuen, et al. Ultraviolet Amplified SpontaneousEmission from Selforganized Network of Zinc Oxide Nanofibers[J]. Appl. Phys.Lett.,2005,86:011118-1-3.
    [37] X. Wang, C. J. Summers, Z. L. Wang. Self-attraction among Aligned Au/ZnONanorods under Electron Beam[J]. Appl. Phys. Lett.,2005,86:013111-1-3.
    [38] M. N. Jung, J. E. Koo, S. J. Oh, et al. Influence of Growth Mode on the Structural,Optical, and Electrical Properties of In-doped ZnO Nanorods[J]. Appl. Phys.Lett.,2009,94:041906-1-3.
    [39] L. M. Li, C. C. Li, J. Zhang, et al. Bandgap Narrowing and Ethanol SensingProperties of In-doped ZnO Nanowires[J]. Nanotechnology,2007,18:225504.
    [40] J. Liu, Y. Zhang, J. J. Qi, et al. In-doped Zinc Oxide Dodecagonal NanometerThick Disks[J]. Mater. Lett.,2006,60:2623-26.
    [41] J. G. Wen, J. Y. Lao, D. Z. Wang, et al. Self-assembly of Semiconducting OxideNanowires, Nanorods, and Nanoribbons[J]. Chem. Phys. Lett.,2003,372:717-22.
    [42] A. Yoshinari, K. Ishida, K. I. Murai, et al. Crystal and Electronic Band Structuresof Homologous Compounds ZnkIn2Ok+3by Rietveld Analysis and First-principleCalculation[J]. Mater. Res. Bull.,2009,44:432-6,.
    [43] C. Schinzer, F. Heyd, S. F. Matar. Zn3In2O6-Crystallographic and ElectronicStructure[J]. J. Mater. Chem.,1999,9:1569-73.
    [44] C. F. Li, Y. Bando, M. Nakamura, et al. A Modulated Structure of In2O3(ZnO)mas Revealed by High Resolution Electron Microscopy[J]. J. ElectronMicrosc.,1997,46:119-27.
    [45] C. F. Li, Y. Bando, M. Nakamura, et al. Modulated Structures of HomologousCompounds InMO3(ZnO)m (M=In, Ga; m=Integer) Described byFour-dimensional Superspace Group[J]. J. Solid State Chem.,1998,139:347-55.
    [46] M. Nakamura, N. Kimizuka, T. Mohri. The Phase-relations in theIn2O3-Ga2ZnO4-ZnO System at1350oC[J]. J. Solid State Chem.,1991,93:298-315.
    [47] T. Moriga, K. Ishida, K. Yamamoto, et al. Structural Analysis of HomologousSeries of ZnkIn2Ok+3(k=3,5,7) and ZnkInGaOk+3(k=1,3,5) as ThermoelectricMaterials[J]. Mater. Res. Innov.,2009,13:348-51.
    [48] N. Naghavi, C. Marcel, L. Dupont, et al. Structural and Physical Characterisationof Transparent Conducting Pulsed Laser Deposited In2O3-ZnO Thin Films[J]. J.Mater. Chem.,2000,10:2315-9.
    [49] T. Minami, H. Sonohara, T. Kakumu, et al. Highly Transparent and ConduxtiveZn2In2O5Thin-Films Prepared by RF Magnetron Sputtering[J]. Jpn. J. Appl.Phys.,1995,34: L971-4.
    [50] A. C. Wang, J. Y. Dai, J. Z. Cheng, et al. Charge Transport, OpticalTransparency, Microstructure, and Processing Relationships in TransparentConductive Indium-zinc Oxide Films Grown by Low-pressure Metal-organicChemical Vapor Deposition[J]. Appl. Phys. Lett.,1998,73:327-9.
    [51] H. Ohta, W. S. Seo, K. Koumoto. Thermoelectric Properties of HomologousCompounds in the ZnO-In2O3System[J]. J. Am. Ceram. Soc.,1996,79:2193-6.
    [52] K. Koumoto, H. Ohta, W. S. Seo. Proceedings ICT '96-Fifteenth InternationalConference on Thermoelectrics[C]. Pasadena: IEEE,1996:172-5.
    [53] S. C. Andrews, M. A. Fardy, M. C. Moore, et al. Atomic-level Control of theThermoelectric Properties in Polytypoid Nanowires[J]. Chem. Sci.,2011,2:706-14.
