条斑紫菜的转基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫菜是我国海藻养殖业的支柱产业之一也是主要的出口创汇海产品。近年来,随着紫菜栽培业规模的逐年扩大,对紫菜优良品种的供应要求越来越高。紫菜易于养殖,藻体形态结构简单,细胞发育分化易于调控,酶解紫菜产生原生质体及原生质体的再生技术已经成熟,易于进行分子水平上的研究。因此,开展紫菜基因工程研究,利用现代分子生物学的手段培育紫菜新品种是十分必要的,也具备现实可行性。同时,也有望将紫菜作为生物反应器来生产有用的外源蛋白。为此,我们以条斑紫菜的原生质体为受体,进行转基因研究,初步建立其转基因体系。
     纯系培育是传统紫菜育种及进行紫菜生物工程研究的先决条件。本研究选取青岛地区野生条斑紫菜(Porphyra yezoensis),利用酶解制备原生质体进行再培养的方法培育了营养体纯系PY-qingdaol。对PY-qingdaol的18S rRNA基因进行了克隆和序列测定。将该基因与从GenBank获得的22个紫菜进行了分析、比较,并以相邻连接法构建了紫菜较为一致的系统发生树。结果表明利用紫菜18S rDNA基因序列差异可较精确的进行紫菜种间乃至品系的划分,这为进行紫菜的种质鉴定提供了一个新的思路。
     为确立电击法转化条斑紫菜原生质体的条件、确定有效的启动子并验证以18S rDNA为外源基因整合位点的可行性,构建了以条斑紫菜18S rDNA片段为同源臂、CaMV35S为启动子、GUS基因为报告基因的同源重组型表达载体,并利用电击法对外源GUS基因在条斑紫菜原生质体瞬间表达进行了初步探索。实验结果表明CaMV35S启动子能够在条斑紫菜原生质体中启动GUS基因的瞬间表达;电击法是条斑紫菜基因转移的有效方法;当电场强度为2KV/cm,脉冲时间为300ms,脉冲次数为1次时,外源基因的转化效率较高;以18S rDNA片段为同源臂的同源重组型载体可以提高GUS基因在条斑紫菜原生质体中的瞬时表达。
     为确定合适的选择性标记基因,以条斑紫菜18S rDNA片段为同源臂,构建了分别利用SV40启动子和CaMV35S启动子的两种cat基因的同源重组型表达载
    
    体pQD一CAT一control和pQD一CAT一Enhancer。利用电击法将所构建的表达载体转
    化条斑紫菜原生质体。结果表明,SV40启动子和C咖V35S启动子均可以驱动cat
    基因在条斑紫菜原生质体中有效表达;所构建的以185 rDNA片段为同源臂的两
    种同源重组型载体均可实现cat基因在条斑紫菜原生质体中的稳定表达;当以
    cat基因作为选择性标记基因时,氯霉素可以作为紫菜原生质体基因转化的选择
    压力。
     对小鼠的7天为IL cDNA,进行了克隆和序列测定,并构建了以条斑紫菜185
    rDNA片段为同源臂、cat基因为标记基因、了万才IL基因为外源基因、分别利用
    SV4O启动子和CaMV35S启动子的同源重组型表达载体pQD一TRAIL一CAT。利用电击
    法将其转化条斑紫菜原生质体,经氯霉素初步筛选,检测到外源基因己整合到紫
    菜基因组中。
     进行了条斑紫菜原生质体的玻璃化冷冻保存研究,发现玻璃化保护剂VS6
     (10%DMSO,30%甘油,10%蔗糖)的保存效果较好,其最佳冻存程序是:
    25%VS6过渡处理5 min后,用ooC预冷的VS6处理3 min,直接液氮保存,化
    冻时采用40oC水浴快速化冻。按此方法,冻存后的原生质体的存活率可达66.5%,
    并且能再生成叶状体。
     总之,本研究初步建立了条斑紫菜原生质体的转基因体系,优化了电击法转
    化条斑紫菜原生质体的条件,确定了Sv40启动子和CaMV35S启动子为有效的启
    动子,cat基因可以作为选择性标记基因,以1 85 rDNA片段为同源臂的同源重
    组型表达载体可以有效的表达外源基因。此外还首次成功地进行了条斑紫菜原生
    质体的玻璃化冷冻保存,不仅为藻类的种质保存研究积累了资料,也可以为以后
    紫菜原生质体的遗传转化操作随时提供理想的实验材料。这些研究为进一步通过
    转基因的手段改良紫菜品种,实现以紫菜为生物反应器来大量生产外源蛋白奠定
    了重要的基础。
Porphyra is the leading cultural species of the seaweed cultivation and the main export sea product in China. Recently, there is an increasing demand for good Porphyra cultivars with the enlargement of Porphyra cultivation scale. Porphyra is feasible for cultivation and its development is easy for regulation. The technique for preparation and regeneration of Porphyra protoplasts is perfect and the protoplast is a good material for research in molecular level. Therefore, it is necessary and viable to develop Porphyra genetic engineering research and breed new Porphyra cultivars via transgenic technique. Porphyra is also expected to be a bioreactor for foreign protein production because of the feasibility of cultivating of this alga. In this study, protoplast was used as receptor for transgenic research in order to construct an effective transgenic system for Porphyra yezoensis.
    The prerequisite of the traditional breeding and bioengineering research of Porphyra is the construction of pure lines. The wild P. yezoensis was collected from Qingdao and used to prepare protoplasts by enzyme digestion. The pure line PY-qingdaol was constructed by cultivating the protoplasts. The 18S rDNA of the PY-qingdaol was cloned and sequenced. Sequence analysis was executed for this sequence and other 22 sequences retrieved from GenBank. A phylogenetic tree was constructed based on these sequences using neighbor-joining method. The results indicated the possibility of interspecies and intraspecies discrimination of Porphyra using the 18S rDNA sequences.
    In order to establish the eclectroporation condition for P. yezoensis protoplasts transformation, confirm the effective promoter and test the feasibility of 18S rDNA used as foreign gene integration site, a targeting vector pQD-GUS was constructed containing a portion of the 18S rDNA of P. yezoensis and transformed it into the same strain protoplasts by electroporation. The results showed that CaMV35S promotor is
    
