交错互通微通道多孔网格板制造及其强化传热研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微电子器件逐渐向大功率、微型化、高集成度方向发展,热流密度过高而散热空间狭小的矛盾日益突出,这迫使微电子器件对强化传热技术提出了更高的要求。为了即寻求高传热性能和小流体压降的强化传热结构,并实现制造工艺尽可能的简单、高效且低廉,本文利用传统铣削工艺制备出兼有微通道与规则孔隙结构的新型强化传热结构——交错互通微通道多孔网格板。并对其进行以下研究:
     (1)交错互通微通道多孔网格板铣削成形
     采用逆铣方式铣削微通道,并分析微通道铣削成形机理,还通过试验研究了微通道深度H_c、宽度W_c、间距W_s等参数,最后对交错互通微通道多孔网格板的拉伸、压缩、弯曲等机械性能进行研究,并建立相应的理论模型。结果表明,该加工工艺可以成功在基板两面加工出垂直正交且交错互通的微通道,得到交错互通微通道多孔网格板。
     (2)铣削交错互通微通道多孔网格板时毛刺生成及其控制
     研究铣削交错互通微通道多孔网格板时的毛刺生成机理,而后通过实验分析径向切削深度a_e、切削速度v、进给速度v_f和网孔大小对生成毛刺的影响,进而控制并尽量减小其长度。结果表明,当刀齿切出时,被切除金属与母体断裂分离,少量金属将残留在微通道顶端两侧成为撕裂毛刺。当径向切削深度a_e等于或略大于H_a/2时,网孔处形成片状毛刺。当a_e远大于H_a/2时,网孔内形成卷曲毛刺,并且可通过增大切削速度v与进给速度v_f或者减小网孔尺寸来减小卷曲毛刺长度。
     (3)铣削微通道切削力模型
     建立已成形微通道深度t与切削厚度ac固定不变时的切削力模型。在此基础上,引入铣削时已成形微通道深度t与切削厚度ac的变化规律,得出铣削时单个刀齿在水平和竖直方向所受的力。最后,根据参与切削的刀齿分布情况求解出铣削微通道时的切削力模型。模型表明,刀齿所受切削力由三部分组成:主切削刃与副切削刃参与切削以及切屑横向变形受限制。铣削微通道时切削力由参与切削的刀齿所受的力共同组合而成,并在某一固定值上下做周期性波动。
     (4)铣削微通道有限元模拟分析
     利用商业有限元软件DEFORM-3D对切削微通道与铣削微通道进行模拟,并分析应力分布、塑性变形、金属流动速度和方向、切削力等,还分别与相同切削用量的切削凸台和铣削凸台进行对比。结果表明,切削力随已成形微通道深度t、切削深度a_c和切削宽度a_w而增大,随前角γ_0的增加而减小,而受切削速度v的影响较小。铣削微通道时的切削力随着a_e的增加而增大。由于切屑横向变形受到微通道两侧壁面的限制,所以微通道的两侧壁面上也存在较大的应力。
     (5)交错互通微通道多孔网格板强化传热性能研究
     通过理论计算得出交错互通微通道多孔网格板的孔隙率、比表面积等多孔特性,并研究孔隙率与比表面积随微通道间距W_s、微通道深度H_c以及微通道宽度W_c的变化规律。而后利用自行设计的压降测试系统和传热性能测试系统分别对网格板的压降、传热性能进行测试。最后分析体积流量、孔隙率、比表面积等参数对其压降、传热性能的影响,并以此为依据选出综合性能最好的网格板。结果表明,比空流道相比,装入网格板后压降ΔP与单位体积与单位面积传热系数传热性能K_V、K_A均有增大。高孔隙率的网格板压降较大,大体积比表面积和高孔隙率的网格板强化传热效果较好。
Nowadays, micro electronic components are developing toward micromation, high-power and high level of integration. The contradiction between high density heat flux and small heat dissipation space are becoming increasingly critical, which raise higher requirement for enhanced heat transfer technology. Enhanced heat transfer structures should meet the demands of high heat transfer performance and low pressure drop, and their manufacturing process shoud be as simple, efficient and cheap as possible. Therefore, a new enhanced heat transfer structure, namely cross-connected microchannel porous mesh plate(CCMPMP) is fabricated by traditional milling. CCMPMP has both structures of microchannel and regular pores. The main research contents are summarized as follows:
     (1) Fabrication of CCMPMP by milling
     CCMPMP is fabricated by up milling. The principle of milling microchannel is analysed. Then, some microchannel parameters, such as microchannel depth H_c, microchannel width W_c and microchannel interval W_s, are investigated experimentally. Finally, mechanical properties of CCMPMP, such as tensile, compressive and bending property, are investigated theoretically. Results show CCMPMP is successfully fabricated by milling, and two sets of perpendicular microchannels on both sides of metal plate intersect each other so as to form lots of meshes.
