刚性弹体对混凝土靶的侵彻与贯穿机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用理论分析、试验研究和数值仿真三者相结合的方法重点开展了刚性弹体对混凝土靶、钢筋混凝土靶的垂直侵彻机理以及对混凝土靶的斜侵彻和正、斜贯穿机理的研究。
     本文的主要研究内容及结论包括:
     1)对刚性弹体垂直侵彻半无限厚混凝土靶进行了研究。假设混凝土靶粉碎(塑性)区介质的破坏服从Griffith强度理论,建立了基于Griffith强度理论的静态和动态空腔膨胀模型,从而发展了弹体垂直侵彻混凝土靶的理论模型,并通过已有的试验进行了验证;开展了动能弹垂直侵彻混凝土靶的试验研究;以试验为基础,建立了相应的仿真模型;试验和仿真两者相结合验证了基于Griffith强度理论的侵彻模型的可靠性。
     2)对刚性弹体垂直侵彻半无限厚钢筋混凝土靶进行了研究。分析了试验后钢筋的破坏特征,将其破坏简化为弯曲+剪切断裂和弯曲+端部拉伸断裂这两种结构响应模式,并采用梁断裂失效理论就弹体从配筋网眼中心穿过时,钢筋对弹体的直接阻力进行了分析;结合基于Griffith强度理论的、侵彻混凝土介质的阻力模型,建立了刚性弹体垂直侵彻钢筋混凝土靶的差分计算模型,并通过已有的试验进行了验证;开展了动能弹垂直侵彻钢筋混凝土靶的试验研究,将获取的侵彻深度、侵彻速度、侵彻过载时间历程曲线与理论计算进行了对比,结果表明:钢筋只对弹体的侵彻过程产生局部影响,混凝土介质的抗侵彻阻力仍是钢筋混凝土介质抗侵彻阻力的主要组成部分。
     3)对刚性弹体斜侵彻半无限厚混凝土靶进行了研究。提出了以弹体的姿态和假想水平面的几何关系为基础,对不同时刻弹体实际受力表面的范围进行判断的方法,拓展了弹体受力表面的等分方法,从而将弹体受力表面离散成一系列的微元面,并给出了受力微元面的起始点的轴向、环向坐标分量的累加范围,根据弹体的姿态和靶板水平面的几何关系,得到了球心至球体弹性区外表面(靶板水平面)的尺度的计算方法,给出了受靶板自由表面(靶板水平面)影响的受力微元面的起始点的轴向和环向坐标分量的取值范围,从而引入有限球体空腔膨胀理论,得到了作用在弹体受力微元面上的修正法向应力的计算方法,将弹体受力表面复杂的阻力、阻力矩积分过程转化为受力微元面的阻力、阻力矩的累加求和,并结合以时间为增量的平面运动差分方程,建立了适用于工程计算的、弹体(半球头弹和卵形弹)斜侵彻混凝土靶的差分计算模型;开展了动能弹斜侵彻混凝土靶的试验研究,验证了理论模型的可靠性。
     4)对刚性弹体贯穿有限厚混凝土靶进行了研究。在任意头形弹侵彻阻力的基础上,引入有限球体空腔膨胀理论,建立了任意头形弹修正侵彻阻力的计算方法,在修正弹道极限速度法和基于有限球体空腔膨胀理论的受力面积缩减法的基础上,建立了弹体垂直贯穿混凝土靶的差分计算模型;根据弹体的姿态和靶板两自由表面(靶板水平面和背表面)的几何关系,给出了球心至球体弹性区外表面(靶板两自由表面)的尺度的计算方法,从而引入有限球体空腔膨胀理论,得到了作用在弹体受力微元面上的修正法向应力的计算方法,以弹体垂直贯穿靶板的受力面积缩减法为基础,给出了其斜贯穿靶板时的受力面积缩减法,并结合弹体斜侵彻过程的差分计算模型,建立了刚性弹体(半球头弹和卵形弹)斜贯穿混凝土靶的差分计算模型;构建了动能弹斜贯穿混凝土靶的多组有限元模型,理论计算和仿真结果吻合得较好。
In this dissertation, the normal penetration of rigid projectile into the concrete target and reinforced concrete target, the oblique penetration, normal and oblique perforation of rigid projectile into the concrete target were studied by using the analytical model, experimental research and numerical simulation.