    [54] K. Nomura, T. Kamiya, H. Ohta, et al. Carrier Transport in Transparent OxideSemiconductor with Intrinsic Structural Randomness Probed UsingSingle-crystalline InGaO3(ZnO)5Films[J]. Appl. Phys. Lett.,2004,85:1993-5.
    [55] K. L. Chopra, S. Major, D. K. Pandya. Transparent Conductors: A StatusReview[J]. Thin Solid Films,1983,102:1-46.
    [56] H. Hiramatsu, W. S. Seo, K. Koumoto. Electrical and Optical Properties ofRadio-frequency-sputtered Thin Films of (ZnO)5In2O3[J]. Chem. Mater.,1998,10:3033-9.
    [57] K. Nomura, H. Ohta, K. Ueda, et al. Thin-film Transistor Fabricated inSingle-crystalline Transparent Oxide Semiconductor[J]. Science,2003,300:1269-72.
    [58] T. Horlin, G. Svensson, E. Olsson. Extended Defect Structures in Zinc OxideDoped with Iron and Indium[J]. J. Mater. Chem.,1998,8:2465-73.
    [59] Y. Masuda, M. Ohta, W. S. Seo, et al. Structure and Thermoelectric TransportProperties of Isoelectronically Substituted (ZnO)5In2O3[J]. J. Solid State Chem.,2000,150:221-7.
    [60] S. Isobe, T. Tani, Y. Masuda, et al. Thermoelectric Performance ofYttrium-substituted (ZnO)5In2O3Improved through Ceramic Texturing[J]. Jpn. J.Appl. Phys.,2002,41:731-2.
    [61] J. R. Sootsman, D. Y. Chung, M. G. Kanatzidis. New and Old Concepts inThermoelectric Materials[J]. Angew. Chem. Int. Edit.,2009,48:8616-39.
    [62] V. H. Kasper. Neuartige Phasen mit Wurtzitahnlichen Strukturn im SystemZnO–In2O3[J]. Z. Anorg. Allg. Chem.,1967,349:113–224.
    [63] P. J. Cannard, R. J. D. Tilley. New Intergrowth Phases in the ZnO-In2O3System[J]. J. Solid State Chem.,1988,73:418-26.
    [64] M. Isobe, N. Kimizuka, M. Nakamura, et al. Structures of LuFeO3(ZnO)m (m=1,4,5and6)[J]. Acta Crystallogr. C,1994,50:332-6.
    [65] M. A. McCoy, R. W. Grimes, W. E. Lee. Planar Intergrowth Structures in theZnO-In2O3System[J]. Phil. Mag. A,1997,76:1187-201.
    [66] C. Li, Y. Bando, M. Nakamura, et al. Relation between In ion Ordering andCrystal Structure Variation in Homologous Compounds InMO3(ZnO)m (M=Aland In; m=Integer)[J]. Micron,2000,31:543-50.
    [67] I. Keller, W. Assenmacher, G. Schnakenburg, et al. Synthesis and CrystalStructures of InGaO3(ZnO)m (m=2and3)[J]. Z. Anorg. Allg. Chem.,2009,635:2065-71.
    [68] I. Keller, W. Mader. The Crystal Structure of InGaO3(ZnO)4: A Single CrystalX-ray and Electron Diffraction Study[J]. Z. Anorg. Allg. Chem.,2010,636:1045-9.
    [69] W. T. Yu, W. Mader. Displacement Field Measurement of Metal Sub-lattice inInversion Domains of Indium-doped Zinc Oxide[J]. Ultramicroscopy,2010,110:411-7.
    [70] F. R der, A. Lubk, H. Lichte, et al. Long-range Correlations in In2O3(ZnO)7Investigated by DFT Calculations and Electron Holography[J]. Ultramicroscopy,2010,110:400-10.
    [71] M. Orita, H. Tanji, M. Mizuno, et al. Mechanism of Electrical Conductivity ofTransparent InGaZnO4[J]. Phys. Rev. B,2000,61:1811-6.
    [72] J. E. Medvedeva. Averaging of the Electron Effective Mass in MulticomponentTransparent Conducting Oxides[J]. Euro. Phys. Lett.,2007,78:57004-1-6.
    [73] W. J. Lee, E. A. Choi, J. Bang, et al. Structural and Electronic Properties ofCrystalline InGaO3(ZnO)m[J]. Appl. Phys. Lett.,2008,93:111901-1-3.