    
    
    effective for transient expression of GUS gene in P. yezoensis. Electroporation is a useful method for foreign genes enter into P. yezoensis. The good condition for electroporation is that field strength was set at 2KV/cm and pulse length was set at 0.3 ms. GUS gene expression was greatly increased when 18S rDNA was used as homologous sequences to direct homologous recombination.
    In order to establish the suitable genetic selectable marker gene, two targeting vectors pQD-CAT-control and pQD-CAT-Enhancer were constructed which contained a portion of the 18S rDNA of P. yezoensis and cat gene promoted by SV40 and CaMVSSS respectively. The vectors were transformed into P. yezoensis by electroporation. The results showed that SV40 and CaMVSSS were effective promoters for cat gene expression in P. yezoensis. The targeting vectors containing the portion of the 18S rDNA of P. yezoensis could fulfill the stable expression of cat gene in P. yezoensis. Chloramphenicol could be used as selection pressure for positive transformant when cat gene was used as selectable marker gene.
    The mouse TRAIL cDNA was cloned and sequenced. A targeting vector pQD-TRAIL-CAT containing the portion of the 18S rDNA of P. yezoensis was constructed with TRAIL as foreign gene and cat gene as selectable marker gene. The vector was transformed into P. yezoensis protoplasts by electroporation 0 It was proved that foreign genes have incorporated into genome of P. yezoensis after preliminary selection with chloramphenicol.
    Cryopreservation of protoplasts of P. yezoensis by vitrification was studied. The results showed that VS6 (10% DMSO, 30% glycerol, 10% sucrose ) is seemed to be a preferable vitrification solution for P. yezoensis protoplasts. The best vitrification protocol using VS6 involves: loading with 25% VS6 for 5 minutes at 0 癈, dehydrating with ice cold concentrated VS6 for 3 minutes, immediately immersing in LN, and then warming in 40癈 water bath. Using this protocol, P. yezoensis protoplasts showed higher viability (66.5%) after Cryopreservation and could regenerate thallus.
    hi summary, the tra
引文
[1] 白克智,崔澂.蓝藻-满江红鱼腥藻孢子的冰冻保藏.科学通报,1982,19:1215-1216.
    [2] 戴继勋.大型海藻细胞工程研究与应用.中国科学技术前沿(中国工程院版),2002,5:695-722.
    [3] 戴继勋,包振民,唐延林.紫菜叶状体细胞的酶法分离及其养殖研究.生物工程学报,1988,4(2):133-137.
    [4] 戴继勋,方宗熙.甘紫菜的染色体观察.武汉植物学研究,1985,3(4):471-473.
    [5] 戴继勋,沈颂东.紫菜的细胞遗传学研究现状及展望.青岛海洋大学学报,1999,29(4):637-642.
    [6] 戴继勋,张全启,包振民等.紫菜原生质体的纯系培养、诱变处理和种间细胞融合的研究.海洋与湖沼,1990,21(3):293-296.
    [7] 陈国宜.关于坛紫菜自由丝状体培养和直接采苗的研究.水产学报,1980,4(1):19-29.
    [8] 陈国宜.条斑紫菜果孢子的液氮保存.水产学报,1989,13(4):356-359.
    [9] 陈颖,赵世民,孙勇如.藻类基因工程研究进展及展望.海洋科学,1997,4:13-16.
    [10] 范晓,张士璀,秦松.海洋生物技术新近展.北京:海洋出版社,1999,72.
    [11] 耿德贵,王义琴,李文彬等.GUS基因在杜氏盐藻细胞中的瞬间表达.高技术通讯,2002,12:35-39.
    [12] 郭宝太,毕玉平.条斑紫菜高纯度总DNA及其质粒状DNA的提取.海洋学报,2000,22(2):87-91.
    [13] 郭宝太,王斌.真核藻质粒状DNA的研究进展.海洋通报,1999,18(2):88-92.
    [14] 郭崇志,孙曼霁.Clustal W-蛋白质与核酸序列分析软件.生物技术通讯,2000,11(2):146-149.
    [15] 郭志儒,金宁一.2000年动物克隆及相关领域研究进展.中国兽医学报,2001,21(2):208-212.
    [16] 黄健秋,卫志明,许明宏.GUS基因在大豆未成熟子叶原生质体中的表达.植物学报,1992,34:26-30.
    [17] 姜鹏,秦松,曾呈奎.乙肝病毒表面抗原(HBsAg)基因在海带中的表达.科学通报,2002,47(4):1095-1097.
    
    
    [18] 李纯,李军,薛钦昭.海洋生物种质细胞低温保存与机理.海洋科学,2000,24(4):12-15.
    [19] 李文泽,曲咏梅,孙世孟等编著.植物生物技术与作物改良北京:中国科学技术出版社,1995,212.
    [20] 凌华,黄惠琴,鲍时翔.植物生物反应器研究进展.中国生物工程杂志,2002,22(5):21-26.
    [21] 刘爱民,尚克刚.小鼠胚胎干细胞hprt基因的定位致变.遗传,1994,16(5):1-5.
    [22] 卢澄清.紫菜叶状体营养细胞的研究Ⅰ—条斑紫菜营养细胞的分离、培养和长成小紫菜的观察.第一届中国藻类学术讨论会论文集,1980,45-55.
    [23] 马家海.条斑紫菜赤腐病的初步研究.上海水产大学学报,1996,5(1):1-7.
    [24] 马家海,张礼明,吉传礼.条斑紫菜缩曲症的研究.水产科学,1999,6(2):82-88.
    [25] 秦松,张健.用基因枪将GUS基因导入褐藻细胞中表达.海洋与湖沼,1994,17:353-356.
    [26] 生秀杰.基因打靶的策略及其发展.国外医学:遗传学分册,2001,24(1):8-10.
    [27] 孙爱淑,曾呈奎.悬浮生长的条斑紫菜膨大藻丝无性系的培养及产生壳孢子的研究初报.海洋与湖沼,1996,27(6):667-670.
    [28] 唐延林.紫菜营养细胞和原生质体的分离与培养.山东海洋学院学报,1982,12(4):37-44.
    [29] 汤晓荣,费修绠.紫菜叶状体发育研究进展.青岛海洋大学学报,2000,30(2):183-190.
    [30] 王槐,陈正华.基质结合区(MARs)与转基因植物的基因表达.生命科学,1999,11(2):54-57.
    [31] 王君晖,边红武,黄纯农.植物样品包埋脱水法超低温保存的研究进展.植物学通报,1999,16(5):582-586.
    [32] 王起华,张恩栋,王冰,程爱华.两种海洋饵料硅藻的超低温保存.辽宁师范大学学报,1999a,22:310-314.
    [33] 王起华,石若夫,程爱华.三种饵料金藻超低温保存的研究.中国水产科学,1999b,6(2):89-92.
    [34] 王起华,张恩栋,周春影.藻类种质超低温保存研究概况.植物学通报,2002,19(1):21-29.
    [35] 王素娟.海藻生物技术.上海:上海科学技术出版社,1994,19-35.
    [36] 王素平,姜红如.条斑紫菜Porphyra yezoensis游离丝状体生态的研究.海洋水产研究,1983,(5):79-94.
    
