用于无线局域网的SiGe BiCMOS功率放大器关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功率放大器是无线发射机重要的射频前端模块,也是消耗能量最大的部件。现代无线通信系统通常需要采用高峰均值的调制信号提高信道容量和传输速率,同时电池寿命是影响移动便携式设备使用的关键因素之一。在无线通信设备低成本、小体积、低功耗的需求推动下,单芯片全集成的功率放大器应运而生。
     在早期射频集成功率放大器(RFIC PA)中,以GaAs/InP基片材料为代表的Ⅲ-Ⅴ族功率放大器完全处于统治地位,但该类功放难以与基带等其它电路集成。近年来,随着CMOS工艺的日益成熟和SiGe外延技术水平的不断提高,SiGe BiCMOS器件的截止频率、工作电压和功率密度等均得到了显著改善。而为了进一步提高射频通信系统芯片的兼容性、降低系统成本,满足多模式多频段应用需求,更使SiGe BiCMOS RFIC PA技术得到业界的广泛关注而成为研究热点。
     本文的研究工作是基于国内某新建的0.18umSiGe BiCMOS工艺线开展的。首先对工艺线进行了功率器件开发和建模,完善该工艺的功率单元模型和PDK数据包;以此为基础,对可用于无线局域网的功率放大器进行了关键技术研究和流片验证。本文取得的主要成果如下:
     1)针对无线局域网功放的应用要求,提出了四种不同结构的功率单元(Power Cell)设计。基于Volterra级数分析了主要功率器件SiGe HBT的非线性等效电路和功率单元的热平衡布局,对在大信号条件下各种高频谐波非线性参数对功放的影响进行比较和评估,对不同结构的功率单元进行DC和RF测试,提供了Power Cell模型库的关键数据,为无线局域网的功放设计奠定了技术基础。
     2)基于SiGe HBT器件的自加热效应分析和比较基极镇流和射极镇流这两种功放热稳定性设计,提出了一种在基极偏置中实现温度稳定性的电路结构,其特点是在功率晶体管基极的DC通路中采用电阻和电容并联,从而降低基极镇流电阻对功率增益的影响,以较小的直流功耗和射频损耗而有效的防止热击穿。
     3)研究功放中重要结构单元—键合线的射频特性对于功放性能的影响。针对键合互联线不同的结构参数,用高频三维电磁仿真软件HFSS构建三维物理模型,采用有限元方法进行全波分析。建立键合线的π型等效电路,提取在不同物理模型下金丝键合线的R、C、L等效参数,PCB键合测试获得了多种结构金线的射频插损。
     4)针对无线局域网802.1lb/g协议的要求,采用集成二极管负反馈动态偏置技术,设计了PA线性化和温度稳定的偏置电路,实现了一种包括了匹配电路、放大电路和偏置电路的单芯片全集成2.4GHz功放。测试结果表明,其功率增益为22dB,输出1dB点功率为19.6dBm,功率附加效率为20%。
     5)针对WLAN2.4GHz/5GHz双频段应用要求,实现了一种单端共射极三级级联双频段功放。设计了一种对功放偏置静态电流进行调控和阻抗可变的变容二极管自适应偏置电路,降低了PA的直流功耗,提高了输出1dB压缩点功率。测试结果表明,在2.4GHz频率下,其功率增益达27.1dB,OP1dB达25.5dBm, PAE达26.1%;在5.25GHz频率下,功率增益为22dB, OP1dB为21.1dBm, PAE为20.2%。
     本文受核高基国家重大专项《嵌入式多模、多频收发器关键IP硬核研究》(编号:2009ZX01034-002-002-001)和上海市国际科技合作基金项目《锗硅BiCMOS射频前端关键集成电路设计技术研究》(编号:09700713800)资助。
PA is the most important RF front-end module and the largest energy consumer among all the components in wireless communication systems.High peak-to-average ratio(PAR) complex modulation signal is usually demanded in modern wireless communication systems to improve the channel capacity and transmission rate. Also battery life is a key factor for the utility of portable devices. Driven by the demands of lower cost, smaller size and lower power consumption, the fully integrated PA emerges.
     In the initial years for radio frequency power amplifier (RPIC PA), PAs based on GaAs/Inp III-V material are completely dominant. But these PAs are hard to be integrated with other circuit in a single chip. In recent years, SiGe BiCMOS technology has got gradual improvement in device's cutoff frequency, working voltage and power density, because the CMOS process has been more mature and SiGe epitaxy technology has improved greatly. To reduce RF system cost, improve its compatibility for the demanding of multi-mode and multi-band applications, SiGe BiCMOS RFIC PA achieves more and more attention and becomes a hot pot.
     The research work is based on the newly-built0.18um SiGe BiCMOS process in China. In this dissertation, the modeling of power cell and the PDK data are improved firstly. Then two samples of2.4GHz and5GHz PAs for Wireless-LAN application are studied and verified in the domestic SiGe BiCMOS process. The main work attributions of this thesis are as follows:
     1) Four kinds of power cell are proposed for the demanding of PAs for Wireless-LAN applications. SiGe HBT nonlinear equivalent circuit is analyzed according to Volterra series and power cell layout are thermally optimized. The effects of harmonic nonlinearity parameter are evaluated. Also the power cells are tested under both DC and RF condition, The measurement results also provide the critical data of the power cell library and lay the technical foundation for PA design.