    [74] J. L. F. Da Silva, Y. F. Yan, S. H. Wei. Rules of Structure Formation for theHomologous InMO3(ZnO)n Compounds[J]. Phys. Rev. Lett.,2008,100:255501-1-4.
    [75] M. Nespolo, M. Nakamura, H. Ohashi. Reinvestigation of the LuFeO3(ZnO)mHomologous Series: Insights from Charge Distribution Analysis on the Effect ofthe Coordination Polyhedra Shape on the Cation Distribution[J]. J. Solid StateChem.,2000,150:96-103.
    [76] Y. F. Yan, J. L. F. Da Silva, S. H. Wei, et al. Atomic Structure of In2O3-ZnOSystems[J]. Appl. Phys. Lett.,2007,90:261904-1-3.
    [77] A. Walsh, J. L. F. Da Silva, Y. F. Yan, et al. Origin of Electronic and OpticalTrends in Ternary In2O3(ZnO)n Transparent Conducting Oxides (n=1,3,5):Hybrid Density Functional Theory Calculations[J]. Phys. Rev. B,2009,79:073105-1-3.
    [78] W. J. Lee, E. A. Choi, J. Bang, et al. First-principles Study of the ElectronicStructure of Crystalline InGaO3(ZnO)3[J]. J. Korean Phys. Soc.,2009,55:112-5.
    [79] W. J. Lee, B. Ryu, K. J. Chang. Electronic Structure of Oxygen Vacancy inCrystalline InGaO3(ZnO)m[J]. Physica B,2009,404:4794-6.
    [80] H. Omura, H. Kumomi, K. Nomura, et al. First-principles Study of Native PointDefects in Crystalline Indium Gallium Zinc Oxide[J]. J. Appl. Phys.,2009,105:093712-1-8.
    [81] J. E. Medvedeva, C. L. Hettiarachchi. Tuning the Properties of ComplexTransparent Conducting Oxides: Role of Crystal Symmetry, ChemicalComposition, and Carrier Generation[J]. Phys. Rev. B,2010,81:125116-1-16.
    [82] E. M. Hopper, Q. M. Zhu, J. H. Song, et al. Electronic and ThermoelectricAnalysis of Phases in the In2O3(ZnO)k System[J]. J. Appl. Phys.,2011,109:013713-1-6.
    [83] N. Kimizuka, M. Isobe, M. Nakamura, et al. Syntheses and Crystallographic Dataof the Homologous Compounds InFeO3(ZnO)m (m=1,2,3,7,11,13,15, and19)and Fe2O3(ZnO)m (m=8and9) in the In2O3-ZnFe2O4-ZnO System[J]. J. SolidState Chem.,1993,103:394-402.
    [84] N. Kimizuka, M. Isobe, M. Nakamura. Syntheses and Single-crystal Data ofHomologous Compounds, In2O3(ZnO)m (m=3,4, and5), InGaO3(ZnO)3, andGa2O3(ZnO)m (m=7,8,9, and16) in the In2O3-ZnGa2O4-ZnO System[J]. J. SolidState Chem.,1995,116:170-8.
    [85] T. Moriga, D. D. Edwards, T. O. Mason, et al. Phase Relationships and PhysicalProperties of Homologous Compounds in the Zinc Oxide-Indium OxideSystem[J]. J. Am. Ceram. Soc.,1998,81:1310-6.
    [86] J. M. Phillips, R. J. Cava, G. A. Thomas, et al. Zinc-indiun-oxide: AHigh-Conductivity Transparent Conducting Oxide[J]. Appl. Phys. Lett.,1995,67:2246-8.
    [87] T. Moriga, D. R. Kammler, T. O. Mason, et al. Electrical and Optical Propertiesof Transparent Conducting Homologous Compounds in the Indium-gallium-zincOxide System[J]. J. Am. Ceram. Soc.,1999,82:2705-10.
    [88] N. Ohashi, I. Sakaguchi, S. Hishita, et al. Crystallinity of In2O3(ZnO)5Films byEpitaxial Growth with A Self-buffer-layer[J]. J. Appl. Phys.,2002,92:2378-84.
    [89] M. Kazeoka, H. Hiramatsu, W. S. Seo, et al. Improvement in ThermoelectricProperties of (ZnO)5In2O3through Partial Substitution of Yttrium for Indium[J]. J.Mater. Res.,1998,13:523-6.
