钢管混凝土格构柱与桁拱轴力弯矩相关曲线研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢管混凝土格构柱与桁拱均属于空腹结构,由较小直径的钢管混凝土杆件与联结件组成,具有较大的抗弯刚度,得到了广泛的应用。但其设计计算理论还不完善。为此,本文对钢管混凝土格构柱和桁拱轴力弯矩相关曲线开展研究,主要研究工作如下:
     (1)引入连续化假定和缺陷杆有效轴压刚度,将钢管混凝土空腹结构等效成实腹杆结构进行有限元分析,并用FORTRAN语言编制了程序。在满足分析精度的同时,提高了钢管混凝土空腹结构有限元分析的效率。
     (2)进行了包括偏心受拉的钢管混凝土格构短柱极限承载力的试验研究和理论分析。研究表明,钢管混凝土格构柱轴力弯矩相关曲线必须考虑拉压不等强的特点,国内钢管混凝土设计规程(CECS 28:90、JCJ 01-89和DL/T 5085-1999)的有关算法存在不足之处。应用有限元程序进行了钢材和混凝土强度、含钢率、长细比等参数的分析,得到了钢管混凝土格构柱轴力弯矩相关曲线方程。分析了相关屈曲对钢管混凝土格构柱极限承载力的影响,提出了考虑相关屈曲影响的格构柱极限承载力的简化算法。
     (3)以钢管混凝土抛物线桁拱L/4截面的内力为名义内力,分析了其稳定系数的特点。得到其强度破坏和弹塑性失稳破坏的界限长细比,弹塑性失稳破坏和弹性失稳破坏的界限长细比,给出将钢管混凝土抛物线桁拱稳定系数按三段(强度破坏段、弹塑性失稳段和弹性失稳段)表示的表达式。提出了钢管混凝土桁拱的轴力弯矩相关曲线方程。分析了相关屈曲对钢管混凝土桁拱极限承载力的影响,提出了考虑相关屈曲影响的桁拱极限承载力的简化算法。
     (4)根据钢管混凝土格构柱的稳定系数和实际工程统计得到的格构柱回转半径与截面高度的关系,给出了偏于安全的钢管混凝土格构柱剪力表达式。讨论了钢管混凝土桁拱腹杆内力取值问题。将钢管混凝土格构柱考虑剪切柔度系数的稳定计算方法推广到钢管混凝土桁拱,得到了考虑剪切变形影响的钢管混凝土桁拱稳定极限承载力的计算方法。
Both of concrete filled steel tubular (CFST) laced columns and truss arches are cancelled structures, compositing of smaller diameter CFST member and connection members. They have great bending rigidity and are widely used in civil engineering. However, the design calculation theory for such structures is not mature. Therefore, researches on correlation curves between axial force and bending moment of CFST laced columns and truss arches are conducted in this paper. The main research works have been carried out as follow:
     1) Based on the continuous assumption and conception of efficient axial compressive rigidity, a simplified FEM was proposed, in which CFST cancelled structures was stimulated as solid bar structure and the correlation buckling of the structures was taken into account. Based on this FEM, a program was edited by FORTRAN language, which improves the computation efficiency with enough precise analysis results.
     2) Experimental and theoretical research on correlation curves between axial force and bending moment of CFST laced columns including eccentrically tensile loads were carried out. The differences between tensile strength and compression strength of CFST member should be considered in the calculation of its correlation curves. It was pointed out that correlation curves in design criteria for CFST structure in China had a deficiency. The influences of concrete and steel strength, steel ratio and slenderness ratio on correlation curves were studied by FEM and correlation curves equation of CFST laced columns was presented. The influence of correlation buckling on ultimate load-carrying capacity of CFST laced columns was studied and a corresponding simplified calculation method was proposed.
     3) Taking L/4 section inner force of parabolic CFST truss arches as nominal inner force, the feature of stability factor of parabolic CFST arches was analyzed. Its critical slenderness ratio between strength failure and elastic-plastic buckling and the critical slenderness ratio between elastic-plastic buckling and elastic buckling were obtained. The expression of stability factor of CFST parabolic truss arches was divided into three parts (strength failure part, elastic-plastic buckling part and elastic buckling part) and proposed. Correlation curves equation of CFST truss arches was presented. The influence of correlation buckling on ultimate load-carrying capacity of CFST truss arches was studied and a corresponding simplified calculation method was proposed.
     4) Based on the stability factor of CFST laced columns and the relationship between gyration radius and section height by statistics, the safe shear formula of CFST laced columns was proposed. The calculation method for the inner force of the web member in the truss arches was presented. The stability analysis method in CFST laced columns considering the shearing flexibility factor of the laced members was adopted in predicting the ultimate load-carrying capacity of CFST truss arches, and a corresponding calculation method was gained.