     2) A new temperature stabilization design is proposed in the PA's base biasing path based on the comparison of base-ballasting and emitter-ballasting methods. The design is comprised of parallel resistor and capacitor, preventing thermal runaway effectively and almost causing no insert loss or RF power penalty.
     3) The effect of bondwire upon PA is assessed.Three-dimensional physical models of bondwire are built in HFSS and analyzed by the finite element method. Equivalent circuit is established and parameter is extracted in different physical models. The insert loss of serveral bondwire is evaluated by testing on PCB.
     4) A fully-integrated2.4GHz PA is implemented which includes all the matching, biasing and power circuits for the demanding of Wireless-LAN802.11b/g protocol. With the diode-based negative feedback dynamic biasing technique, a linearization and temperature-stable bias circuit is proposed. The measurement results show that the PA has a power gain of22dB, OP,dB of19.6dBm and PAE of20%.
     5) A dual-band PA with3-stage single-ended common-emitter topology is designed for supporting both2.4GHz and5GHz WLAN applications. A varactor-based adaptive biasing circuit with regulating bias current function is designed, which reduces the average DC power consumption of PA and improves its output1dB power. The test results indicate that the PA achieves a power gain of27.2dB, OP1dB of25.5dBm and PAE of26.1%in the2.4GHz band and a power gain of22dB, OP1dB of21.1dBm and PAE of20.2%in the5GHz band.
     This dissertation work is supported by the National key project "Core Electronic Devices, High-end General Chips and Basic Software", subtitle of,"Embedded Multi-mode, Multi-band Transceiver Hard Core of Key IP"(No.2009ZX01034-002-002-001) and Shanghai International Cooperation Foundation,"SiGe BiCMOS RF front-end Design of Key Integrated Circuits"(No.09700713800)
引文
[1]www.isuppli.com/
    [2]IEEE 802.11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,1997
    [3]IEEE 802.11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,2009
    [4]Bennett, H.S., Brederlow, R., Costa, J.C., et al. Device and technology evolution for Si-based RF integrated circuits, IEEE Transactions on Electron Devices, Vol.52, No.7, July.2005, pp.1235-1258.
    [5]Samoska, L., and Yoke, C.L..65-145 GHz InP MMIC HEMT medium power amplifiers. IEEE Microwave Symposium Digest, Jan.2001, pp.1805-1808.
    [6]Pei-Si, W., Tian-Wei, H., and Huei, W.. An 18-71 GHz multi-band and high gain GaAs MMIC medium power amplifier for millimeter-wave applications. IEEE Microwave Symposium Digest, June 2003, pp.863-866.
    [7]Wakejima, A., Matsunaga, K., Asano, T., et al. C-band GaAs FET power amplifiers with 70-W output power and 50% PAE for satellite communication use. IEEE Compound Semiconductor Integrated Circuit Symposium, Oct.2004, pp.57-60.
    [8]Cohen, E., Betser, Y, Sheinman, B., et al.75 GHz InP HBT distributed amplifier with record figures of merit and low power dissipation, IEEE Transactions on Electron Devices, Vol.53, No.2, May 2006, pp.392-394.
    [9]O'Sullivan, T., Minh, L., Partyka, P., et al. Design of a 70 GHz Power Amplifier using a Digital InP HBT Process. IEEE BCTM Bipolar/BiCMOS Circuits and Technology Meeting, Sept.2007, pp.214-217.
    [10]Aust, M.V., Sharma, A.K., and Gutierrez-Aitken, A.L.. A high power and high efficiency 20 GHz InP HBT monolithic power amplifier for phased array applications. IEEE Microwave Symposium Digest, June 2008, pp.1127-1130.
    [11]Mahon, S.J., Dadello, A., Fattorini, A.P.,et al.35 dBm,35 GHz power amplifier MMICs using 6-inch GaAs pHEMT commercial technology. IEEE Microwave Symposium Digest, June 2008, pp.855-858.
    [12]Chih-Chun, S., Fan-Hsiu, H., Cheng-Kuo, L., et al. A broadband stacked power amplifier using 2-μm GaAs HBT process for C-band applications. Asia-Pacific Microwave Conference, Dec.2008, pp.1-4.
    [13]Campbell, C.F., Moochalla, S., Daugherty, D., et al. V-band power amplifier MMICs exhibiting low power slump characteristics utilizing a production released 0.15-um GaAs PHEMT process. IEEE Microwave Symposium Digest, June 2009, pp. 433-436.
    [14]Yueh-Hua, Y., Chen, Y.J.E., and Heo, D.. A 0.6-V Low Power UWB CMOS LNA, IEEE Microwave and Wireless Components Letters, Vol.17, No.3, March 2007, pp. 229-231.
    [15]Jussila, J., and Sivonen, P.. A 1.2-V Highly Linear Balanced Noise-Cancelling LNA in 0.13um CMOS, IEEE Journal of Solid-State Circuits, Vol.43,No.3, March 2008, pp.579-587.