    [90] K. Park, K. K. Kim, J. K. Seong, et al. Improved Thermoelectric Properties byAdding Al for Zn in (ZnO)mIn2O3[J]. Mater. Lett.,2007,61:4759-62.
    [91] B. Aleman, P. Fernandez, J. Piqueras. Indium-zinc-oxide Nanobelts withSuperlattice Structure[J]. Appl. Phys. Lett.,2009,95:013111.
    [92] D. P. Li, G. Z. Wang, X. H. Han, et al. Synthesis and Characterization ofIn-Doped ZnO Planar Superlattice Nanoribbons[J]. J. Phys. Chem. C,2009,113:5417-21.
    [93] D. P. Li, G. Z. Wang, Q. H. Yang, et al. Synthesis and Photoluminescence ofInGaO3(ZnO)m Nanowires with Perfect Superlattice Structure[J]. J. Phys. Chem.C,2009,113:21512-5.
    [94] X. T. Zhang, H. Q. Lu, H. Gao, et al. Crystal Structure of In2O3(ZnO)mSuperlattice Wires and Their Photoluminescence Properties[J]. Cryst. GrowthDes.,2009,9:364-7.
    [95] B. J. Niu, L. L. Wu, X. T. Zhang. Low-temperature Synthesis andCharacterization of Unique Hierarchical In2O3(ZnO)10SuperlatticeNanostructures[J]. CrystEngComm.,2010,12:3305-9.
    [96] J. Y. Zhang, Y. Liang, Z. Q. Chu, et al. Synthesis and Transport Properties ofSi-doped In2O3(ZnO)3superlattice nanobelts[J]. CrystEngComm.,2011,13:3569-72.
    [97] L. L. Wu, Y. Liang, F. W. Liu, et al. Preparation of ZnO/In2O3(ZnO)nHeterostructure Nanobelts[J]. CrystEngComm.,2010,12:4152-5.
    [98] L. L. Wu, F. W. Liu, Z. Q. Chu, et al. High-yield Synthesis of In2-xGaxO3(ZnO)3Nanobelts with a Planar Superlattice Structure[J]. CrystEngComm.,2010,12:2047-50.
    [99] D. L. Huang, L. L. Wu, X. T. Zhang. Size-Dependent InAlO3(ZnO)m Nanowireswith a Perfect Superlattice Structure[J]. J. Phys. Chem. C,2010,114:11783-6.
    [100] T. C. Damen, S. P. S. Porto, B. Tell. Raman Effect in Zinc Oxide[J]. Phys. Rev.,1966,142:570-4.
    [101] H. M. Cheng, H. C. Hsu, Y. K. Tseng, et al. Raman Scattering and Efficient UVPhotoluminescence from Well Aligned ZnO Nanowires Epitaxially Grown onGaN Buffer Layer[J]. J. Phys. Chem. B,2005,109:8749-54.
    [102] G. T. Du, Y. Ma, Y. T. Zhang, et al. Preparation of Intrinsic and N-dopedP-typed ZnO Thin Films by Metalorganic Vapor Phase Epitaxy[J]. Appl. Phys.Lett.,2005,87,213103-1-3.
    [103] L. Artu′s, R. Cuscón, E. A. LIado′, et al. Isotopic Study of the Nitrogen-relatedModes in N+-implanted ZnO[J]. Appl. Phys. Lett.,2007,90:181911-1-3.
    [104] A. Kaschner, U. Haboeck, M. Strassburg, et al. Nitrogen-related LocalVibrational Modes in ZnO: N[J]. Appl. Phys. Lett.,2002,80:1909-1-3.
    [105] F. Reuss, C. Kichner, Th. Gruber, et al. Optical Investigations on the AnnealingBehavior of Gallium-and Nitrogen-implanted ZnO[J]. J. Appl. Phys.,2004,95:3385-90.
    [106] X. Q. Wang, S. Yang, J. Z. Wang, et al. Nitrogen Doped ZnO Film Grown by thePlasma-assisted Metal-organic Chemical Vapor Deposition[J]. J. Cryst. Growth,2001,226:123-9.
    [107] Y. G. Wang, S. P. Lau, X. H. Zhang, et al. Observation of Nitrogen-relatedPhotoluminescence Bands from Nitrogen-doped ZnO Films[J]. J. Cryst. Growth,2003,252:265-9.
    [108] J. B. Wang, H. M. Zhong, Z. F. Li, et al. Raman Study of N+-implanted ZnO[J].Appl. Phys. Lett.,2006,88:101913-1-3.