     (2) Burrs formation and control during fabricating CCMPMP by milling
     The burr formation mechanism in fabricating CCMPMP is studied. And then the influences of radial depth of cut ae, cutting speed v, feed speed vf and mesh size on the burr formation are investigated experimentally so as to control and decrease the burr length. Results show that when every tooth exits some tear burrs occur on both top sides of the microchannel as the result of material tearing off the workpiece rather than shearing. When a_e is equal to or slightly larger than H_a/2, flake-like burrs are formed.When ae is much larger than H_a/2, curl-like burrs occur. The length of curl-like burrs can be decreased by increasing v and vf and decreasing the mesh size.
     (3) Cutting force model of milling microchannel
     Cutting force model is established when the cutting thickness ac and the machined microchannel depth t is unchanged. The influences of the major and minor cutting edge and the side deformation of chip on the cutting force are investigated theoretically. Then, Cutting force of a single tooth in milling microchannel can be obtained based on the principle of up milling. Finally, Cutting force model of milling microchannel is established according to the distribution of all the teeth participating in cutting simultaneously. It can be concluded that cutting force in cutting microchannel arise from the major and minor cutting edge and the side deformation of chip, and cutting force in milling microchannel is composed of cutting forces of all the teeth participating in cutting simultaneously.
     (4) FEM simulation of milling microchannel
     FEM simulations of cutting and milling microchannel are carried out by using the commercial software DEFORM 3D. Then, some simulation results, such as the stress distribution, plastic deformation, metal flow velocity distribution and cutting force, are analysed and compared with cutting and milling boss, respectively. The results show cutting force in cutting microchannel increases with t, ac, and the cutting width aw, decreases with the rake angleγ0, and is little influenced by the cutting speed v. while, cutting force in milling microchannel increases with the radial depths of cut ae. Because the side deformation of chip is constrained, large stress occures on the the side face of the machined microchannel.
     (5) Enhanced heat transfer performance of CCMPMP
     Some porous properties of CCMPMP, such as porosity and specific surface area, are theoretically calculated, and the influences of W_s, H_c and W_c are discussed. Pressure drop and heat transfer performance are measured by using self-made testing systems. Finally, the influences of volume flowrate qV, porosity and specific surface area on pressure drop and heat transfer performance are investigated experimentally, and the optimum CCMPMP are obtained on the basis of the experimental results. Results show Pressure dropΔP and heat transfer coefficient per unit volume KV and per unit area KA become larger after packing heat exchanger with CCMPMP. High porosity favors high pressure drop and high porosity and large total surface area per unit volume is favorable for good heat transfer performance.
引文
[1]Ryan J.M., Roshan J., Song L.. Integrated thermal management techniques for high power electronic devices[J]. Applied Thermal Engineering, 2004, 24: 1143-1156
    [2]Ross P.E.. Beat the heat[J]. IEEE Spectrum, 2004, 41(5): 38-43
    [3]Bergles A.E.. Heat transfer enhancement the encouragement and accommodation of high heat fluxes[J]. ASME Journal of Heat Transfer, 1997, 119(1):8-19
    [4]Kays W. M., Londen A. L..紧凑式热交换器[M].宣益民译.北京:科学出版社, 1997
    [5]夏再忠.导热和对流换热过程的强化与优化[D].北京:清华大学, 2001
    [6]白鹏飞.多孔型微细通道强化传热结构的制造及传热性能研究[D].广州:华南理工大学, 2010
    [7]Bergles A.E.. Some perspectives on enhanced heat transfer second generation heat transfer technology[J]. ASME Journal of Heat Transfer, 1988, 110(4b): 1082-1096
    [8]Webb R.L., Bergles A.E.. Heat transfer enhancement: second generation technology[J]. Mechanical Engineering, 1983, 115(6): 60-67
    [9]Jiang P.X., Fan M.H., Si G.S., et al.Thermal-hydraulic performance of small scale micro-channel and porous-media heat-exchangers[J]. International Journal of Heat and Mass Transfer, 2001, 44(5): 1039-1051
    [10]Banhart J.. Manufacture, characterisation and application of cellular metals and metal foams.Progress in Materials Science, 2001, 46(6) 559-632