    [16]Kihwa, C., Dong, H.S., and Yue, C.P.. A 1.2-V,5.8-mW, Ultra-Wideband Folded Mixer in 0.13um CMOS. IEEE Radio Frequency Integrated Circuits Symposium, May 2007, pp.489-492.
    [17]Hasan, S.M.R., and Ula, N.. A 16-bit CMOS Digitally Controlled Oscillator Using a Novel Control Scheme. IEEE International Midwest Symposium on Circuits and Systems, Sept.2006, pp.680-684.
    [18]Zhinian, S., Ka, L.L., and Leung, B. H.,A 2.4-GHz ring-oscillator-based CMOS frequency synthesizer with a fractional divider dual-PLL architecture, IEEE Journal of Solid-State Circuits, Vol.39,No.3, March 2004, pp.452-462.
    [19]Hanil, L., and Mohammadi, S., A 500uW 2.4GHz CMOS subthreshold mixer for ultra low power applications. IEEE Radio Frequency Integrated Circuits Symposium, May 2007, pp.325-328.
    [20]Sining, Z., and Chang, M.C.F., A CMOS passive mixer with low flicker noise for low-power direct-conversion receiver, IEEE Journal of Solid-State Circuits, Vol.40, No.5, May 2005, pp.1084-1093.
    [21]Munusamy, K., and Yusoff, Z., A highly linear CMOS down conversion double balanced mixer. IEEE International Conference on Semiconductor Electronics, Oct. 2006, pp.985-990.
    [22]Ghadimipoor, F., and Garakani, H.G., A noise-canceling CMOS low-noise Amplifier for WiMAX. International Conference on Electronic Devices, Systems and Applications, April 2011, pp.165-169.
    [23]Donggu, I., Ilku, N., Hong-Teuk, K.,et al. A Wideband CMOS Low Noise Amplifier Employing Noise and IM2 Distortion Cancellation for a Digital TV Tuner, IEEE Journal of Solid-State Circuits,Vol.44,No.3, March 2009, pp.686-698.
    [24]Nouri, N., and Mirabbasi, S., A 900MHz-2GHz low-swing low-power 0.18um CMOS PLL. Proc. Electrical and Computer Engineering, April 2005 pp.1566-1569.
    [25]Kyoungho, W., Yong, L., Eunsoo, N., et al. Fast-Lock Hybrid PLL Combining Fractional-N and Integer-N Modes of Differing Bandwidths, IEEE Journal of Solid-State Circuits, Vol.43,No.2, Feb.2008, pp.379-389.
    [26]Murad, S.A.Z., Pokharel, R.K., Abdelghany, et al. High linearity 5.2 GHz CMOS up-conversion mixer using derivative superposition method. Proc. TENCON 2010, Nov.2010, pp.1509-1512.
    [27]Jung-Sheng, C., and Ming-Dou, K., Impact of Gate Leakage on Performances of Phase-Locked Loop Circuit in Nanoscale CMOS Technology, IEEE Transactions on Electron Devices,Vol.56,No.8, Aug.2009, pp.1774-1779.
    [28]Kanaya, H., Koga, N., Abdelghany, M.A.,et al. Low flicker-noise and low leakage. direct conversion CMOS mixer for 5GHz application. Asia Pacific Microwave Conference, Oct.2009, pp.1631-1634.
    {29] Navaratne, D., Beaulieu, A., and Belostotski, L..Noise figure optimization of a noise-cancelling wide-band CMOS LNA. IEEE International NEWCAS Conference, June 2010, pp.125-128.
    [30]Feipeng, W., Ojo, A., Kimball, D., et al. Envelope tracking power amplifier with pre-distortion linearization for WLAN 802.11g. Proc. IEEE Microwave Symposium Digest, Nov.2004, pp.1543-1546.
    [31]Markos, A.Z., Gruner, D., Bathich, K., et al. A 2 W GaAs doherty amplifier for 5.5-5.6GHz applications. International Conference on Microwave Radar and Wireless Communications, June 2010, pp.1-4.
    [32]Jau, J.K., Li, J.Y., Li, C.J.,et al. Design of class-E power amplifier for hybrid quadrature polar modulation transmitter. Proc. TENCON 2007, Oct.2007 pp.1-4.
    [33]Ryckaert, J., Brebels, S., Come, B., et al. Single-package 5GHz WLAN RF module with embedded patch antenna and 20dBm power amplifier. IEEE Microwave Symposium Digest, June 2003, pp.1037-1040.
    [34]Je-In, Y., Jong-Min, Y., Jun-Chul, P.,et al. Compact front end modules for WLAN applications with integrated passive devices using selectively anodized aluminum substrate. European Microwave Integrated Circuits Conference, Sept.2010, pp. 329-332.
    [35]Hussain, A., Gray, E., Karavanic, V., et al. An integrated 6x4mm2 LTCC front end module for WLAN radio applications. European Microwave Integrated Circuits Conference, Sept 2010, pp.1062-1065.
    [36]Degani, O., Ruberto, M., Cohen, E., et al. A 1*2 MIMO Multi-Band CMOS Transceiver with an Integrated Front-End in 90nm CMOS for 802.11a/g/n WLAN Applications. IEEE International Solid-State Circuits Conference, July 2008, pp. 356-619.