    [109] X. M. Zhu, H. Z. Wu, D. J. Qiu, et al. Photoluminescence and Resonant RamanScattering in N-doped ZnO Thin Films[J]. Opt. Commun.,2010,283:2695-9.
    [110] A. Marzouki, F. Falyouni, N. Haneche, et al. Structural and OpticalCharacterizations of Nitrogen-doped ZnO Nanowires Grown by MOCVD[J].Mater. Lett.,2010,64:2112-4.
    [111] A. Marzouki, A. Lusson, F. Jomard, et al. SIMS and Raman Characterizations ofZnO:N Thin Films Grown by MOCVD[J]. J. Cryst. Growth,2010,312:3063-8.
    [112] K. Y. Wu, Q. Q. Fang, W. N. Wang, et al. On the Origin of an Additional RamanMode at275cm-1in N-doped ZnO Thin Films[J]. J. Appl. Phys.,2012,111:063530-1-8.
    [113] Y. Liang, X. T. Zhang, Z. Liu, et al. Local Hornoepitaxy and Optical Propertiesof Well-ordered ZnO Nanowires[J]. Physica E,2006,33:191-5.
    [114] Y. J. Xing, Z. H. Xi, Z. Q. Xue, et al. Optical Properties of the ZnO NanotubesSynthesized via Vapor Phase Growth[J]. Appl. Phys. Lett.,2002,83:1689-1-3.
    [115] S. A. Studenikin, C. Michael, W. Kellner, et al. Band-edge Photoluminescence inPolycrystalline ZnO Films at1.7K[J]. J. Lumin.,2000,91:223-32.
    [116] D. C. Reynolds, C. W. Litton, T. C. Collins. Zeeman Effects in the EdgeEmission and Absorption of ZnO[J]. Phys. Rev.,1965,140: A1726-34.
    [117] Y. F. Chen, D. M. Bagnall, K. J. Koh, et al. Plasma Assisted Molecular BeamEpitaxy of ZnO on C-plane Sapphire: Growth and Characterization[J]. J. Appl.Phys.,1998,84:3912-8.
    [118] B. K. Meyer, H. Alves, D. M. Hofmann, et al. Bound Exciton andDonor-acceptor Pair Recombinations in ZnO[J]. Phys. Status Solidi b,2004,241:231-60.
    [119] B. P. Zhang, N. T. Binh, Y. Segawa, et al. Optical properties of ZnO rods formedby metalorganic chemical vapor deposition[J]. Appl. Phys. Lett.,2003,83:1635-1-3.
    [120] D. C. Look, D. C. Reynolds, C. W. Litton, et al. Characterization ofHomoepitaxial P-type ZnO Grown by Molecular Beam Epitaxy[J]. Appl. Phys.Lett.,2002,81:1830-1-3.
    [121] J. H. Leem, D. H. Lee, S. Y. Lee. Properties of N-doped ZnO Grown byDBD-PLD[J]. Thin Solid Films,2009,518:1238-40.
    [122] K. K. Kim, H. S. Kim, D. K. Hwang, et al. Realization of P-type ZnO Thin Filmsvia Phosphorus Doping and Thermal Activation of the Dopant[J]. Appl. Phys.Lett.,2003,83:63-1-3.
    [123] X. H. Wang, B. Yao, Z. P. Wei, et al. Acceptor Formation MechanismDetermination from Electrical and Optical Properties of P-type ZnO Doped withLithium and Nitrogen[J]. J. Phys. D: Appl. Phys.,2006,39:4568-71.
    [124] Y. R. Ryu, T. S. Lee, H. W. White. Properties of Arsenic-doped P-type ZnOGrown by Hybrid Beam Deposition[J]. Appl. Phys. Lett.,2003,83:87-1-3.
    [125] K. Tamura, T. Makinao, A. Tsukazaki, et al. Donor-acceptor Pair Luminescencein Nitrogen-doped ZnO Films Grown on Lattice-matched ScAlMgO4(0001)Substrates[J]. Solid State Commun.,2003,127:265-9.
    [126] F. X. Xiu, Z.Yang, L. J. Mandalapu, et al. High-mobility Sb-doped P-type ZnOby Molecular-beam Epitaxy[J]. Appl. Phys. Lett.,2005,87:152101.