    [11]Singh R., Akbarzadeh A., Mochizuki M.. Sintered porous heat sink for cooling of high-powered microprocessors for server applications[J]. International Journal of Heat and Transfer, 2009, 52(9-10): 2289-2299
    [12]曹彬,陈光文,袁权.逆流式微通道换热器设计与操作特性分析[J].化工学报, 2005, 56 (5):774-778
    [13]Tuckerman D.B., Pease R.F.W.. High performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129
    [14]Wu P., Little W.A.. Measurement of the heat transfer characteristics of gas flow in fine channelheat exchangers used for microminature refrigerators[J]. Cryogenics, 1984, 24(8): 415-420
    [15]Wu P., Little W. A.. Measurement of friction factors for the flow of gases in very fine Channels used for microminiature Joule-Thompson Refrigerators[J]. Cryogenics, 1983, 23(5): 273-277
    [16]Lin S., Kwok C.K., Li R.Y., et al. Local frictional pressure drop during vaporization of R-12 through capillary tubes[J]. International Journal of Multiphase Flow, 1991, 17(1): 95-102
    [17]Adams T.M., Abdel-Khalik S.I., Jeter S.M., et al. An experiment investigation of single-phase forced convection in microchannels[J]. International Journal of Heat and Mass Transfer, 1998, 41(6-7): 851-857
    [18]Rahman M.M.. Measurements of heat transfer in microchannel heat sinks[J]. International Communications in Heat and Mass Transfer, 2000, 27(4): 495-506
    [19]Kroeker C.J., Soliman H.M., Ormiston S.J.. Three-dimensional thermal analysis of heat sinks with circular cooling micro-channels[J]. 2004, 47(22): 4733-4744
    [20]Shin J.S., Kim M.H.. An experimental study of condensation heat transfer inside a mini-channel with a new measurement technique[J]. International Journal of Multiphase Flow, 2004, 30(3): 311-325
    [21]Bertsch S.S., Groll E.A., Garimella S.V.. Refrigerant flow boiling heat transfer in parallel microchannels as a function of local vapor quality[J]. International Journal of Heat and Mass Transfer, 2008, 51(19-20): 4775-4787
    [22]Peng X.F., Peterson G. P.. Convective heat transfer and flow friction for water flow in microchannel structures[J]. International Journal of Heat and Mass Transfer, 1996, 39(12): 2599-2608
    [23]张明惠.圆形微通道热沉流动换热特性的数值研究[J].建筑热能通风空调, 2009, 28(1): 10-13
    [24]徐国强,王梦,吴宏,陶智. Y形构形微通道流动换热特性的数值分析[J].北京航空航天大学学报, 2009, 35(3): 313-317
    [25]姜培学,王补宣,任泽霈.微尺度换热器的研究及相关问题的探讨[J].工程热物理学报, 1996, 17(3): 328-331
    [26]纪献兵,徐进良.流体在超轻多孔金属泡沫中的流动和换热特性[J].化工学报, 2009, 60(1): 21-27
    [27]Zhao C.Y., Lua T.J., Hodson H.P., et al. The temperature dependence of effective thermal conductivity of open-celled steel alloy foams[J]. Materials Science and Engineering A, 2004, 367(1-2): 123-131
    [28]刘东,刘明侯,王亚青,徐侃.泡沫铜填充曲折槽道散热器内对流换热研究[J].工程热物理学报, 2009, 30(11): 1936-1938
    [29]Mahjoob S., Vafai K.. A synthesis of fluid and thermal transport models for metal foamheat exchangers[J]. International Journal of Heat and Mass Transfer, 2008, 51(15-16): 3701-3711
    [30]Calmidi V.V.. Transport Phenomena in High Porosity Metal Foams[D]. Boulder: University of Colorado, 1998
    [31]Calmidi V.V., Mahajan R.L.. The effective thermal conductivity of high porosity fibrous metal foams[J]. ASME Journal of Heat Transfer, 1999, 121(2): 466-471
    [32]Calmidi V.V., Calmidi M., Mahajan R.L.. Finned Metal Foam Heat Sink[P]. U.S.patent filed, University of Colorado. 2000
    [33]Bhattacharya A., Mahajan R.L.. Metal foam and finned metal foam heat sinks for electronics cooling in buoyancy-induced convection[J]. ASME Journal of Electronic Packaging, 2006, 128(3): 259-266
    [34]Bhattacharya A., Calmidi V.V., Mahajan R.L.. Thermophysical properties of high porosity metal foams[J]. International Journal of Heat and Mass Transfer, 2002, 45(5): 1017- 1031
    [35]Bhattacharya A., Mahajan R.L.. Finned Metal Foam Heat Sinks for Electronics Cooling in Forced Convection[J]. ASME Journal of Electronic Packaging, 2002, 124(3): 155-163
    [36]Antohe B.V., Lage J.L., Price D.C., et al. Numerical characterization of micro heat exchangers using experimentally tested porous aluminum layers[J]. International Journal of Heat and Fluid Flow, 1996, 17(6): 594-603
    [37]Kim S.Y., Paek J.W., Kang B.H.. Flow and heat transfer correlations for porous fin in a plate-fin heat exchanger[J]. ASME Journal of Heat Transfer, 2000, 122(3): 572-578
    [38]Boomsma K., Poulikakos D.. The effects of compression and pore size variations on the liquid flow characteristics in metal foams[J]. ASME Journal of Fluids Engineering, 2002(1), 124: 263-272.