    [37]Chia-Jun, C., Po-Chih, W., Chih-Yu, T.,et al. A CMOS transceiver with internal PA and digital pre-distortion for WLAN 802.11a/b/g/n Applications. IEEE. Radio Frequency Integrated Circuits Symposium, May 2010, pp.435-438.
    [38]Chowdhury, D., Lu, Y, Alon, E., and Niknejad, A.M.. A 2.4GHz mixed-signal polar power amplifier with low-power integrated filtering in 65nm CMOS. IEEE Custom Integrated Circuits Conference, Sept.2010, pp.1-4.
    [39]Jihwan, K., Youngchang, Y., Hyungwook, K., et al. A linear multi-mode CMOS power amplifier with discrete resizing and concurrent power combining structure, IEEE Journal of Solid-State Circuits, Vol.46, No.5, May 2011, pp.1034-1048.
    [40]Hsin-Hsing, L., Hao, J., Shanjani, P., King, J., et al. A fully integrated 2*2 power amplifier for dual band MMO 802.11n WLAN application using SiGe HBT technology, IEEE Journal of Solid-State Circuits, Vol.44, No.5, May 2009, pp. 1361-1371.
    [41]Huang, C.P., Doherty, M., Antognetti, P., et al. A highly integrated dual band SiGe BiCMOS power amplifier that simplifies dual-band WLAN and MIMO front-end circuit designs. IEEE Microwave Symposium Digest, May 2010, pp.1-4.
    [42]Lie, D., Lopez, J., Popp, J.D., et al. Highly efficient monolithic class E SiGe power amplifier design at 900 and 2400 MHz, IEEE Transactions on Circuits and Systems, Vol.56, No.7, July 2009, pp.1455-1466.
    [43]Hsien-Yuan, L., and Hwann-Kaeo, C. RF model and verification of through-silicon vias in fully integrated SiGe power amplifier, IEEE Electron Device Letters, Vol.32, No.6, June 2011, pp.809-811.
    [44]SungWon, C., and Dawson, J.L.. Digital predistortion using quadrature ΔΣ modulation with fast adaptation for WLAN power amplifiers. IEEE Microwave Symposium Digest, Oct 2011, pp.1-4.
    [45]熊秀春,李智群,李亮等370-390MHz SiGe BiCMOS功率放大器设计,微电子学,Vol.37,No.6,Dec 2007,pp.811-814.
    [46]宋家友,王志功,彭艳军.基于IBM SiGe BiCMOS工艺5PAe的2GHz功率放大器设计,半导体学报,Vol.29,No.11,Nov 2008,pp.2101-2105.
    [47]Jiayou S, Zhiqun L, Zhigong W, UHF power amplifier design in 0.35um SiGe BiCMOS, High Technology Letters, Vol.29, No.2,2009, pp.147-150.
    [48]彭艳军,王志功,宋家友.一种偏置电流可调节的高效率2.4GHz锗硅功率放大器,固体电子学研究与进展,Vol.29, No.3, March 2009, pp.364-368.
    [49]吴拓,陈弘毅,钱大宏.一种新型自适应偏置线性功率放大器,微电子学与计算机,Vol,26,No.11, March 2009, pp.5-8.
    [50]吴拓,陈弘毅,钱大宏.一种改进LC匹配电路的Class F射频功率放大器,微电子学与计算机,Vol,27,No.1,Jan.2010,pp.165-168.
    [51]阮颖,刘炎华,陈磊,赖宗声.一种2.4GHz全集成SiGe BiCMOS功率放大器,电子与信息学报,Vol.33,No.12,Dec 2011,pp.3035-3039.
    [52]Ying R, Lei C, Liang T, Zong-sheng L. A Fully Integrated SiGe BiCMOS Power Amplifier for 2.4GHz Wireless-LAN Application, IEEE International Conference on Wireless Communications, Networking and Mobile Computing, Sept.2010, pp.1-4.
    [1]van Bezooijen, A., Chanlo, C., and van Roermund, A.H.M.. Adaptively preserving power amplifier linearity under antenna mismatch. IEEE Microwave Symposium Digest, Nov.2004, pp.1515-1518.
    [2]Goh, T.S.L., and Pollard, R.D.. ACPR prediction of CDMA systems through statistical behavioural modelling of power amplifiers with memory. European Personal Mobile Communications Conference, April 2002, pp.1189-1193
    [3]Cripps, S C, T S L, RF power amplifier for wireless communications, Norwood, MA. Artech House,2002.
    [4]Choi, B.K., Hong, Y.U., Kwak, T.W., Lee, M.C., and Cho, G.H.. High-frequency switching class-D power amplifier for portable sound applications. IEEE Power Electronics Specialists Conference, June 2006. pp.1-4.
    [5]Wong, S.C., and Tse, C.K.. Design of Symmetrical Class E Power Amplifiers for Very Low Harmonic-Content Applications, IEEE Transactions on Circuits and Systems, Vol.52, No.8,2005, pp.1684-1690.
    [6]Kitchen, J.D., Deligoz, I., Kiaei, S., and Bakkaloglu, B..Linear RF polar modulated SiGe Class E and F power amplifiers. IEEE Radio Frequency Integrated Circuits Symposium, June 2006, pp.4-8.