    [127] Y. J. Zeng, Z. Z. Ye, W. Z. Xu, et al. P-type Behavior in Nominally UndopedZnO Thin Films by Oxygen Plasma Growth[J]. Appl. Phys. Lett.,2003,88:262103-1-3.
    [128] H. B. Ye, J. F. Kong, W. Z. Shen, et al. Temperature-dependentPhotoluminescence of Undoped, N-doped and N-In Coddoped ZnO ThinFilms[J]. J. Phys. D: Appl. Phys.,2007,40:5588-91.
    [129] C. X. Shan, Z. Liu, S. K. Hark. Temperature Depedent Photoluminescence Studyon Phosphorus Doped ZnO Nanowires[J]. Appl. Phys. Lett.,2008,92:073103.
    [130] W. W. Liu, B. Yao, Z. Z. Zhang, et al. Doping Efficiency, Optical and ElectricalProperties of Nitrogen-doped ZnO Films[J]. J. Appl. Phys.,2011,109:093518-1-5.
    [131] B. Q. Yang, P. Feng, A. Kumar, et al. Structural and Optical Properties ofN-doped ZnO Nanorod Arrays[J]. J. Phys. D,2009,42:195402-1-5.
    [132] S. S. Shinde, P. S. Shinde, Y. W. Oh, et al. Investigation of Structural, Opticaland Luminescent Properties of Sprayed N-doped Zinc Oxide Thin Films[J]. J.Anal. Appl. Pyrolysis,2012,97:181-8.
    [133]黄维刚,薛冬峰.材料结构与性能[M].上海:华东理工大学出版社,2010:60-5.
    [134] D. Damjanovic. Ferroelectric, Dielectric and Piezoelectric Properties ofFerroelectric Thin Films and Ceramics[J]. Rep. Prog. Phys.,1998,61:1267-324.
    [135] L. Lu, Y. F. Shen, X. H. Chen, et al. Ultrahigh Strength and High ElectricalConductivity in Copper[J]. Science,2004,304:422-6.
    [136] J. Wang, J. P. Hirth, C. N. Tome.(1012) Twinning Nucleation Mechanisms inHexagonal-close-packed Crystals[J]. Acta Mater.,2009,57:5521-30.
    [137] G. P. Du, W. Li, M. G. Fu, et al. Synthesis of Tetrapod-shaped ZnO Whiskersand Microrods in One Crucible by Thermal Evaporation of Zn/C Mixtures[J]. T.Nonferr. Metal. Soc.,2008,18:155-61.
    [138] H. Iwanaga, M. Fujii, S. Takeuchi. Inter-leg Angles in Tetrapod ZnO Particles[J].J. Cryst. Growth,1998,183:190-5.
    [139] Y. Dai, Y. Zhang, Z. L. Wang. The Octa-twin Tetraleg ZnO Nanostructures[J].Solid State Commun.,2003,126:629-33.
    [140] L. Jin, J. B. Wang, G. Y. Cao, et al.{113} Twinned ZnSe Bicrystal NanobeltsFilled with <111> Twinnings[J]. J. Phys. Chem. B,2008,112:4903-7.
    [141] X. Fan, X. M. Meng, X. H. Zhang, et al. Dart-shaped Tricrystal ZnSNanoribbons[J]. Angew. Chem. Int. Edit.,2006,45:2568-71.
    [142] A. B. Djurisic, W. C. H. Choy, V. A. L. Roy, et al. Photoluminescence andElectron Paramagnetic Resonance of ZnO Tetrapod Structure[J]. Adv. Funct.Mater.,2004,14:856-64.
    [143] A. B. Djurisic, Y. H. Leung, K. H. Tam, et al., Defect Emissions in ZnONanostructures[J]. Nanotechnology.,2007,18:095702.
    [144] P. S. Xu, Y. M. Sun, C. S. Shi, et al. The Electronic Structure and SpectralProperties of ZnO and Its Defects[J]. Nucl. Instrum. Methods Phys. Res., Sect. B,2003,199:286-90.
    [145] J. F. Gong, S. G. Yang, H. B. Huang, et al. Experimental Evidence of AnOctahedron Nucleus in ZnS Tetrapods[J]. Small,2006,2:732-5.
    [146] B. B. Wang, J. J. Xie, Q. Yuan, et al. Growth Mechanism and Joint Structure ofZnO Tetrapods[J]. J. Phys. D: Appl.Phys.,2008,41:102005-11.