    [39]Boomsma K., Poulikakos D., Zwick F.. Metal foams as compact high performance heat exchangers[J]. Mechanics of Materials, 2003, 35(12): 1161-1176
    [40]Hsieh W.H., Wu J.Y., Shih W.H., et al. Experimental investigation of heat-transfer characteristics of aluminum-foam heat sinks[J]. International Journal Heat and Mass Transfer, 2004, 47(23): 5149-5157
    [41]Shih W.H., Chiu W.C., Hsieh W.H.. Height Effect on Heat-Transfer Characteristics of Aluminum-Foam Heat Sinks[J]. ASME Journal of Heat Transfer, 2006, 128(6): 530-537
    [42]Tzeng S.C., Jeng T.M.. Numerical study of confined slot jet impinging on porous metallic foam heat sink[J]. International Journal of Heat and Mass Transfer, 2005, 48(23-24): 4685-4694
    [43]Lu W., Zhao C.Y., Tassou S.A., et al. Thermal analysis on metal-foam filled heat exchangers. Part I:Metal-foam filled pipes[J]. International Journal of Heat and Mass Transfer, 2006, 49(15-16): 2751-2761 [44Salas K. I., Waas A. M.. Convective heat transfer in open cell metal foams[J]. ASME Journal of Heat Transfer, 2007, 129(9): 1217-1229
    [45]Mahjoob S., Vafai K.. A synthesis of fluid and thermal transport models for metal foam heat exchangers[J]. International Journal of Heat and Mass Transfer, 2008, 51(15-16): 3701-3711
    [46]王晓鲁,姜培学,单彧垚.泡沫金属与板翅结构强化换热研究[J].工程热物理学报, 2008, 29(1): 121-123
    [47]邱海平,施明恒.泡沫铝翅片传热和流动特性的实验研究[J].工程热物理学报, 2005, 26(6): 1016-1018
    [48]汪双凤,李炅,张伟保.开孔泡沫金属用于紧凑型热交换器的研究进展[J].化工进展, 2008, 27(5): 675-678
    [49]陆威,赵长颖,屈治国.金属泡沫填充水平圆管内单相对流换热研究[J].工程热物理学报, 2008, 29(11): 1895-1897
    [50]胥蕊娜,姜培学.流体在微多孔介质内对流换热实验研究[J].工程热物理学报, 2008, 29(8):1377-1379
    [51]胥蕊娜,姜培学,李勐,等.微细多孔介质中流动及换热实验研究[J].工程热物理学报, 2006, 27(1): 103-105
    [52]胥蕊娜,姜培学,宫伟.微细多孔介质中对流换热实验研究[J].工程热物理学报, 2006, 27(5): 823-825
    [53]胥蕊娜,姜培学.微细板翅与烧结多孔结构中对流换热实验研究[J].工程热物理学报, 2004, 25(2): 275-277
    [54]Yang Y.T., Hwang M.L.. Numerical simulation of turbulent fluid flow and heat transfer characteristics in heat exchangers fitted with porous media[J]. International Journal of Heat and Mass Transfer, 2009, 52(13-14): 2956-2965
    [55]Hetsroni G., Gurevich M., Rozenblit R.. Sintered porous medium heat sink for cooling of high-power mini-devices[J]. International Journal of Heat and Fluid Flow, 2006, 27(2): 259-266
    [56]Hsieh W.H., Lu S.F.. Heat-transfer analysis and thermal dispersion in thermally developing region of a sintered porous metal channel[J]. International Journal of Heat andMass Transfer, 2000, 43(16): 3001-3011
    [57]Tzeng S.C., Ma W.P.. Experimental investigation of heat transfer in sintered porous heat sink[J]. International Communications in Heat and Mass Transfer, 2004, 31(6): 827-836
    [58]Tzeng S.C., Jywe W.Y., Lin C.W., et al. Mixed convective heat-transfers in a porous channel with sintered copper beads[J]. Applied Energy, 2005, 81(1): 19-31
    [59]Jang J.Y., Chiu Y.W.. 3-D Transient conjugated heat transfer and fluid flow analysis for the cooling process of sintered bed[J]. Applied Thermal Engineering, 2009, 29(14-15):2895-2903
    [60]Jiang P. X., Wang Z., Ren Z.P. et al. Experimental Research of Fluid Flow and Convection Heat Transfer in Plate Channels Filled with Glass or Metallic Particles[J]. Experimental Thermal and Fluid Science, 1999, 20(1): 45-54
    [61]Jiang P.X., Li M., Lu T.J., et al. Experimental research on convection heat transfer in sintered porous plate channels[J]. International Journal of Heat and Mass Transfer, 2004, 47(11): 2085-2096