    [7]Caveis J.K. Adaptation behavior of a feedforward amplifier Linearizer. IEEE Transactions on Vehicular Technology, Vol.44. No.1. Feb.1996, pp.31-40.
    [8]Bumman Kim, Young Yun Woo, Youngoo Yang, Jaehyok Yi, Joonjin Nam, Jeonghyeon Cha. A new adaptive feedforward amplifier using imperfect signal cancellation.3rd International Conference on Microwave and Millimeter Wave Technology, Aug.2002, pp.928-931.
    [9]J. Yao and S. I. Long.Power Amplifier Selection for LINC Applications.IEEE Transactions on Circuits and Systems,Vol.53, No.8, Aug.2006, pp.763-767.
    [10]S. Stapleton.Adaptive feedforward linearization for RF power amplifiers.55th ARFTG Conference Digest-Spring, June 2000, pp.1-7.
    [11]Urick, V.J., Rogge, M.S., Knapp, P.F., Swingen, L., and Bucholtz, F.:Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links.IEEE Transactions on Microwave Theory and Techniques, Vol.54, No.4,2006, pp.1458-1463.
    [12]Yong-Sub, L., Mun-Woo, L., Sang-Ho, K., and Yoon-Ha, J.. Advanced design of high-linearity analog predistortion Doherty amplifiers using spectrum analysis for WCDMA applications. IEEE Radio and Wireless Symposium,2010, pp.140-143.
    [13]Woo, Y.Y., Kim, J., Yi, J., Hong, S., Kim, I., Moon, J., and Kim, B.. Adaptive digital feedback predistortion technique for linearizing power amplifiers. IEEE Transactions on Microwave Theory and Techniques, Vol.55, No.5,2007, pp.932-940.
    [14]Thian, M., Ming, X., and Gardner, P.. Digital baseband predistortion based linearized broadband inverse Class-E power amplifier, IEEE Transactions on Microwave Theory and Techniques, Vol.57, No.2,2009, pp.323-328.
    [15]You-Jiang, L., Rong, Z., Tao, C., Bang-Hua, Z., Jie, Z., and Yi-Nong, L. Up-converted dual-envelope injection enhanced digital predistortion for inverse class-E power amplifier linearization. European Microwave Integrated Circuits Conference, Nov.2011, pp.280-283.
    [16]Larson L., Asbeck P. and Kimball D.. Next generation power amplifiers for wireless communications-squeezing more bits out of fewer joules. IEEE Radio Frequency integrated Circuits Symposium, June 2005, pp.417-420.
    [17]Asbeck, P., Hannington, G., Chen P. F. and Larson L.. Efficiency and linearity improvement in power amplifiers for wireless communications.20th Annual Gallium Arsenide Integrated Circuit Symposium, Nov.1998, pp.15-18.
    [18]J. Deng, P. S. Gudem, L. E. Larson and P. M. Asbeck. A high average-efficiency SiGe HBT power amplifier for WCDMA handset applications. IEEE Transactions on Microwave Theory and Techniques, Vol.53, No.2, Feb.2005, pp.529-537.
    [19]T. Fowler, K. Burger, Nai-Shuo Chengm, et al..Efficiency improvement techniques at low power levels forlinear CDMA and WCDMA power amplifiers. IEEE Radio Frequency Integrated CircuitsSymposium, June 2002, pp.41-44.
    [20]Feipeng, W., Ojo, A., Kimball, D., Asbeck, P., and Larson, L.. Envelope tracking power amplifier with pre-distortion linearization for WLAN 802.11g. IEEE International Microwave Symposium Digest, Nov.2004, pp.1543-1546.
    [21]Doherty, W.H.. A new high efficiency power amplifier for modulated waves. Proceedings of the Institute of Radio Engineers, Vol.24, No.9, Sept.1936, pp. 1163-1182.
    [22]Markos, A.Z., Gruner, D., Bathich, K., and Boeck, G. A 2 W GaAs doherty amplifier for 5.5-5.6 GHz applications.18th International Conference on Microwave Radar and Wireless Communications, June 2010, pp.1-4.
    [23]Wei-Chun, H., Hung-Hui, L., Po-Tsung, L., Chee, W.L., Tzu-Yi, Y., and Gin-Kou, M.. High-linearity and temperature-insensitive 2.4 GHz SiGe power amplifier with dynamic-bias control. IEEE Radio Frequency integrated Circuits Symposium, June 2005, pp.609-612.
    [24]Minsik, A., Kyu-Hwan, A., Chang-Ho, L., Laskar, J., and Hak-Sun, K.. Fully integrated high power RF front-end circuits in 2 GHz using 0.18um standard CMOS process. Asia-Pacific Microwave Conference, Dec.2008. pp.1-4.
    [1]Johnson, R.G., Batty, W., Panks, A.J., and Snowden, C.M.. Fully physical coupled electro-thermal simulations and measurements of power FETs. IEEE International Microwave Symposium Digest, Jun 2000, pp.461-464.