     The primal contents and conclusion in this dissertation are as follows:
     1) The process of normal penetration of the rigid projectile into the semi-infinite thick concrete target was studied. The concrete material in the comminuted region (plastic region) was supposed to be described by the Griffith strength theory. On the basis of the Griffith strength theory, the corresponding static and dynamic cavity expansion models were established. Based on the dynamic cavity expansion theory, the analytical model of normal penetration of a rigid projectile into a concrete target was developed. The validation of this analytical model was done through a comparison of results from the analytical model with the experimental results published in the literature. The normal penetration experiments into the concrete targets were conducted with the kinetic projectiles. The corresponding finite element simulation models were also constructed. The predictions from the analytical model which was based on the Griffith strength theory are in agreement with the results form experiments and simulations.
     2) The process of normal penetration of the rigid projectile into the semi-infinite thick reinforced concrete target was studied. The post-test failure characters of the steel bars were analyzed. Two structure response models:bending plus shearing failure and bending plus end tension fracture were used to simplify the failure models of the steel bars. On the basis of the failure theory of beam, the direct resistance of steel bar for the process of the projectile passes through the middle of the reinforcement was analyzed. The difference computational model for normal penetration into the reinforced concrete target was developed based the normal penetration resistance model for the concrete material which was supposed to be described by the Griffith strength theory. The validation of this computational model was done through a comparison of results from the computational model with the experimental results published in the literature. The normal penetration experiments into the reinforced concrete targets were conducted with the kinetic projectiles. The predictions from the analytical model were compared with the post-test penetration depth-time history, penetration velocity-time history and penetration deceleration-time history. Comparative results show that the influence of steel bar is local for the penetration process. The penetration resistance of concrete material is the main component of the penetration resistance of the reinforced concrete medium.
     3) The process of oblique penetration of the rigid projectile into the semi-infinite thick concrete target was studied. Based on the geometric relation between the projectile attitude and the fictitious horizontal plane, the actual dimension of the projectile stress surface at different time was analyzed. The projectile stress surface was partitioned into a series of element sides by using the method which was developed from the equal division method for the projectile stress surface. With this method, the accumulating ranges of the axial and circumferential coordinate of the starting points of the element sides were obtained. The analytical model of the distance from the spherical centre to the elastic region superficies externals of the finite sphere (the horizontal plane of the target) was developed based on the geometry relation between the projectile attitude and the horizontal plane of the target. The value ranges of the axial and circumferential coordinate of the starting points of the element sides which were affected by the free surface of the target (the horizontal plane of the target) were obtained. The analytical model of the modified radial Cauchy stress component over the element side of the projectile stress surface was derived by introducing the finite spherical cavity expansion theory. The transformation method for the integral models of the resistance and resistance torque over the projectile stress surface and the accumulation models of the resistance and resistance moment over the element sides was analyzed. On the basis of the planar motion difference equation using the time as increment, the difference engineering computational model for the oblique penetration into the concrete target with the projectile (hemi-spherical nose projectile and ogive-nose projectile) was developed. The experiments of oblique penetration of the kinetic projectiles into the concrete targets were conducted. The predictions from the difference engineering computational model are in agreement with the results from experiments.
     4) The perforation process of the rigid projectile into the finite thick concrete target was studied. Based on the penetration resistance theory for arbitrary nosed projectile, the analytical model of penetration resistance was developed by introducing the finite spherical cavity expansion theory. The difference computational models for the normal perforation process were developed based on the modified ballistic limit velocity theory and the analytical model of reducing stress surface which was based on the finite spherical cavity expansion theory. The analytical model of the distance from the spherical centre to the elastic region superficies externals of the finite sphere (the two free surfaces of the target) was developed based on the geometry relation between the projectile attitude and the two free surfaces of the target (the horizontal plane and rear surface of the target). The computational model of the modified radial Cauchy stress component over the element side of the projectile stress surface was also derived by introducing the finite spherical cavity expansion theory. The analytical model of the reducing stress surface for the oblique perforation concrete target with projectile was developed based on the reducing stress surface model for the normal perforation process. On the basis of the difference computational model for oblique penetration process, the difference computational model for the oblique perforation of concrete target by the projectile (hemi-spherical nose projectile and ogive-nose projectile) was developed. Multi-group finite element models of the concrete targets subjected to projectiles perforation at different oblique angles were constructed. The predictions from the difference computational model for the oblique perforation process are in agreement with the results from simulations.