    [62]Jiang P.X., Lu X.C.. Numerical simulation of fluid flow and convection heat transfer in sintered porous plate channels[J]. International Journal of Heat and Mass Transfer, 2006, 49(9-10): 1685-1695
    [63]李勐,姜培学,余磊,等.流体在烧结多孔槽道中对流换热的实验研究[J].工程热物理学报, 2003, 24(6): 1016-1018
    [64]胥蕊娜,姜培学,赵陈儒,等.流体在微细多孔介质中的流动阻力研究[J].工程热物理学报, 2007, 28(5): 841-843
    [65]姜培学,李勐,马永旭,等.微型换热器的实验研究.压力容器[J]. 2003, 20(2): 8-12
    [66]刘阿龙,徐宏,王学生,等.换热器用烧结型复合粉末多孔涂层管研究[J].压力容器, 2006, 23(8): 17-20
    [67] IMM company, http://www.imm-mainz.de.
    [68]Holladay J.D., Wang Y., Jones E.. Review of developments in portable hydrogen production using microreactor technology[J]. Chemical Reviews, 2004, 104(10): 4767-4789
    [69]Rajurkar K.P., Levy G., Malshe A., et al. Micro and nano machining by electro-physical and chemical processes[J]. Annals of the CIRP, 2006, 55(2): 643-666
    [70]潘敏强.基于流速分布优化的制氢反应微通道加工及性能研究[D].广州:华南理工大学, 2007
    [71]Gavriilidis A., Angeli P., Cao E., et al. Technology and applications of microengineered reactors[J]. Chemical Engineering Research and Design, 2002, 80(1): 3-30
    [72]Ehrfeld W., Hessel V., L?we H..微反应器-现代化学中的新技术[M].骆广生,王玉军.第1版.北京:化学工业出版社, 2004: 222-223
    [73]刘刚,田扬超,张新夷. LIGA技术制作微反应器的研究[J].微细加工技术, 2002,(2): 68-71
    [74]孔祥东,张玉林,宋会英. LIGA工艺的发展及应用[J].微纳电子技术, 2004, 41(5): 13-18
    [75]罗怡,王晓东,刘冲,等.一种新型微流控芯片金属热压模具的制作工艺研究[J].中国机械工程, 2005, 16(17): 1505-1507
    [76]吕春华,殷学锋,刘东元,等.高深宽比SU-8微结构的简易加工技术[J].浙江大学学报(工学版), 2006, 40(8): 1289-1292
    [77]Lorenz H., Despont M., Fahrni N., et al. High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS[J]. Sensors and Actuators A, 1998, 64(1): 33-39
    [78]Kupka R.K., Bouamrane F., Cremers C., et al. Microfabrication: LIGA-X and applications[J]. Applied Surface Science, 2000, 164(1-4): 97-110
    [79]Choi I., Kim Y., Yi J.. Fabrication of hierarchical micro/nanostructures via scanning probe lithography and wet chemical etching[J]. Ultramicroscopy, 2008, 108(10): 1205-1209
    [80]Wu H.Y., Cheng P.. Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios[J]. International Journal of Heat and Mass Transfer, 2003, 46(14): 2519-2525
    [81]Rangelow I.W.. Dry etching-based silicon micro-machining for MEMS[J]. 2001, 62(2-3) 279-291
    [82]Marty F., Rousseau L., Saadany B., et al. Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro- and nanostructures[J]. Microelectronics Journal, 2005, 36(7): 673-677
    [83]Fu L., Miao J.M., Li X.X., et al. Study of deep silicon etching for micro-gyroscope fabrication[J]. Applied Surface Science, 2001, 177(1-2): 78-84
    [84]王振龙.微细加工技术[M].北京:国防工业出版社, 2005:58-65 85]Lu Z., Yoneyama T.. Micro cutting in the micro lathe turning system[J]. International Journal of Machine Tools & Manufacture, 1999, 39(7): 1171-1183
    [86]Hung J.C., Yang T.C., Li K.C.. Studies on the fabrication of metallic bipolar plates-Using micro electrical discharge machining milling[J]. Journal of Power Sources, 2011,196(4): 2070-2074
    [87]Wang S.C., Lee C.Y., Chen H.P.. Thermoplastic microchannel fabrication using carbon dioxide laser ablation[J]. Journal of Chromatography A, 2006, 1111(2): 252-257
    [88]王宏伟,李庆芬,李智,等.铸造法制备泡沫金属材料[J].铸造技术, 2007,28(9): 1257- 1261
    [89]刘培生,黄林国.多孔金属材料制备方法[J].功能材料, 2002, 33(1): 5-11
    [90]张伟开,李乃哲,何德坪.渗流法制备高孔隙率多孔铝[J].中国有色金属学报, 2005, 15(8): 1248-1252