    [2]Grasser, T., and Selberherr, S..Fully coupled electrothermal mixed-mode device simulation of SiGe HBT circuits. IEEE Transactions on Electron Devices,Vol.48, No.7, July 2001, pp.1421-1427.
    [3]Cressler, J.D..Emerging SiGe HBT reliability issues for mixed-signal circuit applications, IEEE Transactions on Device and Materials Reliability, June 2004, pp. 222-236.
    [4]Haitao, Z., Huai, G, and Guann-Pyng, L.:Broad-band power amplifier with a novel tunable output matching network,, IEEE Transactions on Microwave Theory and Techniques, Vol.53, No.1 1, Nov.2005, pp.3606-3614.
    [5]Bennett, H.S., Brederlow, R., Costa, J.C., Cottrell, P.E., Huang, W.M., Jr. Immorlica, A.A., Mueller, J.E., Racanelli, M., Shichijo, H., Weitzel, C.E., and Bin, Z..Device and technology evolution for Si-based RF integrated circuits, IEEE Transactions on Electron Devices, Vol.52, No.7, July 2005, pp.1235-1258.
    [6]Spirito, M., De Paola, F.M., D'Alessandro, V, Buisman, K., and Rinaldi, N..Trade-offs in RF Performance and Electrothermal Ruggedness of Multifinger SiGe Power Cells. IEEE International Symposium on Power Semiconductor Devices and IC's, June 2006, pp.1-4.
    [7]Waldrop, J.R., and Chang, M.F.:Negative differential resistance of AlGaAs/GaAs heterojunction bipolar transistors:influence of emitter edge current, IEEE Electron Device Letters, Vol.16, No.1, Jan.1995, pp.8-10.
    [8]Todorova, D., Mathur, N., and Roenker, K.P.. Simulation and design of SiGe HBTs for power amplification at lOGHz. International Semiconductor Device Research Symposium, Dec 2001, pp.248-251.
    [9]Reid, A.R., Kleckner, T.C., Jackson, M.K., Marchesan, D., Kovacic, S.J., and Long, J.R.. Thermal resistance in trench-isolated Si/SiGe heteroj unction bipolar transistors, IEEE Transactions on Electron Devices, Vol.48, No.7, July 2001, pp. 1477-1479.
    [10]Guogong, W., Chao, Q., Ningyue, J., and Zhenqiang, M.. Boosting up performance of power SiGe HBTs using advanced layout concept. Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Sept.2004, pp.135-138.
    [11]Jin, D.Y., Zhang, W.R., Guan, B.L., Chen, L., Hu, N., Xiao, Y., and Wang, R.Q.. Optimum design methodology for thermally stable multi-finger power SiGe HBTs. International Workshop on Junction Technology, May 2010, pp.1-4.
    [12]Walkey, D.J., Celo, D., Smy, T.J., and Surridge, R.K..A thermal design methodology for multifinger bipolar transistor structures, IEEE Transactions on Electron Devices, Vol.49, No.8, Aug 2002, pp.1375-1383.
    [13]Hueting, R.J.E., and van der Toorn, R.. Analysis of the Kirk effect in silicon-based bipolar transistors with a nonuniform collector profile, IEEE Transactions on Electron Devices, Vol.52, No.11 Nov 2005, pp.2489-2495.
    [14]van der Toorn, R..Threshold current for the onset of Kirk effect in bipolar transistors with a fully depleted nonuniformly doped collector, IEEE Electron Device Letters, Vol.28, No.1, Jan.2007, pp.54-57.
    [15]Doerr, I., Lih-Tyng, H., Sommer, G., Oppermann, H., Li, L., Petras, M., Korf, S., Sahli, F., Myers, T., Miller, M., and John, W.. Parameterized models for a RF chip-to-substrate interconnect.51st Electronic Components and Technology Conference, May 2001, pp.831-838.
    [1]IEEE 802.11:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,2007
    [2]http://www.ieee802.org/11/
    [3]Zhang, W., Yang, J., Liu, H., He, Y., Gao, F., and Liu, L.. The temperature dependence of dc characteristics and its implication in microwave power Si/SiGe/Si HBTs.4th International Conference on Microwave and Millimeter Wave Technology, Aug.2004, pp.594-597.
    [4]Lan, L., Guofu, N., Najafizadeh, L., and Cressler, J.D.. Impact of the non-ideal temperature dependence of IC-VBE on ultra-wide temperature range SiGe HBT bandgap reference circuits. IEEE Bipolar/BiCMOS Circuits and Technology Meeting, Oct.2010, pp.220-223.
    [5]Walkey, D.J., Celo, D., Smy, T.J., and Surridge, R.K.:A thermal design methodology for multifinger bipolar transistor structures, IEEE Transactions on Electron Devices, Vol.49, No.8, Aug.2002, pp.1375-1383
    [6]Jin, D., Zhang, W., Shen, P., Xie, H., Li, J., Gan, J., Huang, L., Hu, N., and Huang, Y..Thermal stability of the power SiGe HBT with non-uniform finger length. International Conference on Microwave and Millimeter Wave Technology, April 2008. pp.166-169.
    [7]Yang, W., Yang, W., Xu, C., and Chen, J.. The research of temperature characteristics of SiGe HBT and the Reliability under thermal stress. IEEE International Symposium on Physical and Failure Analysis of Integrated Circuits, July 2009, pp.319-322.