引文
[1]王浩.高速钻地弹的研究现状和发展趋势.南京理工大学动力学院第四届青年学者学术交流会论文集,2003
    [2]欧阳春.刚性弹丸对钢筋混凝土介质的侵彻机理.南京理工大学博士论文,2004
    [3]王树有.串连侵彻战斗部对钢筋混凝土介质的侵彻机理.南京理工大学博士论文,2006
    [4]陈小伟,金建明.动能深侵彻弹的力学设计(Ⅱ):弹靶的相关力学分析与实例.爆炸与冲击.2006,26(1):71-78
    [5]过镇海,时旭东.钢筋混凝土原理和分析.北京:清华大学出版社,2003
    [6]孙岩.含密排钢玉球钢纤维混凝土遮弹层抗侵彻特性的初步研究.国防科学技术大学硕士论文,2003
    [7]刘永胜.钢纤维混凝土力学性能和抗侵彻机理研究.中国科学技术大学博士论文,2006
    [8]唐德高,贺虎臣,陈向欣,等.钢玉块石混凝土抗弹丸侵彻效应试验研究.振动与冲击.2005,24(6):37-39
    [9]王明洋,刘小斌,钱七虎.弹体在含钢球的钢纤维混凝土介质中侵彻深度工程计算模型.兵工学报.2002,23(1):14-18
    [10]金丰年,刘黎,张丽萍,等.深钻地武器的发展及其侵彻.解放军理工大学学报(自然科学版).2002,3(2):34-40
    [11]朱建生.横向效应增强型侵彻体作用机理研究.南京理工大学博士论文,2008
    [12]何涛.动能弹在不同材料靶体中的侵彻行为研究.中国科学技术大学博士论文,2007
    [13]魏雪英.长杆弹侵彻问题的理论研究.西安交通大学博士论文,2002
    [14]Brown S J. Energy release protection for pressurized system. Part II:Review of studies into impact/terminal ballistics. Applied Mechanics Reviews.1986,39(2)
    [15]Teland J A. A review of empirical equations for missile impact effects on concrete. PB-98-170053,1998
    [16]Li Q M, Reid S R, Wen H M, et al. Local impact effects of hard missiles on concrete targets. International Journal of Impact Engineering.2005,32:224-284
    [17]Ben-Dor, G, Dubinsky A, Elperin T. Ballistic impact:recent advances in analytical modeling of plate penetration dynamics-a review. Applied Mechanics Reviews.2005,58: 355-371
    [18]文鹤鸣.混凝土靶板冲击响应的经验公式.爆炸与冲击.2003,23(3):267-274
    [19]Kennedy R P. A review of procedures for the analysis and design of concrete structures to resist missile impact effects. Nucl Eng Des.1976,37:183-203
    [20]Amirikian A. Design of protective structures. Report NT-3726. Bureau of Yards and Docks, Department of the Navy,1950
    [21]王儒策,赵国志.弹丸终点效应.北京:北京理工大学出版社,1991
    [22]Gwaltney R C. Missile generation and protection in light water-cooled reactor power plants. ORNL NSIC-22. Oak Ridge, TN:Oak Ridge National Laboratory,1968
    [23]Chelapati C V, Kennedy R P, Wall I B. Probabilistic assessment of hazard for nuclear structures. Nucl Eng Des.1972,19:333-364
    [24]Young C W. Penetration equations. SAND 97-2426
    [25]NDRC. Effects of impact and explosion. Summary Technical Report of Division 2, Vol.1, National Defence Research Committee, Washington, DC,1946
    [26]Kennedy R P. Effects of an aircraft crash into a concrete reactor containment building. Anaheim, CA:Holmes&Narver Inc.,1966
    [27]ESL-TR-87-57. Protective construction design manual. Florida:US Air Force Engineering Services Laboratory,1987
    [28]Forrestal M J, Altman B S, Cargile J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets. Int J Impact Engng.1994,15(4):395-405