    [91]Despois J.F., Marmottant A., Salvo L., et al. Influence of the infiltration pressure on the structure and properties of replicated aluminium foams[J]. Materials Science and Engineering A, 2007, 462(1-2): 68-75
    [92]王录才,陈新,柴跃生,等.熔模铸造法通孔泡沫铝制备工艺的研究[J].铸造, 1999, (1): 8-10
    [93]Brannan J.R., Bean A.S.,Vaccaro A.J., et al. Continuous electroplating of conductie foams[P]. U.S. Patent:5098554, 1992
    [94] Inco Ltd.. Product data sheet of‘‘Incofoam’’. http://www.inco.com, 1998
    [95]乔吉超,奚正平,汤慧萍,等.粉末冶金技术制备金属多孔材料研究进展[J].稀有金属材料与工程. 2008, 37(11): 2054-2058
    [96]Bansiddhi A., Dunand D.C.. Shape-memory NiTi foams produced by replication of NaCl space-holders[J]. Acta Biomaterialia, 2008 4(6): 1996-2007
    [97]Minnear W.P., Bewlay B.P.. Method of forming porous bodies of molybdenum or tungsten[P]. U.S. Patent: 5213612, 1993
    [98]Jiang B., Zhao N.Q., Shi C.S., et al. A novel method for making open cell aluminum foams by powder sintering process[J]. Materials Letters. 2005, 59(26): 3333-3336
    [99]Zhang E.,Wang B.. On the compressive behaviour of sintered porous coppers with low to medium porosities-Part I:Experimental study[J]. International Journal of Mechanical Sciences, 2005, 47(4-5): 744-756
    [100]Halil I., Bakan.. A novel water leaching and sintering process for manufacturing highly porous stainless steel[J]. Scripta Materialia, 2006, 55(2): 203-206
    [101]Liu P.S., Yu B., Hu A.M., et al. Techinques for preparation of porous metals[J]. Journal of Materials Science & Technology, 2002, 18(4): 299-305
    [102]Nakayama W., Daikoku T., Kuwahara H., Nakajima T.. Dynamic model of enhanced boiling heat transfer on porous surfaces part I: experimental investigation[J]. ASME Journal of Heat Transfer, 1980, 102(3): 445-450
    [103]Nakayama W., Daikoku T., Nakajima T.. Effects of pore diameters and system pressure on saturated pool nucleate boiling heat transfer from porous surfaces[J]. ASME Journal of Heat Transfer, 1982, 104(2): 286-291
    [104]Ramaswamy C., Joshi Y., Nakayama W., et al. Thermal performance of a compact two-phase thermosyphon: response to evaporator confinement and transient loads[J]. Journal of Enhanced Heat Transfer, 1999, 6(2-4): 279-288
    [105]Ramaswamy C., Joshi Y., Nakayama W., et al. Semi-analytical model for boiling from enhanced structures[J]. International Journal of Heat and Mass Transfer, 2003, 46(22): 4257-4269
    [106]Ramaswamy C., Joshi Y., Nakayama W., et al. Effects of varying geometrical parameters on boiling from microfabricated enhanced structures[J]. ASME Journal of Heat Transfer, 2003, 125(1): 103-109
    [107]Ramaswamy C., Joshi Y., Nakayama W., et al. High-speed visualization of boiling from an enhanced structure[J]. International Journal of Heat and Mass Transfer, 2002, 45(24): 4761-4771
    [108]Murthy S.S., Joshi Y.K., Nakayama W.. Single chamber compact two-phase heat spreaders with microfabricated boiling enhancement structures[J]. IEEE Trans Compon Packag Technol, 2002, 25(1): 156–163.
    [109]Murthy S., Joshi Y., Gurrum S., et al. Enhanced boiling heat transfer simulation from structured surfaces:Semi-analytical model[J]. International Journal of Heat and Mass Transfer, 2006, 49(11-12): 1885-1895
    [110]Ghiu C.D., Joshi Y.K.. Visualization study of pool boiling from thin confined enhanced structures[J]. International Journal of Heat and Mass Transfer, 2005, 48(21-22): 4287-4299.