    
    [37] 王素娟,李晖,李瑶.电穿孔发诱导GUS基因在坛紫菜原生质体中的瞬间表达.上海水产大学学报,1994,3(3):145-150.
    [38] 王业勤,徐旭东,黎尚豪.蓝藻分子遗传学十年研究进展.水生生物学报,1991,15(4):356-367.
    [39] 王嶽,方金瑞.抗生素.北京:科学出版社,1988,101-109.
    [40] 武建秋,王希华,秦松.CAT基因在海带中的表达.海洋与湖沼,1999,30(1):28-33.
    [41] 项黎新,邵健忠.衣藻细胞玻璃化超低温保存技术的研究.细胞生物学杂志,2001,23(2):110-113.
    [42] 徐涤,宋林生,秦松等.五个紫菜品系间遗传差异的RAPD分析.高技术通讯,2001,12:1-8.
    [43] 徐虹,章军,楼士林,杨汉金.水稻同源重组型质粒载体的构建.厦门大学学报(自然科学版),1999,38:924-930.
    [44] 徐华强,蔡国平,吴逸等.大白菜和黄瓜原生质体电击基因转移的研究.植物学报,1991,33:7-13.
    [45] 闫立强,赵树人,程爱华,王起华.两种蓝藻超低温保存抗冻保护剂的研究.辽宁师范大学学报,1993,16:153-155.
    [46] 严小军,秦松,曾呈奎.藻类分子生物技术两年评—与藻类活性物质研究有关的生物技术.海洋与湖沼,1997,28(4):440-446.
    [47] 杨官品,沈怀舜,许璞等.条斑紫菜丝状孢子体表达序列标签分析.高技术通迅,2002,12(2):93-97.
    [48] 杨锐,刘必谦,骆其君等.利用扩增片段长度多态性(AFLP)研究坛紫菜的遗传变异.高技术通讯,2002,1:83-86.
    [49] 叶苓.基因打靶技术及其在寄生虫学研究中的应用.国外医学寄生虫病学分册,2001,28(2):56-58.
    [50] 于道展,秦松,孙国琼等.β-半乳糖苷酶基因(lacZ)在大型经济海藻裙带中的瞬间表达.高技术通讯,2002,12(8):93-95.
    [51] 曾呈奎,张德瑞.紫菜的有性生殖.植物学报,1955,4(2):153-166.
    [52] 曾呈奎,王素娟,刘思俭等.海藻栽培学.上海:上海科技出版社,1985,148.
    [53] 曾呈奎,相建海.海洋生物技术.济南:山东科学技术出版社,1998,9-41.
    [54] 张士璀,范晓,马军英.海洋生物技术原理和应用.北京:海洋出版社,1998,216-220.
    
    
    [55] 张秀海,孙勇如.植物基因打靶研究现状.生物工程进展,1999,19(4):57-61.
    [56] 张秀海,赵世民,张利明,孙勇如.利用同源重组提高外源GUS基因在植物组织中的表达.植物生理学通讯,2000,36:504-507.
    [57] 张亚萍.条斑紫菜原生质体无菌培养体系的建立及转基因研究.硕士论文,青岛海洋大学,2002,33-35.
    [58] 张亚萍,于文功,戴继勋等.条斑紫菜叶状体细胞的抗生素敏感性研究.青岛海洋大学学报,2002,32(2):245-250.
    [59] 赵焕登,张学成.条斑紫菜Porphyra yezoensis Ueda营养细胞的分离与培养.山东海洋学院学报,1981,11(1):61-65.
    [60] 赵焕登,张学成.条斑紫菜营养细胞的分离和培养实验.水产学报,1984,11:61-65.
    [61] 周常文,傅继梁,薛红.P35Ncksa基因重复性打靶载体的构建和ES细胞基因打靶研究.遗传学报,2000,27(8):659-665.
    [62] 周杰,施定基,茹炳根等.人肝金属硫蛋白突变体基因通过同源重组在蓝藻中的克隆与表达.中国生物化学与分子生物学报,1999,15(6):907-912.
    [63] 朱玉贤,李毅.现代分子生物学.北京:高等教育出版社,1997,449-451.
    [64] Amador E., Martin J.E and Castro J.M. A Brevibacterium lactofermentum 16S rRNA gene used as target site for homologous recombination. FEMS Microbiol. Lett. 2000, 185:199-204.
    [65] An G., Costa M.A., Mitra A. Ha S.B., Marton L. Organ-specific and developmental regulation of the nopaline synthase promoter in transgenic tobacco plants. Plant Physiol. 1988, 88: 547-552.
    [66] Altschul S.E, Gish W., Myers E.W., Lipman D.J. Basic local alignment search tool. J Mol Biol. 1990, 215: 403-410.
    [67] Araki T., Morishita T. Fusion of protoplasts from wild type of Porphyra yezoensis and green type P. tenera thalli (Rhodophyta). Bull. Jap. Soc. Sci. Fish. 1990, 56(7): 1161.
    [68] Baily J.C., Freshwater D.W. Molecular systematics of the Gelidiales: inferences from separate and combined analyses of plastid rbcL and nuclear SSU gene sequences. Eur J Phycol. 1997, 32: 343-352.
    [69] Bajaj Y.P.S. Regeneration of plants from frozen (-196℃) protoplasts of Atropa belladonna L., Datura innoxia Mill and Nicotina tobacum L. Indian J.Exp.Biol. 1988, 26: 289-292.
    [70] Bajaj Y.P.S. Cryopreservation of plant protoplasts, in: Biotechnology in Agriculture and
    