    [29]Forrestal M J, Frew D J, Hanchak S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectile. Int J Impact Engng.1996,18(5):465-476
    [30]Frew D J Hanchak S J, Green M L, et al. Penetration of concrete targets with ogive-nose steel rods. Int J Impact Engng.1998,21(6):489-497
    [31]Forrestal M J, Frew D J, Hicherson J P, et al. Penetration of concrete targets with deceleration-time measurements. Int J Impact Engng.2003,28:479-497
    [32]Frew D J, Forrestal M J, Cargile J D. The effect of concrete target diameter on projectile deceleration and penetration depth. Int J Impact Engng.2006,32:1584-1594
    [33]Frew D J, Forrestal M J, Hanchak S J. Penetration experiments with limestone targets and ogive-nose projectiles. ASME J Appl Mech 2000.67:841-845
    [34]Forrestal M J, LUK V K. Penetration into soil targets. Int J Impact Engng.1992, 12(3):427-444
    [35]LI Q M, Chen X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile. Int J Impact Engng.2003,28:93-116
    [36]Chen X W, Li Q M. Deep penetration of non-deformable projectile with different geometrical characteristics, Int J Impact Engng.2002,27:619-637
    [37]Linderman R B, Fakhari M, Rotz J V. Design of Structures for missile impact. BC-TOP-9, Rev.l, Bechtel Power Corporation, San Francisco, July 1973
    [38]Sliter G E. Assessment of empirical concrete impact formulas. ASCE J Struct Div.1980, 106(ST5):1023-1045
    [39]Berriaud C, Sokolovsky A, Gueraud R, et al. Local behaviour of reinforced concrte walls under missile impact. Nucl Eng Des.1978,45:457-469
    [40]Reid S R, Wen H M. Predicting penetration, cone cracking, scabbing and perforation of reinforced concrete targets struck by flat-faced projectiles. UMIST Report ME/AM/02.01/TE/G/018507/Z,2001
    [41]武海军.弹体贯穿钢筋混凝土动态破坏实验研究及数值模拟.北京理工大学博士论文,2003
    [42]Heuze F E. An overview of projectile penetration into geological materials, with emphasis on rocks. Int J Rock Mech Min Sci& Geomech Abstr.1990,27(1):1-14
    [43]Amini H, Amini M, Sierakowski R L. Earth penetration by solid impactors. Shock Vibration Digest.1986,18:15-22
    [44]曹德青.钢筋混凝土侵彻数值模拟研究.北京理工大学博士论文,2000
    [45]李清献.射弹对混凝土侵彻深度的计算研究.西南交通大学硕士论文,2001
    [46]孙宇新.混凝土抗贯穿问题研究.中国科学技术大学博士论文,2002
    [47]Bishop R F, Hill R, Mott N F. The theory of indentation and hardness. Proceedings of the Physical Society.1945,57:147-159
    [48]Goodier J N. On the mechanics of indentation and cratering in the solid targets of strain-hardening metal by impact of hard and soft spheres. Proceedings of the 7th Symposium on Hypervelocity Impact Ⅲ.1965:215-259
    [49]Hill R. A theory of earth movement near a deep underground explosion. Memo No. 21-48, Armanment Research Establishment, Fort Halstead, Kent, U.K.