    [147] Z. Liu, X. T. Zhang, S. K. Hark. Quadra-twin Model for Growth ofNanotetrapods and Related Nanostructures[J]. J. Phys. Chem. B,2008,112:8912-6.
    [148] S. R. Hejazi, H. R. M. Hosseini. A Diffusion-controlled Kinetic Model forGrowth of Au-catalyzed ZnO Nanorods: Theory and Experiment[J]. J. Cryst.Growth,2007,309:70-5.
    [149] Y. J. Li, M. Feneberg, A. Reiser, et al. Au-catalyzed Growth Processes andLuminescence Properties of ZnO Nanopillars on Si[J]. J. Appl. Phys.,2006,99:054307.
    [150] X. T. Zhang, Z. Liu, Y. P. Leung, et al. Growth and Luminescence ofZinc-blende-structured ZnSe Nanowires by Metal-organic Chemical VaporDeposition[J]. Appl. Phys. Lett.,2003,83:5533-5.
    [151] L. L. Wu, X. T. Zhang, Y. Liang, et al. Synthesis of In-doped ZnGa2O4Nanobeltsand Its Enhanced Cathodoluminescence[J]. J. Alloy. Compd.,2009,468:452-4.
    [152] E. A. Secco. Decomposition of Zinc Oxide[J]. Can. J. Chem,1960,38:596-601.
    [153] T. Imoto, Y. Harano, Y. Nishi. The Thermal Decomposition of Zinc Oxide[J]. B.Chem. Soc. Jpn,1964,37:1181-6.
    [154] H. Saitoh, W. Utsumi, K. Aoki. Solid-phase Grain Growth of In2O3at HighPressures and Temperatures[J]. J. Cryst. Growth,2008,310:2295-7.
    [155] K. J. MacKenzie, O. M. Dunens, A. T. Harris. An Updated Review of SynthesisParameters and Growth Mechanisms for Carbon Nanotubes in Fluidized Beds[J].Ind. Eng. Chem. Res.,2010,49:5323-38.
    [156] Y. S. Gu, J. J. Qi, Y. Zhang. Sixth Pacific Rim International Conference onAdvanced Materials and Processing: Pts1-3(561-565)[C]. Jeju Island: TransTech Publications Ltd,2007:1861-4.
    [157] K. Sangwal, A. Zdyb, D. Chocyk, et al. Effect of Supersaturation andTemperature on the Growth Morphology of Ammonium Oxalate MonohydrateCrystals Obtained from Aqueous Solutions[J]. Cryst. Res. Technol.,1996,31:267-73.
    [158] Y. Liang, X. T. Zhang, L. Qin, et al. Ga-assisted Synthesis and Optical Propertiesof ZnO Submicron-and Nanotowers[J]. J. Phys. Chem. B,2006,110:21593-5.
    [159] Z. Liu, C. X. Shan, S. K. Hark. Side-by-side ZnSe/ZnCdSe BicrystallineNanoribbons Prepared by a Two-Step Process[J]. J. Phys. Chem. C,2007,111:16181-3.
    [160] F. Qian, Y. Li, S. Gradǒak, et al. Multi-quantum-well Nanowire Heterostructuresfor Wavelength-controlled Lasers[J]. Nat. Mater.,2008,7:701-6.
    [161] J. Yan, X. S. Fang, L. D. Zhang, et al. Structure and Cathodoluminescence ofIndividual ZnS/ZnO Biaxial Nanobelt Heterostructures[J]. Nano Lett.,2008,8:2794-9.
    [162] C. X. Xu, X. W. Sun, Z. L. Dong, et al. Self-organized Nanocomb of ZnOFabricated by Au-catalyzed Vapor-phase Transport[J]. J. Cryst. Growth,2004,270:498-504.
    [163] Y. Ding, P. X. Gao, Z. L. Wang. Catalyst-nanostructure Interfacial LatticeMismatch in Determining the Shape of VLS Grown Nanowires and Nanobelts: ACase of Sn/ZnO[J]. J. Am. Chem. Soc.,2004,126:2066-72.
    [164] P. X. Gao, Y. Ding, W. Mai, et al. Conversion of Zinc Oxide Nanobelts intoSuperlattice-structured Nanohelices[J]. Science,2005,309:1700-4.
    [165] H. Ohta, K. Nomura, M. Orita, et al. Single-crystalline Films of the HomologousSeries InGaO3(ZnO)m Grown by Reactive Solid-phase Epitaxy[J]. Adv. Funct.Mater.,2003,13:139-44.