    Forestry(Bajaj Eds). Plant Protoplasts and Genetic Engineering Ⅰ. Springer-Verlag Berlin Heidelberg. 1989, vol. 8. pp: 97-106.
    [71] Bajaj Y.P.S. Cryopreservation of plant cell, tissue organ culture for the conservation of germplasm and biodiversity, in: Biotechnology in Agriculture and Forestry (Bajaj Y.P.S. Eds.). Cryopreservation of plant germplasm Ⅰ. Berlin: Springer-Verlag. 1995, Vol. 32. pp: 3-47.
    [72] Bekkaoui F., Pilon M., Laine E., Raju D.S.S. et al. Transient gene expression in electroporated Picea glauca protoplasts. Plant Cell Rep. 1988, 7:481-484.
    [73] Ben-Amotz A., Gilboa A. Cryopreservation of marine unicellular algae. Induction of freezing tolererance. Marine Ecol. Prog. Ser. 1980, 2: 221-224.
    [74] Benfey P. N., Ren L., Chua N.H. The CaMV 35S enhancer contains at least two domains which can confer different development and tissue-specific expression patterns. EMBO J. 1989, 8: 2195-2202.
    [75] Benfey P.N., Ren L., Chua N.H. Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. EMBO J. 1990, 9:1677-1684.
    [76] Benson E.E. Cryopreservation. in: Plant conservation biotechnology (Benson E.E. Eds). London: Taylor and Frances. 1999, pp. 83-95.
    [77] Bezzubova O., Silbergleit A., Yamaguchi-Iwai Y., et al. Reduced X-ray resistance and homologous recombination frequencies in a RAD54-/- mutant of the chicken DT40 cell line. Cell. 1997, 89: 185-193.
    [78] Bibikova M., Carroll D., Segal D.J., et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol. 2001, 21: 289-297.
    [79] Bollag R.J., Waldman A.S., Liskay R.M. Homologous recombination in mammalian cells. Annu Reu Genet. 1989, 23: 199-225.
    [80] Brenneman M.A., Weiss A.E., Nickoloff J.A., et al. XRCC3 is required for efficient repair of chromosome breaks by homologous recombination. Mutat Res. 2000, 459: 89-97.
    [81] Broom J.E., Jones W.A., Hill D.F., et al. Species recognition in New Zealand Porphyra using 18S rDNA sequcencing. J Appl phycol. 1999, 11 : 421-428.
    [82] Calmels T.P., Mistry J.S., Watkins S.C., Robbins P.D. Nuclear localization of bacterial Streptoalloteichus hindustanus bleomycin resistance protein in mammalian cells. Mol. Pharmacol. 1993, 44(6): 1135-1141.
    
    
    [83] Capecchi M.R. Altering the genome by homologous recombination. Science, 1989. 244: 1288-1292.
    [84] Carrer H., Hockenberry T.N., Svab Z., Maliga P. Kanamycin resistance as a selectable marker for plastid transformation in tobacco.Mol, gen. Genet. 1993, 241 : 49-56.
    [85] Chandrasegaran S., Smith J. Chimeric restriction enzymes: What is next? Biol Chem. 1999, 380: 841-848.
    [86] Chang X.B., Wilson J.H. Modification of DNA ends can decrease end joining relative to homologous recombination in mammalian cells. Proc Natl Acad Sci USA. 1987, 84: 4959-4963.
    [87] Charoensub R., Phansiri S., Sakai A., Yongmenitchai W. Cryopreservation of cassava in vitro-grown shoot tips cooled to -196℃ by vitrification. Cryo-Lett. 1999, 20: 89-94.
    [88] Chen L.C.M., Craigie J.S., Xie Z.K. Protoplast production from Porphyra linearis using a simplified agarase procedure capable of commercial application. J. Appl. Phycol. 1994, 6(1): 35-39.
    [89] Chen L.C.M., McCracken Ⅰ. An antibiotic protocol for preparing axenic cell cultures of Porphyra linearis. Bot. Mar. 1993, 36(1): 29-33.
    [90] Cheng Y., Wang J., Huang C. Germplasm cryopreservation of Dendrobiurn candidum by vitrification, Journal of Zhejiang University (Agric.and Life Sci.). 2001, 27: 436-438. (In Chinese)
    [91] Cheng Y., Wang J., Huang C., Cryopreservation by vitrification of carrot (Daucus carota L.) suspension cells and protoplasts, Journal of Zhejiang University (Science Edition). 2002, 29: 94-98. (In Chinese)
    [92] Cimino G.D., Gamper H.B., Isaacs S.T., et al. Psoralens as photoactive probes of nucleic-acid structure and function-organic-chemistry, photochemistry, and biochemistry. Annu Rev Biol. 1985, 54: 1151-1193.
    [93] Crowe J.H., Crowe L.M., Carpenter J.E, Wistrom C.A. Stabilization of dry phospholipid bilayers and proteins by sugars. J. Biochem. 1987, 242: 1-10.
    [94] Dai J., Zhang Q., Bao Z. Genetic breeding and seedling raising experiments with Porphyra protoplasts. Aquaculture. 1993, 111 : 139-145.
    [95] Dangeard P. Recherches sru les Bangia et les Porphyra. Boaniste. 1927, 18: 183-244.
    
    
    [96] Daniell H., Vivekananda J., Nielsen B.L. et al. Transient foreign gene expression in chloroplasts of cultured tobacco cells after biolistic delivery of chloroplast vectors. Proc. Natl. Acad. Sci. USA. 1990, 87: 82-92.
    [97] Day J.G., Fenwick C. Cryopreservation of members of the genus Tetraselmis used in acquaculture. Aquaculture. 1993, 118: 151-160.
    [98] Day J.G. Morris G.J. Cryopreservation of microalgae: Development of protocols avoiding cryoinjury. Cryo-Letters. 1998, 19: 204-205.
    [99] DAY J.G., Fleck R.A., Benson E.E Cryopreservation recalcitrance in microalgae: novel approaches to identity and avoid cryoinjury. Journal of Applied Phycology. 2000, 12: 369-377.
    [100] Degli-Eaposti M.A., Dougall W.C., Smolak P.J. The normal receptor TRAIL-R4 induces NF-KappaB and protects against TRAIL-mediated apoptosis, yet remains an incomplete death domain. Immunity. 1997, 7(6): 813-820.
    [101] Derr L.K., Strathern J.N., Garfinkel D.J. RNA-mediated recombination in S.cerevisae. Cell. 1991, 67: 355-364.
    [102] Eegelmann F. In vitro conservation methods, in: Biotechnology and Plant Genetic Resources (Callow J. A., Ford L., Newbury H. J. Eds.). CAB International. Oxford. 1997a, pp: 119-161.
    [103] Engelmann F. Importance of desiccation for the cryopreservation of recalcitrant seed and vegetatively propagated species. Plant Genetic Resources Newsletter. 1997b, 112: 9-18.
    [104] Emery J.G., McDonnell P., Burke M.B., et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem. 1998, 273: 14363-14367.
    [105] Essers J., Hendriks R.W., Swagemakers S.M.A., et al. Disruption of mouse RAD54 reduces ionizing radiation resistance and homologous recombination. Cell. 1997, 89:195-204.
    [106] Fahy G.M., McFarlane D.R., Angell C.A., Meryman H.T. Vitrification as an approach to cryopreservation. Cryobiology. 1984, 21: 407-426.
    [107] Fei X.G., Lu S. and Bao Y. Seaweed cultivation- a new applied field for biotechnology. Chin. J. Oceanol. Limnol. 1997, 16 Suppl: 158-161.
    [108] Frank-Kamenetskii M.D., Mirkin S.M. Triplex DNA structures. Annu Rev Biochem. 1995, 64: 65-95.
    [109] Fujii T., Kondo K., Shimizu F., Sone H., Tanaka J., Inoue T. Application of a ribosomal
    