    [50]Hill R. The Mathematical Theory of Plasticity. Oxford University Press, London
    [51]Hopkins H G. Dynamic expansion of spherical cavities in metals. In Progress in Solid Mechanics, Vol.1, ChapterⅢ, eds. I. N. Sneddon and R. Hill. North-Holland Publishing Company, Amsterdam, New York
    [52]Chadwick P. The quasi-static expansion of a spherical cavity in metals and ideal soil. Quart. Journ Mech and Applied Math.1959, Vol.7
    [53]Hunter S C, Crozier R J M. Similarity solution for the rapid uniform expansion of a spherical cavity in a compressible elastic-plastic solid. Quart. Journ Mech and Applied Math.1968.Vol.ⅩⅪ
    [54]Ross B. Hanagud S. Report 700-452-4. Stanford Research Institute. Mento Park, California,1969
    [55]Norwood F R. Cylindrical cavity expansion in a locking soil. SLA-74-0201, Sandia Lab., 1974
    [56]Butler D K. An analytical study of projectile penetration in rock. US Army Waterways Experiment Station, Vicksburg, Misc. Paper S-75-7 AD-A012140,1975
    [57]Rohani B. Analysis of projectile penetration into concrete and rock targets, US Army Waterways Experiment Station, Vicksburg, Misc. Paper S-75-25 AD-A 016909,1975
    [58]Forrestal M J, Longcope D B. A model to estimate forces on conical penetrators into dry porous rock. Journal of Applied Mechanics.1981,48:25-29
    [59]Longcope D B, Forrestal M J. Closed-form approximations for forces on conical penetrators into dry porous rock. Journal of Applied Mechanics.1981,48:971-972
    [60]Longcope D B, Forrestal M J.Penetration of targets described by a mohr-coulomb failure criterion width a tension cutoff. Journal of Applied Mechanics.1983,50:327-333
    [61]Forrestal M J. Penetration into dry porous rock. Int. J. Solids Struct.1986, 22(12):1485-1500
    [62]LUK V K, Forrestal M J. Penetration into semi-infinite reinforced concrete targets with spherical and ogival nose projectiles. Int J Impact Engng.1987,6(4):291-301
    [63]LUK V K, Forrestal M J. Comment on "Penetration into semi-infinite reinforced concrete targets with spherical and ogival nose projectiles". Int J Impact Engng.1989, 8(1):83-84
    [64]Forrestal M J, LUK V K. Dynamic spherical cavity expansion in a compressible elastic-plastic solid. Journal of Applied Mechanics.1988,55:275-279
    [65]Forrestal M J, LUK V K, Brar N S. Perforation of aluminum armor plates with conical-nose projectiles. Mechanics of Materials.1990,10(1-2):97-105
    [66]LUK V K, Forrestal M J, Amos D E. Dynamic spherical cavity expansion of strain-hardening materials. Journal of Applied Mechanics.1991,58(1):334-340
    [67]LUK V K, Amos D E. Dynamic cylindrical cavity expansion of compressible strain-hardening materials. Transactions of the ASME.1991,58:334-340
    [68]Forrestal M J, Tzou D Y. A spherical cavity-expansion penetration model for concrete targets. Int J Solids Structures.1997,34(31-32):4127-4146
    [69]Satapathy S, Bless S. Calculation of penetration resistance of brittle materials using spherical cavity expansion analysis. Mechanics of Materials.1996,23:323-330
    [70]Satapathy S, Bless S. Cavity expansion resistance of brittle materials obeying a two-curve pressure-shear behavior. Journal of Applied Physics.2000,88(7):4004-4012