    [111]Ghiu C.D., Joshi Y.K.. Boiling Performance of single- layered enhanced structures[J]. International Journal of Heat and Mass Transfer, 2005, 127(7): 675-683
    [112]Pal A., Joshi Y.K., Beitelmal M.H., et al. Design and performance evaluation of a compact thermosyphon[J]. IEEE Transactions of Components and Packaging Technologies, 2002, 25(4): 601-607
    [113]Launay S., Fedorov A.G., Joshi Y., et al. Hybrid micro-nano structured thermal interfaces for pool boiling heat transfer enhancement[J]. Microelectronics Journal, 2006, 37(11): 1158-1164
    [114]Ngai S., Leontiev A.I., Lloyd J.R., et al. Creation of nano-scaled surface structure for the enhancement of boiling heat transfer[A]. IMECE 2004, Anaheim, 2004: 331-339
    [115]Pan M.Q., Li J.h., Tang Y.. Development of high-aspect-ratio microchannel heatexchanger based on multi-tool milling process. Journal of Central South University of Technology, 2008, 15(2): 228-234
    [116]曾志新,吕明,轧刚,等.机械制造技术基础[M].武汉:武汉理工大学出版社, 2007
    [117]Aramcharoen A., Mativenga P.T.. Size effect and tool geometry in micromilling of tool steel[J]. Precision Engineering, 2009, 33(4): 402-407
    [118]Lee K., Dornfeld D.A.. Micro-burr formation and minimization through process control[J]. Precision Engineering, 2005, 29(2): 246-252
    [119]Schaller T., Bohn L., Mayer J., Schubert K.. Microstructure grooves with a width of less than 50 mm cut with ground hard metal micro end mills[J]. Precision Engineering, 1999, 23(4): 229-235
    [120]Aurich J.C., Dornfeld D., Arrazola P.J., et al. Burrs-Analysis, control and removal[J]. CIRP Annal-Manufacturing Technology, 2009, 58(2): 519-542
    [121]Chern G.L.. Experimental observation and analysis of burr formation mechanisms in face milling of aluminum alloys[J]. International Journal of Machine Tools & Manufacture, 2006, 46(12-13): 1517-1525
    [122]Ballou J.R., Joshi S.S., DeVor R.E., et al. Burr formation in drilling intersecting holes with machinable austempered ductile iron(MADITM)[J]. Journal of Manufacturing Processes, 2007, 9(1): 35-46
    [123]Silva L.C.D., Melo A.C.A.D., Machado A.R., et al. Application of factorial design for studying the burr behaviour during face milling of motor engine blocks[J]. Journal of Materials Processing Technology, 2006, 179(1-3): 154-160
    [124]Gillespie L.K., Blotter P.T.. The formation and properties of machining burrs[J]. ASME Journal of Engineering for Industry, 1976, 98(1): 66-74
    [125]Hashimura M., Hassamontr J., Dornfeld D.A.. Effect of in-plane exit angle and rake angles on burr height and thickness in face milling operation[J]. Journal of Manufacturing Science and Engineering, 1999, 121(1): 13-19
    [126]Nakayama K., Arai M.. Burr Formation in Metal Cutting[J]. CIRP Annals, 1987, 36(1): 33-36
    [127]Chu C.H., Dornfeld D.. Geometric approaches for reducing burr formation in planar milling by avoiding tool exits[J]. Journal of Manufacturing Processes, 2005, 7(2): 182-195
    [128]Lin T.R.. Experimental study of burr formation and tool chipping in the face milling of stainless steel[J]. Journal of Materials Processing Technology, 2000, 108(1): 12-20
    [129]Tang Y., He Z.S., Pan M.Q, et al. Ring-shaped microchannel heat exchanger based on turning process[J]. Experimental Thermal and Fluid Science, 2010, 34(8): 1398-1402
    [130]Armarego E.J.A.. Machining with double cutting edge tools-I. Symmetrical triangular cuts[J]. International Journal of Machine Tool Design and Research.1967, 7(1): 23-37
    [131]Luk W.K.. The mechanics of symmetrical vee form tool cutting[J]. International Journal of Machine Tool Design and Research. 1969, 9(1): 17-38
    [132]Luk W.K.. The mechanics of symmetrical circular form tool cutting[J]. International Journal of Machine Tool Design and Research. 1970, 10(2): 293-303