    DNA integration vector in the construction of a brewer's yeast having α-acetolactate decarboxylase activity. Appl. Environ. Microbiol. 1990, 56:997-1003.
    [110] Fujitani Y., Yamamoto K., Kobayashi Ⅰ. Dependence of frequency of homologous recombination on the homology length. Genetics. 1995, 140: 797-809.
    [111] Gall E.A., Chiang Y.M., Kloareg B. Isolation and regeneration of protoplasts form Porphyra dentate and Porphyra crrispata. Euro. J. Phycol. 1993, 28(40): 277-283.
    [112] Galtier N., Gouy M., Gautier C. SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci. 1996, 12(6): 543-548
    [113] Goff L.J., Coleman A.W. Red algal Plasmids. Curr. Genet. 1990, 18: 557-565.
    [114] Gorman C., Bullock C. Site-specific gene targeting for gene expression in eukaryotes. Curr. Opin. Biotech. 2000, 11: 455-460.
    [115] Griffith T.S., Chin W.A., Jackson G.C. Intracellular regulation of TRAIL-induced apoptosis in human melanoma cell. J Immunol. 1998, 161:2833-2840.
    [116] Gruss H.J. Molecular, structural, and biological characteristics of the tumor necrosis factor ligand superfamily. Int J Clin Lab Res. 1996, 26(3): 143-59.
    [117] Gura T. How TRAIL kills cancer cells, but not normal cells. Science. 1997, 277:768
    [118] Hallmann A., Rappel A. Genetic engineering of the multicellular green alga VolVox: a modified and multiplied bacterial antibiotic resistance gene as a dominant selectable marker. J. Plant. 1998, 17(1): 99-109.
    [119] Henning W., Mariapia A.D., Richard S.J., et al. TRAIL-R2: a novel apoptosis mediating receptor for TRAIL. EMBO J. 1997, 16(17): 5385-5391.
    [120] Herrera-Estrella L., Depicker A., Van Montagu M., Schell J. Expression of chimeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature. 1983,303: 209-213.
    [121] Higgins D.G., Thompson J.D., Gibson T.J. Using CLUSTAL for multiple sequence alignments. Methods Enzymol. 1996, 266:383-402.
    [122] Hillis D.M., Dixon M.T. Ribosomal DNA: molecular evolution and phylogenetic inference. Quart Rev Biol, 1991, 66: 411-453.
    [123] Holm-Hansen O. Viability of blue-green and green algae fater freezing. Physiol P1. 1963. 16: 530-540.
    [124] Iwasaki H., Matshdaira C. Observation on the ecology and reproduction of free-living
    
    conchocelis of Porphyra tenera. Bull. Mar. Biol. 1963, 124: 268-276.
    [125] Jefferson R.A. Assaying chimeric genes in Plants: the GUS gene fusion system. Mol Biol Rep. 1987, 5: 387-405.
    [126] Johnson R.D., Liu N., Jasin M. Mammalian XRCC2 promotes the repair of DNA double-strand breaks by homologous recombination. Nature. 1999, 401: 397-399.
    [127] Karow A.M., Webb W.R. Tissue freezing: a theory for injury and survival.Cryobiology. 1965, 2: 99-108.
    [128] Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evo. 1980, 16:111-120
    [129] Kitade Y., Yamazaki S., Watanabe T. Structural features of a gene encoding the vacuolar H~+ -ATPase c subunit from a marine red alga, Porphyra yezoensis. DNA Res. 1999, 6: 307-312.
    [130] Kito H. Cytological observations on the Conchocelis phase in three species of Porphyra. Bull. Tohoku Reg. Fish. Res. Lab. 1974, 33: 101-117.
    [131] Kito H., Kunimoto M., Migita S., Fujita Y. Intrageneric fusions of isolated protoplasts from Ulva and Porphyra by electrofusion method. Bull. Fac. Fish. 1990, 68:21-27.
    [132] Klopfenstein N.B., Shi N.Q., Keman A. et al. Transgenic Populus hybrid expresses a wound-inducible poraro proteinase inhibitor Ⅱ-CAT gene fusion. Can. J. For Res. 1991, 21(9): 1321-1328.
    [133] Kondo K., Saito T., Kajiwara S., Takagi M., Misawa N. A transformation system for the yeast Candida utilis: use of a modified endogenous ribosomal protein gene as a drug-resistant marker and ribosomal DNA as an integration target for vector DNA. J. Bacteriol. 1995, 177: 7171-7177.
    [134] Krishnamurthy V. Chromosome numbers in Porphyra C Agardh. Phykos. 1984, 23(12): 185-190.
    [135] Kuang M., Wang S., Li Y., Shen D., Zeng C. Transient expression of exogenous in Porphyra yezoensis(Rhodophyra). Chin. J. Oceanol. Limnol. 1998, 16 Suppl.: 56-61.
    [136] Kubler J.E., Minocha S.C., Mathieson A.C. Transient expression of the GUS reporter gene in protoplasts of Porphyra miniata (Rhodophyta). J. Mar. Biol. 1994, 1: 165-169.
    [137] Kunimoto M., Kito H., Yamamoto Y., et al. Discrimination of Porphyra species based on small subunit ribosomal RNA gene sequence. J Appl Phycol. 1999, 11: 203-209.
    
    
    [138] Kuwano K., Aruga Y., Saga N. Preliminary study on cryopreservation of the conchocelis of Porphyra yezoensis. Fish. Sci. 1992, 58:1793-1798.
    [139] Kuwano K., Aruga Y., Saga N. Cryopreservation of the conchocelis of the marine alga Porphyra yezoensis Ueda (Rhodophyta) in liquid nitrogen. Plant Sci. 1993, 94:215-225.
    [140] Kuwano K., Aruga Y., Saga N. Cryopreservation of the conchocelis of Porphyra (Rhodophyta) by applying a simple prefreezing system. J. Phycol. 1994, 30: 566-570.
    [141] Kuwano K., Aruga Y., Saga N. Cryopreservation of clonal gametophytic thalli of Porphyra (Rhodophyta). Plant Sci. 1996, 116: 117-124.
    [142] Lambardi M., Fabbri A., Caccavale A. Cryopreservation of white poplar (Populus alba L.) by vitrification of in vitro-grown shoot tips. Plant Cell Rep. 2000, 19:213-218.
    [143] Langis R., Steponkus P.L. Cryopreservtion of rye protoplasts by vitrification. Plant Physiol. 1990, 92: 666-671.
    [144] Lee E.K., Seo S.B., Kim T.H., et al. Analysis of expressed sequence tags of Porphyra yezoensis. Mol Cells. 2000, 10(3): 338-342.
    [145] Leeson E.A., Cann J.P., Morris C.J. Maintenance of algae and protozoa. In: Maintenance of microorganisms. (Kirsop B.E. and Snell J.J.S. Eds.). London: Academic Press. 1984, pp: 131-160.
    [146] Levitt J. Winter hardiness in plants. In: Cryobiology. (Meryman H.T. Eds.). London: Academic Press. 1966, pp: 495-563.
    [147] Lin F.L., Sperle K., Sternber N. Model for homologous recombination during transfer of DNA into mouse L cell: role for DNA ends in the recombination process. Mol Cell Biol. 1984, 4: 1020-1034.
    [148] Lioudmila A., Zaslavskaia J., Lippmeier C. Transformation of the diatom Phaeodactylum Tricornutum (Bacillariophyceae) with a variety of selectable marker and repoter genes. J. Phycol. 2000, 36: 379-386.
    [149] Liskay R.M., Letsou A., Stachelek J.L. Homology requirement for efficient gene conversion between duplicated chromosomal sequences in mammalian cells. Genetics. 1987, 115: 161-167.
    [150] Liu Q.Y., Vandermeer J.P., Reith M.E. Isolation and characterization of phase-specific complementary DNAs from sporophytes and gametophytes of Porphyra purpurea
    