    [71]Satapathy S. Dynamic spherical cavity expansion in brittle ceramics. Int J Solids Structures.2001,38:5833-5845
    [72]王明洋,郑大亮,钱七虎.弹体对混凝土介质侵彻、贯穿的比例换算关系.爆炸与冲击.2004,24(2):108-114
    [73]王明洋,戎晓力,钱七虎,等.弹体在岩石中侵彻与贯穿计算原理.岩石力学与工程学报.2003,22(1):1811-1816
    [74]李建春.高速弹体对半无限厚混凝土板的侵彻研究.西安交通大学博士论文,2001
    [75]王延斌,张西前,俞茂宏,等.长杆弹对岩石靶的侵彻分析.岩石力学与工程学报.2005,24(8):1301-1307
    [76]王延斌,俞茂宏,林俊德.弹体垂直侵彻混凝土靶体的柱形空腔膨胀理论分析.西安交通大学学报.2004,38(8):303-307
    [77]Warren T L. The effect of strain rate on the dynamic expansion of cylindrical cavity. J Appl Mech. ASME.1999,66(3):818-821
    [78]Warren T L, Forrestal M J. Effects of strain hardening and strain-rate sensitivity on the penetration of aluminum targets with spherical-nosed rods. Int J Solids Structures.1998, 35(28-29):3737-3753
    [79]Macek R W, Duffey T A. Finite cavity expansion method for near-surface effects and layering during earth penetration. Int J Impact Engng.2000,24:239-258
    [80]Longcope D B. Coupled bending/lateral load modeling of earth penetrators. SAND90-0789. Sandia National Laboratories, Albuquerque, NM,1991
    [81]Longcope D B. Oblique penetration modeling and correlation with field test into soil target. SAND96-2239, Sandia National Laboratories, Albuquerque, NM,1996
    [82]Warren T L, Poormon K L. Penetration of 6061-T6511 aluminum targets by ogive-nosed VAR 4340 steel projectiles at oblique angles:experiments and simulations. Int J Impact Engng.2001,25:993-1022
    [83]Warren T L, Hanchak S J, Poormon K L. Penetration of limestone targets by ogive-nosed VAR 4340 steel projectiles at oblique angles:experiments and simulations. Int J Impact Engng.2004,30:1307-1331
    [84]何涛,文鹤鸣.球形弹对金属靶板侵彻问题的数值模拟.爆炸与冲击.2006,26(5):456-461
    [85]何涛,文鹤鸣.卵形钢弹对铝合金靶板侵彻问题的数值模拟.高压物理学报.2006, 20(4):408-414
    [86]蒋志刚,曾首义,周建平.刚性尖头弹侵彻有限厚度金属靶板分析模型.兵工学报.2007,28(8):923-929
    [87]蒋志刚,曾首义,周建平.中等厚度金属靶板的三阶段贯穿模型.兵工学报.2007,28(9):1046-1052
    [88]Amini A, Anderson J. Modeling of projectile penetration into geologic targets based on energy tracking and momentum impulse principles. Proceedings of the Sixth International Symposium on Interaction of Nonnuclear Munitions with Structures. May 1993
    [89]Yankelevsky D Z, Adin M A. A simplified analytical method for soil penetration analysis. Int J Num and Anal Methods in Geomech.1980,4(1):433-254
    [90]Forrestal M J, Luk V K, Watts H A. Penetration of reinforced concrete with ogive-nose penetrators. Int J Solids Structures.1988,24(1):77-87
    [91]李永池,孙宇新,胡秀章,等.混凝土靶抗贯穿的一种新工程分析方法.爆炸与冲击.2000,20(1):13-18
    [92]Alekseevskii V P. Penetration of rod into a target at a high velocity. Combustion, Explosion and Shock Waves.1966,2:63-66
    [93]Tate A. A theory for the deceleration of long rods after impact. J Mech Phys Solids.1967, 15:387-399
    [94]Tate A. Further results in the theory of long rod penetration. J Mech Phys Solids.1969, 17:141-150
    [95]Tate A. Long rod penetration models-part I. A flow field model for high speed long rod penetration. Int J Mech Sci.1986,28(8):535-548
    [96]Walker J D, Anderson, Jr C E. A time-dependent model for long-rod penetration. Int J Impact Engng.1995,16(1):19-48