    [8]Ponce, M., Vazquez, R., and Arau, J.. High power factor electronic ballast for compact fluorescent lamps based in a class E amplifier with LCC resonant tank. IEEE International Power Electronics Congress, Oct 1998, pp.22-28.
    [9]Nam-Sik, R., Su-Tac, K., Su-Jin, S., and Yong-Chae, J.. HBT Doherty amplifier using ballast resistor control and arbitrary termination impedance power divider. Asia-Pacific Microwave Conference Proceedings, Dec.2005, pp.4
    [10]Sowlati, T., and Luo, S.. Bias boosting technique for a 1.9 GHz class AB RF amplifier. International Symposium on Low Power Electronics and Design, Jan.2000 pp.284-288
    [11]Maas, S.. Ballasting HBTs for wireless power amplifier operation. International Workshop on Integrated Nonlinear Microwave and Millimeter-Wave Circuits, Jan. 2006, pp.2-5
    [12]Zhang, W., Yang, J., Liu, H., He, Y, Gao, F., and Liu, L.. The temperature dependence of dc characteristics and its implication in microwave power Si/SiGe/Si HBTs.4th International Conference on Microwave and Millimeter Wave Technology, Aug.2004 pp.594-597
    [13]Jin, D., Zhang, W., Qiu, J., and Gao, P.. Ballasting resistor optimum for the self-heating effect compensation in RF power HBTs.8th International Conference on Solid-State and Integrated Circuit Technology. Oct.2006, pp.224-226
    [14]Ningyue, J., Zhenqiang, M., Pingxi, M., Reddy, V., and Racanelli, M.. SiGe power HBT design considerations for IEEE 802.11 applications. European Gallium Arsenide and Other Semiconductor Application Symposium, Oct.2005, pp.485-488
    [15]Chu, C.Y., Li, G.P., Ho, W.J., Hsu, H.Y., Kao, T.M., Hua, C, and Day, D.. ESD performance optimization of ballast resistor on power AlGaAs-GaAs heterojunction bipolar transistor technology.Electrical Overstress/Electrostatic Discharge Symposium Proceedings, Sep 1999, pp.235-240.
    [16]Hui, L., Guoxuan, Q., Zhenqiang, M., Pingxi, M., and Racanelli, M.. Impact of Ballast Resistor Implementations on Linearity and RF Performance of Common-Base SiGe Power HBTs. IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Jan.2008, pp.70-73.
    [17]Martinelli, R.U., Jr. Wheatley, C.F., and Sassaman, K.A.. A study of forward second-breakdown in silicon bipolar power transistors using the unit-cell concept. International Electron Devices Meeting, Aug.1982, pp.504-507
    [18]Junxiong, D., Gudem, P., Larson, L.E., and Asbeck, P.M.. A high-efficiency SiGe BiCMOS WCDMA power amplifier with dynamic current biasing for improved average efficiency. IEEE Symposium on Radio Frequency Integrated Circuits, June 2004, pp.361-364.
    [19]Aparin, V., and Larson, L.E.. Linearization of monolithic LNAs using low-frequency low-impedance input termination.29th European Solid-State Circuits Conference, Sept.2003, pp.137-140.
    [20]Spirito, M., van der Heijden, M.P., Pelk, M., de Vreede, L.C.N., Zampardi, P.J., Larson, L.E., and Burghartz, J.N.. Experimental procedure to optimize out-of-band terminations for highly linear and power efficient bipolar class-AB RF amplifiers. Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting, Oct.2005, pp. 112-115.
    [21]Haitao, Z., Huai, G., Yintat, M., Forbes, A., Pavio, R., and Guann-Pyng, L.. A novel high efficiency and linearity power amplifier with over-voltage protection. IEEE Symposium on Microwave, June 2007, pp.147-150.
    [22]阮颖,陈磊,田亮,周进,赖宗声.基于0.18μm SiGe BiCMOS工艺的高线性射频功率放大器,Vol.40,No.4,Aug 2010,微电子学,pp.469-472.
    [23]阮颖,刘炎华,陈磊,赖宗声.一种2.4GHz全集成SiGe BiCMOS功率放大器,电子与信息学报,Vol.33,No.12,Dec 2011,pp.3035-3039.
    [24]Ying, R., Lei, C., Yan-hua, L., Feng, R., and Zong-sheng, Lai. A 2.4GHz monolithic SiGe power amplifier for Wireless-LAN transceiver. Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics, Sept.2010, pp.287-290.
    [25]Cripps S C. RF power amplifier for wireless communications.2nd ed, Norwood, MA, USA, Artech House, Inc,2006, pp.21-27.
    [26]Feipeng, W., Kimball, D.F., Lie, D.Y., Asbeck, P.M., and Larson, L.E.. A monolithic high-efficiency 2.4-GHz 20-dBm SiGe BiCMOS envelope-tracking OFDM power amplifier, IEEE Journal of Solid-State Circuits,Vol.42, No.6, June 2007, pp.1271-1281.