    (Rhodophyta) using subtracted complementary DNA libraries. J. Phycol. 1994, 30:513-520.
    [151] Lovelock J.E. The Mechanism of the Protective Action of Glycerol against Haemolysis by Freezing and Thawing, Biochim Biophys Acta, 1953, 11: 28-36.
    [152] Maccarrone M., Veldink G.A., Finazzi A.A., Vliegenthart J.E Lentil root protoplasts: a transient expression system suitable for coelectroporation of monoclonal antibodies and plasmid molecules. Biochim. biophys. Acta. 1995, 1243:136-142
    [153] Mansour S.L. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature. 1988, 336: 348-352.
    [154] Marchuk D., Drumm M.M., Saulino A., et al. Construction of T-vectors; a rapid and general system for direct cloning of unmodified PCR products. Nucleid Acids Res. 1991, 19:1154.
    [155] Matsumoto T., Takahashi C., Sakai A., Nako Y. Cryopreservation of in vitro-grown apical meristems of hybrid statice by three different procedures. Sci. Hor. 1998, 76: 105-114.
    [156] Mazur P. Physical and chemical basis of injury in single celled microorganisms subjected to freezing and thawing. In: Cryobiology. London and New York: Academic Press. 1966, pp: 213-315.
    [157] McBride K.E., Svab Z., Schaaf D.J., Hogan P.S., Stalker D.M., Maliga P. Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Biotechnology. 1995, 13: 362-365.
    [158] McLellan M.R., Cowling A.J., Turner M., Day J.G. Maintenance of Algae and Protozoa. In: Maintenance of Microorganisms and Cultured Cells (edited by Kirsop B.E., Doyle A.). London: Academic press. 1991, pp: 201-206.
    [159] Merrihew R.V., Marburger K., Pennington S.L., et al. High-frequency illegitimate integration of transfected DNA at preintegrated target sites in a mammalian genome. Mol Cell Biol. 1996, 16: 10-18.
    [160] Meryman H.T. Modified model for the mechanism of freezing injury in erythrocytes. Nature. 1968, 218: 333-336.
    [161] Meselson M.S., Radding C.M. A general model of genetic recombination. Proc Natl Acad Sci USA. 1975, 72: 358-361.
    [162] Meyer R., Muller M., Beneke S., et al. Negative regulation of alkylation-induced sister-chromatid exchange by poly(ADP-ribose) polymerase-1 activity. Int J Cancer. 2000, 88:
    
    351-355.
    [163] Migita S. Cytological studies on Porphyra yezoensis Ueda. Bull. Fzc. Fish. Nagasaki Univ. 1967, 24: 55-64.
    [164] Mizukami Y., Okauchi M., Kito H. Effects of cell wall-lytic enzymes on the electrofusion efficiency ofprotoplasts from Porphyrayezoensis. Aquaculture. 1992, 108: 193-205.
    [165] Mizukami Y., Okauchi M., Kito H., et al. Culture and development of electrically fused protoplasts from red marine algae Porphyra yezoensis and Porphyra suborbiculata. Aquaculture(Netherland). 1995, 132:361-367.
    [166] Mongkolsapaya J., Cowper A.E., Xu X.N. Lymphocyte inhibitor of TRAIL (TNF-related apoptosis-inducing ligand): a new receptor protecting lymphocytes from the death ligand TRAIL. J Immunol. 1998, 168: 3-6.
    [167] Moon D.A., Lynda J., Goff. Molecular characterization of two large DNA plasmids in the red alga Porphyrapulchra. Current Genetics. 1997, 32:132-138.
    [168] Mortain-Bertrand A. Etchart F. de Boucaud M.T. A method for the cryoconservation of Dunaliella salina (Chlorophyceae): effect of glyceol and cold adaptation. J. Phycol. 1996, 32: 346-352.
    [169] Nelson W.A.and Knight G.A. Endosporangia——a new form of reproduction in the genus Porphyra (Bangiales, Rhodophyta). Bot. Mar. 1995, 38(1): 17-20.
    [170] New J.H., Sugiyama T., Zaitseva E., Kowalczykowski S.C. Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature. 1998, 391: 407-410.
    [171] Nikaido I., Asamizu E., Nakajima M. Generation of 10,154 Expressed Sequence Tags from a Leafy Gametophyte of a Marine Red Alga, Porphyra Yezoensis. DNA Res. 2000, 7(3): 223-227.
    [172] Nishizawa S., Sakai A., Amano Y., Matsuzawa T. Cryopreservation of asparagus (Asparagus officinalis L.) embryonic suspension cells and subsequent plant regeneration by vitrification. Plant Sci. 1993, 91: 67-73.
    [173] Ohme M., Kunifuji Y., Miura A. Cross experiments of the color mutants in Porphyra yezoensis. Ueda. Jap. J. Phycol. 1986, 34: 101-106.
    [174] Oliveria M.C., Ragan M.A. Variant forms of a group Ⅰ intron in nuclear small-subunit rRNA genes of the marine red alga Porphyra spiralis var. amplifolia. Mol Biol Evol. 1994, 11:
    