    [97]Anderson, Jr C E, Walker J D. An examination of long-rod penetration. Int J Impact Engng.1991,11(4):481-501
    [98]Yarin A L, Rubin M B, Roisman I V. Penetration of a rigid projectile into an elastic-plastic target of finite thickness. Int J Impact Engng.1995,16:801-831
    [99]Roisman I V, Yarin A L, Rubin M B. Oblique penetration of rigid projectile into an elastic-plastic target, Int J Impact Engng.1997,19(9-10):769-795
    [100]Roisman I V, Weber K, Yarin A L, et al. Oblique penetration of a rigid projectile into a thick elastic-plastic target:theory and experiment. Int J Impact Engng.1999,22:707-726
    [101]Yossifon G, Rubin M B, Yarin A L. Penetration of rigid projectile into a finite thickness elastic-plastic target-comparison between theory and numerical computations. Int J Impact Engng.2001,25:265-290
    [102]Yossifon G, Yarin A L, Rubin M B. Penetration of a rigid projectile into a multi-layered target:theory and numerical computations. Int J Engng Sci.2002,40:1381-1401
    [103]王政.弹靶侵彻动态响应的理论和数值分析.复旦大学博士论文,2005
    [104]王政,倪玉山,曹菊珍.卵形头部刚性弹侵彻厚靶的半解析模型.爆炸与冲击.2004,24(3):212-218
    [105]周昌玉,贺小华.有限元分析的基本方法及工程应用.北京:化学工业出版社,2006
    [106]李维特,黄保海,毕仲波.热应力理论分析及应用.北京:中国电力出版社,2004
    [107]刘更,刘天祥,谢琴.无网格法及其应用.西安:西北工业大学出版社,2005
    [108]Liu G R, Liu M B著,韩旭,杨刚,强洪夫译.光滑粒子流体动力学-一种无网格法.湖南:湖南大学出版社,2006
    [109]Chen E P. Numerical simulation of perforation of concrete targets by steel rods. Advances in numerical simulation techniques for penetration and perforation of solids, ASME winter annual meeting,1993
    [110]Chen E P. Numerical simulation of dynamic fracture of concrete targets impacted by steel rods. Internal conference on fracture(eighth),1993
    [111]纪冲,龙源,万文乾.弹丸侵彻钢纤维混凝土数值模拟.解放军理工大学学报.2005,6(5):459-463
    [112]Tham C Y Numerical and empirical approach in predicting the penetration of a concrete target by an ogive-nosed projectile. Finite Elements in Analysis and Design.2006,42: 1258-1268
    [113]徐志宏,汤文辉,罗永.SPH算法在高速侵彻问题中的应用.国防科技大学学报.27(4):41-44
    [114]韩丽,高世桥,李明辉,等.弹丸垂直贯穿混凝土靶的数值研究.北京理工大学学报.2006,26(11):953-956
    [115]门建兵,隋树元,蒋建伟,等.网格对混凝土侵彻数值模拟的影响.北京理工大学学报.2005,25(8):659-662
    [116]马爱娥,黄风雷,李金柱,等.钢筋混凝土抗贯穿数值模拟.北京理工大学学报.2007,27(2):103-107
    [117]Sternberg J. Material properties determining the resistance of ceramics to high velocity penetration. Journal of Mech Phys Solids.1989,65(9):3417-3424
    [118]Forrestal M J, Longcope D B. Target strength of ceramic materials for high velocity penetration. Journal of Applied Physics.1990,67(8):3669-3672
    [119]魏雪英,俞茂宏.钨杆弹高速侵彻陶瓷靶的理论分析.兵工学报.2002,23(2):167-170
    [120]王延斌,李九红,魏雪英,等.高速钨杆弹对脆性靶体的侵彻分析.高压物理学报.2005,19(3):257-263
    [121]王延斌.基于统一强度理论的高速钨杆弹体侵彻陶瓷靶研究.爆炸与冲击.2004,24(6):534-540
    [122]Rosenberg Z. On the relation between the hugoniot elastic limit and the yield strength of brittle materials. J Appl Phys.1993,74(1):752-753
    [123]Forrestal M J, Frew D J, Hanchak S J, et al. Penetration of 6061-T651 aluminum targets with rigid long rods. J Appl Mech.1988,55:755-760
    [124]Rediel W, Thoma K, Hiermaier S. Numerical analysis using a new macroscopic concrete model for hydrocodes. Proceedings of 9th international symposium on interaction of the effects of munitions with structures.1999:315-322