    [133]夏伟,周泽华.矩形槽切削的切削力及切屑横向变形的研究[J].华南工学院学报. 1987, 15(4): 18-32
    [134]夏伟,李元元,周泽华.梯形槽切削的切削力数学模型[J].华南理工大学学报, 1997, 25(3): 7-11
    [135]乔端,钱仁根.非线性有限元法及其在塑性加工中的应用[M].北京:冶金工业出版社, 1990
    [136]孙菊芳.有限元法及其应用(第一版)[M].北京:北京航空航天大学出版社, 1990
    [137]Klamecki B.E.. Incipient chip formation in metal cutting-a three dimension finite element analysis[D]. Urbana: University of Illinois, 1973
    [138]Wen Q., Guo Y.B., Beth A.T.. An adaptive FEA method to predict surface quality in hard machining[J]. Journal of Materials Processing Technology, 2006, 173(1): 21-28
    [139]Liu X., Pen H., Chen T.. Effect of Different Edge Preparation on High Speed Turning Hardened Steel Process[J]. Materials Science Forum, 2006, 532-533(26): 412-415
    [140]Zhang L.. On the separation criteria in the simulation of orthogonal metal cutting using the finite element method[J]. Journal of Materials Processing Technology, 1999, 89-90: 273-278
    [141]Ng E.G., Aspinwall D.K., Brazil D., et al. Modeling of temperature and forces when orthogonally machining hardened steel[J]. International Journal of Machine Tools& Manufacture, 1999, 39(6):885-903
    [142]邓文君,夏伟,周照耀,等.正交切削高强耐磨铝青铜的有限元分析[J].机械工程学报, 2004, 40(3): 71-75
    [143]Aly M.F., Ng E., Veldhuis S.C., et al. Prediction of cutting forces in the micro-machining of silicon using a“hybrid molecular dynamic-finite element analysis”force model[J]. International Journal of Machine Tools & Manufacture, 2006, 46(14): 1727-1739
    [144]Liu K., Melkote S.N.. Finite element analysis of the influence of tool edge radius on size effect in orthogonal micro-cutting process[J]. International Journal of Mechanical Sciences,2007, 49(5): 650-660
    [145]Subbiah S., Melkote S.N.. Effect of finite edge radius on ductile fracture ahead of the cutting tool edge in micro-cutting of Al2024-T3[J]. Materials Science and Engineering A, 2008, 474(1-2): 283-300
    [146]Mkaddem A., Demirci I., Mansori M.E.. A micro-macro combined approach using FEM for modelling of machining of FRP composites: Cutting forces analysis[J]. Composites Science and Technology, 2008, 68(15-16): 3123-3127
    [147]Afazov S.M., Ratchev S.M., Segal J.. Modelling and simulation of micro-milling cutting forces[J]. Journal of Materials Processing Technology, 2010, 210(15): 2154-2162
    [148]Lai X.M., Li H.T., Li C.F., et al. Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness[J]. International Journal of Machine Tools & Manufacture, 2008, 48(1): 1-14
    [149]王勖成,邵敏.有限单元法基本原理和数值方法(第二版)[M].北京:清华大学出版社, 1997
    [150]向建化.大功率LED微小型相变热沉制造及性能研究[D].广州:华南理工大学, 2010
    [151]Shamasunder S., Tseng A.A., Aung W., et al. Numerical and experimental study of the thermal behavior of coining and upsetting processes[J]. Journal of materials processing technology, 1993, 36(2): 199-221
    [152]陆龙生.管式均热板多孔壁面沟槽复合毛细吸液芯成形机理研究[D].华南理工大学博士学位论文, 2009
    [153]李勇.沟槽式微热管内壁轴向齿槽钢球高速旋压成形方法研究[D].广州:华南理工大学, 2008
    [154]周泽华主编.金属切削理论[M].北京:机械工业出版社, 1992
    [155]周泽华,于启勋.金属切削原理(第二版)[M].上海:上海科学技术出版社, 1993
    [156]Bromley B., Hessel V., Renken A., et al.“Sandwich reactor”for heterogeneous catalytic processes: N2O decomposition as a case study[J]. Chemical Engineering&Technology, 2008, 31(8): 1162-1169
    [157]Rahli O., Tadrist L., Miscevic M., et al. Fluid flow through randomly packed monodisperse fibers: the kozeny-carman parameter analysis[J]. ASME Journal of Fluids Engineering, 1997, 119(3): 188-192
    [158]Lacroix M., Nguyen P., Schweich D., et al. Pressure drop measurements and modeling on SiC foams[J]. Chemical Engineering Science, 2007, 62(12): 3259-3267
    [159]Richardson J.T., Peng Y., Remue D.. Properties of ceramic foam catalyst supports:pressure drop[J]. Applied Catalysis A:General, 2000, 204(1): 19-32
    [160]任泽霈.对流换热[M].北京:高等教育出版社, 1998: 265-266