    195-207.
    [175] Packer M.A. Protoplast formation from single cells and small tissue fragments of wild Porphyrafronds (Rhodophyta). Bot. Mar. 1994, 37(2): 101-108.
    [176] Pan G., O'Rourke K., Chinnaiyan A.M., et al. The receptor for the cytotoxic ligand TRAIL. Science. 1997a, 276:111-113.
    [177] Pan G., Ni J., Wei Y.F. An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science. 1997b, 277: 815-818.
    [178] Paques F. Haber J.E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 1999, 63: 349-404.
    [179] Pascal S., Jean-Luc B., Margot T., et al. Characterization of two receptors for TRAIL. FEBS Letters. 1997, 416: 329-334.
    [180] Pennyeooke J.C., Towill L.E. Cryopreservation of shoot tips from in vitro plants of sweet potato (Ipomoea batatas (L) Lam.) by vitrification. Plant Cell Rep. 2000, 19: 733-737.
    [181] Petukhova G., Stratton S., Sung P. Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins. Nature. 1998, 393: 91-94.
    [182] Pierce A.J., Johnson R.D., Thompson, L.H. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev. 1999, 13: 2633-2638.
    [183] Pisabarro A., Correia A., Martin J.F. Characterization of the rm B operon of the plant pathogen Rhodococcus fascians and targeted integration of exogenous genes at rrn loci. Appl. environ. Microbiol. 1998, 64:1276-1282.
    [184] Porsch P., Merkelbach S., Gehlen J. et al. The nonradioactive chloramphenicol acetyltransferase-enzyme-linked immunosorbent assay test is suited for promoter activity studies in plant protoplasts. Anal Biochem. 1993, 211 : 113-116.
    [185] Puchta H. Gene replacement by homologous recombination in plants. Plant Mol. Biol. 2002, 48: 173-182.
    [186] Ragan M.A., Bird C.J., Rice E.L., et al. A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit rRNA gene. Proc Natl Acad Sci USA. 1994, 91 : 7276-7280.
    [187] Rall W.F., Reid D.S., Polge C. Analysis of slow-wanning injury of mouse embryos by cryomiscroscopical and physiochemical methods. Cryobiology. 1984, 21: 106-121.
    
    
    [188] Rao B.J., Duter C.M. Stable three-stranded DNA model by RecA protein. Proc Natl Acad Sci USA. 1991, 88: 2948-2958.
    [189] Rashid A. Cell preservation, in: Cell Physiology and Genetics of Higher Plants., CRC press. Inc Boca Raton. Florida. 1988, vol. 2. pp: 157-174.
    [190] Reith M., Munholland J. A high-resolution gene map of chloroplast genome of the red alga Porphyrapurpurea. Plant Cell. 1993, 5: 465-475.
    [191] Riege J., Naumann U., Glaser T. APO2 ligand: a novel lethal weapon against malignant gliomal. FEBS Letters. 1998, 427: 124-128.
    [192] Rijkers T., Van Den Ouweland J., Morolli B., et al. Targeted inactivation of mouse RAD52 reduces homologous recombination but notresistance to ionizing radiation. Mol Cell Biol. 1998, 18: 6423-6429.
    [193] Rommerskirch W., Graeber I., Grassmann M., et al. Homologous recombination of SV40 DNA in COS7 cells occurs with high frequency in a gene dose independent fashion. Nucleic Acids Res. 1988, 16: 941-952.
    [194] Rothstein R.J. One-step gene disruption in yeast. Methods Enzymol. 1983, 101: 202-211.
    [195] Rouet P., Smith F., Jasin M. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc. Natl. Acad. Sci. USA. 1994, 91: 6064-6068.
    [196] Sakai A., Kobayashi S., Oiyama I. Cryopreservation ofnucellar cells of naval orange (Citrus sinesis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep. 1990, 9: 30-33.
    [197] Sakai A. Cryopreservation of germplasm collection in woody plants, in: Biotechnology in Agriculture and Forestry (Bajaj Y.P.S. Eds.). Cryopreservation of Plant Germplasm Ⅰ. Berlin: Springer-Verlag. 1995, vol. 32. pp: 55-69.
    [198] Sara M.M., Berd M., Elena A.A., et al. Interleukin 1β-converting enzyme related proteases/caspases are involved in TRAIL-induced apoptosis of myeloma and leukemia cells. J Cell Biol. 1997, 137(1): 221-229.
    [199] Sara M.M., Peter H.K. Differential regulation of TRAIL and CD95 ligand in transformed cells of the T and B lymphocyte lineage. Europe J Immunol. 1998, 28: 973-982.
    [200] Shah-Mahoney N., Hampton T., Vidaver R., Ratner D., Blocking the ends of transforming DNA enhances gene targeting in Dichtyostelium. Gene. 1997, 203: 33-41.
    
    
    [201] Sheridan J.E, Marsters S.A., Pitti R.M., et al. Control of TRAIL induced apoptosis is by a family of signaling and decoy receptors. Science. 1997, 277:818-821.
    [202] Shivji M.S. Organization of the chloroplast genome in the red alga Porphyra yezoensis. Curr Genet. 1991, 19: 49-54.
    [203] Snell V., Clodi K., Zhao S., et al. Activity of TNF-related apoptosis-inducing ligand (TRAIL) in haematolohical maligacies. Br. J. Heamatol. 1997, 99(3): 618-624.
    [204] Spiker S., Allen G.C., Hall G.E. Nuclear matrix attachment regions (MARs) in plant: affinity for the nuclear matrix and effect on transient and stable gene expression. J. Cell Biochem. 1995, 21: 167.
    [205] Stasiak A. Three-stranded DNA structure: is this the secret of DNA homologous recombination? Mol. Microbio. 1992, 6: 3267-3276.
    [206] Stevens D.R., Rochaix J.D., Purton S. The bacterial phleomycin resistance gene ble as a dominant selectable marker in Chlamydomonas. Mol.Gen. Genet. 1996, 251: 23-30.
    [207] Stevens D.R., Purton S. Genetic Engineering of eukaryotic algae: progress and prospects. J. Phycol. 1997, 33:713-722
    [208] Stiller J.W., Waland J.R. Molecular analysis reveals cryptic diversity in Porphyra (Rhodophyta). J Phycol, 1993, 29:506-517.
    [209] Strickett P.K., Nelson R.D., Kohan D.E. The Cre/loxP system and gene targeting in the kidney. Am J Physiol. 1999, 276:F651~F657.
    [210] Szostak J.W., Orr-Weaver T., Rothstein R., Stahl F. The double-strand-break repair model for recombination. Cell. 1983, 33: 25-35.
    [211] Taghian D.G., Nickoloff J.A. Chromosomal double-strand breaks induce gene conversion at high frequency in mammalian cells. Mol Cell Biol. 1997, 17: 6386-6393.
    [212] Takamatsu N., Ishikawa M., Meshi T. and Okada Y. Expression of bacterial chloram -phenicol acetyltransferase gene in tobacco plants mediated by TMV -RNA. EMBO. J. 1987, 6:307-311.
    [213] Takata M., Sasaki M.S., Sonoda E., et al. The Rad51 paralog Rad51B promotes homologous recombinational repair. Mol Cell Biol. 2000, 20: 6476-6482.
    [214] Taylor R., Fletcher R.L. Cryopreservation of eukaryotic algae- a review of methodologies. J. Appl. Phycol. 1999, 10(5): 481-501.
    