    [125]王政,倪玉山,曹菊珍,等.冲击载荷下混凝土动态力学性能研究进展.爆炸与冲击,2005,26(6):519-527
    [126]Dancygier A N, Yankelevsky D Z, Jaegermann C. Response of high performance concrete plates to impact of deforming projectiles. Int Impact Engng.2007,34: 1768-1779
    [127]周宁,任辉启,沈兆武,等.侵彻钢筋混凝土过程中弹丸过载特性的实验研究.实验力学.2006,21(5):572-578
    [128]周宁,任辉启,沈兆武,等.弹丸侵彻混凝土和钢筋混凝土的实验.中国科学技术大学学报.2006,36(10):1021-1027
    [129]顾晓辉,王晓鸣,陈惠武,等.动能弹低速垂直侵彻钢筋混凝土试验研究.南京理工大学学报.2006,30(1):1-4
    [130]欧阳春,赵国志,杜忠华,等.弹丸垂直侵彻钢筋混凝土介质工程解析模型.爆炸与冲击.2004,24(3):273-277
    [131]周宁,任辉启,沈兆武,等.弹丸侵彻钢筋混凝土的工程解析模型.爆炸与冲击.2007,27(6):529-534
    [132]周宁,任辉启,沈兆武,等.卵形头部弹丸侵彻钢筋混凝土的工程解析模型.振动与冲击,2007,26(4):73-76
    [133]欧阳春,赵国志,李文彬,等.弹丸垂直侵彻钢筋混凝土的工程模型.弹箭与制导学报.2004,4:140-142
    [134]黄民荣,顾晓辉,高永宏.基于Griffith强度理论的空腔膨胀模型与应用研究.力 学与实践.2009,31(5):30-34
    [135]Menkes S B, Opat H J. Broken beams. Experimental Mecchanics,1973,13:480-486
    [136]马晓青,韩峰.高速碰撞动力学.北京:国防工业出版社,1998
    [137]Yu T X, Stronge W J. Large deflection of a rigid-plastic beam-on-foundation from impact. Int Impact Engng,1990,9(1):115-126
    [138]Forrestal M J, Hanchak S J. Perforation experiments on HY-100 steel plates with 4340 Rc38 and maraging T-250 steel rod projectiles. Int Impact Engng,1999,22:923-933
    [139]Wen H M, Reddy T Y, Reid S R. Deformation and failure of clamped beams under low speed impact loading. Int Impact Engng,1995,16(3):435-454
    [140]Liu J H, Jones N. Dynamic response of a rigid-plastic clamped beam strucked by a mass at any point on the span. J Solids and Structures,1988,24:251-270
    [141]Bernard R S, Creighton D C. Projectile penetration in soil and rock:analysis for non-normal impact. AD-A081044, December,1979,11-27
    [142]高世桥,刘杰明,谭惠民.侵彻弹倾斜侵彻半无限混凝土目标时的动力分析.兵工学报.1995,4:46-50
    [143]尹放林,王明洋,钱七虎,等.弹丸斜入射对侵彻深度的影响.爆炸与冲击.1998,18(1):69-76
    [144]张刚明,许沭华,王肖钧,等.细长弹在混凝土地面中斜侵彻过程的工程近似分析.弹道学报.1999,11(3):14-19
    [145]朱辉,曹桄,张士良,等.高等画法几何学.上海:上海科学技术出版社,1985
    [146]陈小伟,张方举,杨世全,等.动能深侵彻弹的力学设计(Ⅲ):缩比实验分析.爆炸与冲击,2006,26(2):105-114
    [147]Chen X W, Fan S C, Li Q M. Oblique and normal perforation of concrete targets by a rigid projectile. Int Impact Engng,2004,30:617-637
    [148]Li Q M, Tong D J. Perforation thickness and ballistic limit of concrete target subjected to rigid projectile impact. Journal of Engineering Mechanics,2003,129(9):1083-1091
    [149]路中华,钱立新,金建明.任意头形弹丸侵彻地质材料的理论分析模型.爆炸与冲击.2003,23(4):325-330
    [150]Hanchak S J, Forrestal M J, Young E R, et al. Perforation of concrete slabs with 48MPa and 140MPa unconfined compressive strength. International Journal of Impact Engineering,1992,12(1):1-7
    [151]Ben-Dor, G, Dubinsky A, Elperin T. Localized interaction models with non-constant friction for rigid penetrating impactors[J]. International Journal of Solids and Structures. 2007,44:2593-2607
    [152]Wen H M. Predicting the penetration and perforation of targets struck by projectiles at normal incidence. Mech Struct Mach,2002,30(4):543-577
    [153]陈小伟.杨云斌,路中华.带前舱物的钝头弹对金属靶的正穿甲分析.爆炸与冲击,2006,26(4):294-302
    [154]Holmquist T J, Johnson G R, Cook W H. A computational constitutive model for concrete to large strain, high strain rate, and high pressure.14th International Symposium Ballistics[C]. Quebec City, Canada:[s.n.],1993:591-600