    [27]Yan-Jun, P., Jia-You, S., Zhi-Gong, W., and Tsang, K.F.. A Low-cost on-chip bias-current-control SiGe BiCMOS power amplifier at 2.4GHz. Asia-Pacific Microwave Conference, Dec.2008, pp.1-4.
    [1]http://standards.ieee.Org/about/get/802/802.11.html.
    [2]IEEE 802.11:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,2007.
    [3]Jou, C.F., Kuo-Hua, C., Chia-Min, L., and Jia-Liang, C. Dual band CMOS power amplifier for WLAN applications.46th Midwest Symposium on Circuits and Systems, Dec.2003, pp.1227-1230.
    [4]Noh, Y.S., and Park, C.S.. Linearized high efficiency HBT MMIC dual band power amplifier module for L-band applications. Proc. Asia-Pacific Microwave Conference, Dec 2001, pp.1295-1298.
    [5]Yamamoto, K., Suzuki, S., Mori, K., Asada, T., Okuda, T., Inoue, A., Miura, T., Chomei, K., Hattori, R., Yamanouchi, M., and Shimura, T.. A 3.2-V operation single-chip dual-band AlGaAs/GaAs HBT MMIC power amplifier with active feedback circuit technique, IEEE Journal of Solid-State Circuits, Vol.35, No.8, Aug. 2000, pp.1109-1120.
    [6]Ali, F., Lourandakis, E., Gloeckler, R., Abt, K., Fischer, G., and Weigel, R.: Tunable multiband power amplifier using thin-film BST varactors for 4G handheld applications. IEEE Radio and Wireless Symposium, Jan.2010, pp.236-239.
    [7]Fukuda, A., Kawai, K., Furuta, T., Okazaki, H., Oka, S., Narahashi, S., and Murase, A.. A high power and highly efficient multi-band power amplifier for mobile terminals. IEEE Radio and Wireless Symposium, Jan.2010, pp.45-48.
    [8]Fukuda, A., Okazaki, H., Narahashi, S., and Nojima, T. A concurrent multi-band power amplifier with compact matching networks. General Assembly and Scientific Symposium, Aug.2011, pp.1-4.
    [9]Fujita, K., Shirakawa, K., Takahashi, N., Liu, Y., Oka, T., Yamashita, M., Sakuno, K., Kawamura, H., Hasegawa, M., Koh, H., Kagoshima, K., Kijima, H., and Sato, H.. A 5 GHz high efficiency and low distortion InGaP/GaAs HBT power amplifier MMIC. IEEE International Microwave Symposium Digest, June 2003, pp.871-874.
    [10]Noh, Y.S., Yom, I.B., and Park, C.S.. Two-stage adaptive power amplifier MMIC for handset applications. European Microwave Conference, Oct.2005, pp.4-7.
    [11]Yoshimasu, T., Akagi, M., Tanba, N., and Hara, S.. An HBT MMIC power amplifier with an integrated diode linearizer for low-voltage portable phone applications, IEEE Journal of Solid-State Circuits, Vol.33, No.9, Sep 1998, pp. 1290-1296.
    [12]Zhu, M., Yang, H., Zhang, H.Y., and Liu, X.C.. An InGaP/GaAs HBT MMIC Power Amplifier with an Integrated Diode Linearizer. IEEE Conference on Electron Devices and Solid-State Circuits, Dec.2005, pp.195-198.
    [13]阮颖,叶波,陈磊,赖宗声.应用于WCDMA的双频单片SiGe BiCMOS功率放大器,半导体技术,Vo1.36,No.9,Sep 2011,pp.697-700.
    [1]Feipeng W., Kimball D.F., Lie D.Y., et al. A monolithic high-efficiency 2.4-GHz 20-dBm SiGe BiCMOS envelope-tracking OFDM power amplifier.IEEE Journal of Solid State Circuits, Vol.42, No.6, July 2007, pp.1271-1279.
    [2]Hsin-Hsing L., Hao J., Shanjani P., et al. A fully integrated 2x2 power amplifier for dual band MIMO 802.11n WLAN application using SiGe HBT technology. IEEE Journal of Solid-State Circuits, Vol.44, No.5,2009, pp.1361-1371.
    [3]Yan-Jun P.,Jia-You S., Zhi-Gong W., et al. A Low-cost on-chip bias-current-control SiGe BiCMOS power amplifier at 2.4GHz. Asia-Pacific Microwave Conference. Dec. 2008, pp.1-4.
    [4]Kaynak, M., Tekin, I., Gurbuz Y., Fully integrated low-power sige power amplifier for biomedical applications Microwaves, Antennas & Propagation, Vol.5, No.2, May 2011, pp.214-219.
    [5]Chien-Cheng, L.,and Yu-Cheng, H.. Single-chip dual-band WLAN power amplifier using InGaP/GaAs HBT. European Gallium Arsenide and Other Semiconductor Application Symposium, Oct.2005, pp.489-492.
    [6]Degani, O., Ruberto, M., Cohen, E., Eilat, Y.,et al.. A 1x2 MIMO Multi-Band CMOS Transceiver with an Integrated Front-End in 90nm CMOS for 802.11a/g/n WLAN Applications. IEEE International Solid-State Circuits Conference, Feb.2008, pp.356-619.