    
    [215] Thinh N.T., Takagi H., Yashima S. Cryopreservation of in vitro grown shoot tips of banana (Musa sp) by vitrification method. Cryo-Lett. 1999, 20:163-174.
    [216] Thomas W.D., Heracy P. TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in Fas liang-resistant melanoma cells and mediates CD4 T cell killing of target cells. J Immunol. 1998, 161" 2195-2200.
    [217] Thompson J.D., Gibson T.J., Plewniak F., et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res. 1997, 25 (24): 4876-4882.
    [218] Tseng C.K., Chang, J.G. Studies on the life history of Porphyra tenere Kjellm. Scientia Sinica. 1955, 41: 375-398.
    [219] Tseng C.K., Sun A. Studies on the alteration of the nuclear phases and chromosome number in the life history of some species of Porphyra from China. Botanica Marina. 1989, 32: 1-8.
    [220] Turner S.R., Senaratna T., Bunn E., Tan B., Dixon K.W., Touchell D.H. Cryopreservation of shoot tips from six endangered Australian species using a modified vitrification protocol. Annals of Botany. 2001, 87: 371-378.
    [221] Uragami A., Sakai A., Nagai M., Takahash T. Survival of cells and somatic embryos of Asparagus officinalis cryopreserved by vitrification. Plant Cell Rep. 1989, 8:418-421.
    [222] Van der Meer J.P., Simpson F.J. Cryopreservaation of Gracilri tikvahiae (Rhodophyta) and other macrophytic marine algae. Phycologia. 1984, 23: 195-202.
    [223] Vasil V., Clancy M., Ferl R.J. et al. Increased gene expression by the first intron of maize shrunken-1 locus in grass species. Plant Physiol. 1989, 91: 1575-1579.
    [224] Vasquez K.M., Wilson J.H. Triplex-directed modification of genes and gene activity. Trends Biochem Sci. 1998, 23: 4-9.
    [225] Vasquez K.M., Marburger K., Intody Z.and Wilson J.H. Manipulating the mammalian genome by homologous recombination. Proc. Natl Acad. Sci. U.S.A. 2001, 98: 8403-8410.
    [226] Vienken J., Zimmermann U. Electric field-induced fusion: electro-hydraulic procedure for production of heterokaryon cells in high yield. FEBS Lett. 1982, 137(1): 11-3.
    [227] Vigneron T., Arbault S. Cryopreservation of gametophytes of Laminaria digitata (L) Lamouroux by encapsulation dehydration. Cryo Letters. 1997, 18(2): 93-98.
    [228] Villemur R. The DNA sequence and structural organization of the GC2 plasmid from the red
    
    alga Gracilaria chilensis. Plant Mol. Biol. 1990, 15(2): 237-243.
    [229] Waaland J.R., Dickson L.G., Carrier J.E. Conchocelis growth and photoperiodic control of conchospore release in Porphyra torta (Rhodophyta). J. Phycol. 1987, 23: 399-406.
    [230] Waldman B.C., Waldman A.S. Illegitimate and homologous recombination in mammalian cells: differential sensitivity to an inhibitor of poly(ADP-ribosylation). Nucleic Acids Res. 1990, 18: 5981-5988.
    [231] Waldman B.C., O'Quinn J.R., Waldman A.S. Enrichment for gene targeting in mammalian cells by inhibition of poly (ADP-ribosylation). Biochim Biophys Acta. 1996, 1308:241-250.
    [232] Wang Q., Gafny R., Sahar N., Sela Ⅰ., Mawassi M., Tanne E., Perl A. Cryopreservation of grapevine (Vitis vinifera L. ) embryogenic cell suspensions by encapsulation-dehydration and subsequent plant regeneration. Plant Sci. 2002, 162: 551-558.
    [233] Werr W. Lowe H. Transient gene expression in a Gramineae cell line: a rapid procedure for studying plant promoters. Mol Gen Genet. 1986, 202: 471-475.
    [234] Wery J., Gutker D., Renniers A.C., Verdoes J.C., Ooyen A.J. High copy number integration into the ribosomal DNA of the yeast Phaffia rhodozyma. Gene. 1997, 184: 89-97.
    [235] Wiley S.R., Schooley K., Smolak P.J., et al. Identification and characterization of new member of the TNF family that induces apoptosis. Immunity. 1995, 3(6): 673-682.
    [236] Williamson S.E., Doolittle W.F. Genes for tRNAIle and tRNAAla in the spacer between the 16S and 23S rRNA genes of a blue-green alga: strong homology to chloroplast tRNA genes and tRNA genes of the E. coli rrnD gene cluster. Nucl Acids Res. 1983, 11: 225-235.
    [237] Withers L.A. Low temperature storage of plant tissue culture, in: Advance in Biochemical Engineering (Fiechter Eds). Plant Cell Culture II. Spinger-Verlag, Basel, 1980, vol. 8. pp:101.
    [238] Xiao S., Zhang Y., Knoll A.H. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature. 1998, 391: 553-558.
    [239] Yabu H. Observation of chromosome in some species of Porphyra. Bull. Fac. Fish. 1972, 22(4): 261-266.
    [240] Yamaguchi-Iwai Y., Sonoda E., Buerstedde J.M., et al. Homologous recombination but not DNA Repair, is reduced in vertebrate cells deficient in RAD52. Mol Cell Biol. 1998, 18: 6430-6435.
    [241] Yanez R.J., Porter A.C. Gene targeting is enhanced in human cells overexpressing hRAD51.
    
    Gene Ther. 1999, 6:1282-1290.
    [242] Yang N.S. and Christou P. Cell type specific expression of a CaMV 35S-GUS gene in transgenic soybean plants. Dev.Genet. 1990, 11:289-293.
    [243] Yarish C., Wilkes R., Chopin T., et al. Domestication of indigenous Porphyra species for commercial cultivation in Northeast America. World Aquaculture. 1998, 29(4): 26-55.
    [244] Yong-Ki hong. DNA extraction conditions from Porphyra perforata using LiCl. J Appl phycol. 1995, 7: 101-107.
    [245] Zheng C. Cryopreservation of materials isolated from plants by vitrification, in: Cryobiology (Li G., Zheng C., Tang B. Eds). Changsha. 1998, pp: 319-324.
    [246] Zheng H., Wilson J.H. Gene targeting in normal and amplified cell lines. Nature. 1990, 344: 170-173.
    [247] Zimmermann U. Electric field-mediated fusion and related electrical phenomena. Biochim. Biophys. Acta. 1982, 694: 227-277.
    [248] Zimmer A., Gruss E Production of chimaeric mice containing embryonic stem (ES) cells carrying a homoeobox Hox 1.1 allele mutated by homologous recombination. Nature. 1989, 338: 150-153.