    [166]叶志镇,吕建国,张银珠,等.氧化锌半导体材料掺杂技术与应用[M].杭州:浙江大学出版社,2009:60-8.
    [167] L. W. Chang, J. W. Yeh, C. L. Cheng, et al. Field Emission and OpticalProperties of Ga-doped ZnO Nanowires Synthesized via Thermal Evaporation[J].Appl. Surf. Sci.,2011,257:3145-51.
    [168] M. Ahmad, H. Y. Sun, J. Zhu. Enhanced Photoluminescence and Field-EmissionBehavior of Vertically Well Aligned Arrays of In-Doped ZnO Nanowires[J]. AcsAppl. Mater. Inter.,2011,3:1299-305.
    [169]刘世宏,王当憨,潘承鳇. X射线光电子能谱分析[M].北京:科学出版社,1988:43-53.
    [170] G. H. Kim, W. H. Jeong, H. J. Kim. Electrical Characteristics ofSolution-processed InGaZnO Thin Film Transistors Depending on GaConcentration[J]. Phys. Status Solidi a,2010,207:1677-9.
    [171] C. Z. Li, Y. Zhang, M. Mann, et al. Stable, Self-ballasting Field Emission fromZinc Oxide Nanowires Grown on An Array of Vertically Aligned CarbonNanofibers[J]. Appl. Phys. Lett.,2010,96:143114-1-3.
    [172] C. J. Lee, T. J. Lee, S. C. Lyu, et al. Field Emission from Well-aligned ZincOxide Nanowires Grown at Low Temperature[J]. Appl. Phys. Lett.,2002,81:3648-50.
    [173] U. K. Gautam, X. S. Fang, Y. Bando, et al. Synthesis, Structure, and MultiplyEnhanced Field-emission Properties of Branched ZnS Nanotube-In NanowireCore-shell Heterostructures[J]. Acs Nano,2008,2:1015-21.
    [174] T. Y. Zhai, X. S. Fang, Y. Bando, et al. Morphology-Dependent StimulatedEmission and Field Emission of Ordered CdS Nanostructure Arrays[J]. Acs Nano,2009,3:949-59.
    [175] N. G. Shang, F. Y. Meng, F. C. K. Au, et al. Fabrication and Field Emission ofHigh-density Silicon Cone Arrays[J]. Adv. Mater.,2002,14:1308-11.
    [176] L. Li, X. S. Fang, H. G. Chew, et al. Crystallinity-controlled GermaniumNanowire Arrays: Potential Field Emitters[J]. Adv. Funct. Mater.,2008,18:1080-8.
    [177] J. C. She, Z. M. Xiao, Y. H. Yang, et al. Correlation between Resistance andField Emission Performance of Individual ZnO One-DimensionalNanostructures[J]. Acs Nano,2008,2:2015-22.
    [178] V. A. Karpyna, A. A. Evtukh, M. O. Semenenko, et al. Electron Field Emissionfrom ZnO Self-organized Nanostructures and Doped ZnO: Ga NanostructuredFilms[J]. Microelectron. J.,2009,40:229-31.
    [179] M. N. Jung, S. H. Ha, S. J. Oh, et al. Field Emission Properties of Indium-dopedZnO Tetrapods[J]. Curr. Appl. Phys.,2009,9: E169-E172.
    [180] Y. H. Huang, Y. Zhang, Y. S. Gu, et al. Field Emission of A Single In-dopedZnO Nanowire[J]. J. Phys. Chem. C,2007,111:9039-43.
    [181] C. X. Xu, X. W. Sun, B. J. Chen. Field Emission from Gallium-doped ZincOxide Nanofiber Array[J]. Appl. Phys. Lett.,2004,84:1540-2.
    [182] X. X. Huang, C. L. Cheng, Y. T. Chen, et al. Field Emission Enhancement ofZnO Nanorods Assisted by Decoration of ZnO Nanoparticles[J]. J. Appl. Phys.,2010,108:063717-1-4.
    [183] H. Pan, Y. W. Zhu, H. Sun, et al. Electroluminescence and Field Emission ofMg-doped ZnO Tetrapods[J]. Nanotechnology,2006,17:5096-100.
    [184] X. Y. Xue, L. M. Li, H. C. Yu, et al. Extremely Stable Field Emission fromAlZnO Nanowire Arrays[J]. Appl. Phys. Lett.,2006,89:043118-1-4.