引文
1. ACI 318-99.1999.Building Code Requirements for structural Concrete and Commentary. Farmington Hills. American Concrete Institute. Detroit. USA.
    2. AISC-LRFD.1999.Load and resistance factor design specification for structural steel buildings.2nd ed. Americal Institute of Steel Construction. Chicago. USA.
    3. AS. AS4100-1998, Steel structures. Sydney:Standards Australia; 1998.
    4. Austin WJ, Ross TJ.1976. Elastic Bucking of Arches under symmetrical Loading [J]. Journal of the Structural Division, ASCE,102(ST5):1085-1095.
    5. Baochun Chen.2003. Nolinear Characteristics and Ultimate Load-Carrying Capacity of Concrete Filled Tubular Arch[D]. Doctor Paper, Kyushu University, Japan.
    6. Bleich, F.1952. Buckling strength of metal structures, McGraw-Hill, New York,174-179.
    7. BS5400.1979.British Standards Institute, Part 5, Concrete and Composite Bridges. Britian.
    8. EC4.European Committee for Standardization, Eurocode 4(draft):Design of Composite Steel and Concrete Structures. Europe.
    9. Furlong.R.W.1968. Design of Steel-Encased Concrete Beam-Columns. Proc. ASCE. Journal of the Structural Division.94(1):267-281.
    10. Galambos TV.1998. Guide to Stability Design Criteria for Metal Structures (Fifth Edition). New York:John Wiley &Sons, Inc.
    11. Gardner.N.J.and Jacobson.1967. E.R.Structural Bahaviour of Concrete Filled Steel Tubes. Journal of American Concrete Institute,64 (7):404-412.
    12. I.Verstappen, H.H. Snijder, F.S.K. Bijlaard and H.M.GM. Steenbergen.1998. Design rules for steel arches-In-plane stability[J], J construct. Steel Res.46(s):125-126.
    13. Japan Road Association, Specification for Highway Bridge[S], February,1980.
    14. Jerome F Hajjar, Paul H Schiller, Aleksandr Molodan.1998. A distributed plasticity model for concrete-filled steel tube beam-columns with interlayer slip[J]. EngineeringStructures. (20):398-412.
    15. Komatsu S, Shinke T.1977. Practical Formulas for In-plane Load Carrying Capacity of Arches [J]. Journal of Structural Mechanics and Earthquake Engineering, JSCE,254:39-52.
    16. Kawano,A and Sakino,K.2003. Seismic resistance of CFT trusses. Engineering Structures,25.
    17. Knowles.R.B. and Park.R.1969. Strength of Concrete Filled Steel Tubular Columns. Proc. ASCE. Journal of the Structural Division.95(12):2565-2587.
    18. Lin, F. J., Clauser, E. C., and Johnston, B. G 1970. Behavior of Laced and Battened Structural Members.ASCE J. Struct. Div.,96(7):1377-1401.
    19. Matsui.C.Tsuda.K. and Ishibashi.Y.1995. Slender Concrete Filled Steel Tubular Columns Under Combined Compression and Bending. Structural Steel.PSSC'95.4th Pacific Structural Steel Conference.Vol.3. Steel-Concrete Composite Structures. Edited by N.E.Shanmagam and Y.S.Choo.Sinagapore: Pergamon.29-36.
    20. S.H. Ju.2003. Statistical analyses of effective lengths in steel arch bridges[J], Computer and Structures, (81):1487-1497.
    21. S. Kuranishi, and T. Yabuki.1979. Some numerical estimations of ultimate in-plane strength of two-hinged steel arches[J], Proceedings of the Japan Society of Civil Engineers, (287):155-158.
    22. S. Kuranishi, and Le-Wu Lu.1972. Load carrying capacity of two hinged steel arches[J], Proceedings of the Japan Society of Civil Engineers, (204):129-140.
    23. S. Kuranishi, and T. Yabuki.1984. Ultimate strength design criteria for two-hinged steel arch structures[J]. Proceedings of the Japan Society of Civil Engineers, Structural Eng./Earthquake Eng., 1(2):229-237.
    24. Salani.H.I. and Sims.J.R.1964. Behavior of Mortar Filled Steel Tubes in Compression Joural of American Concrete Institute.61(10):1271-1283.
    25. Shigeru KURANISHI, Tetsuya YABUKI.1984. Ultimate Strength Design Criteria for Two-hinged Steel Arch Structures, PROC.OF JSCE Structural Eng./Earthquake Eng.1(2):115-123.
    26. T. Sakimoto, and S. Komatsu.1983. Ultimate Strength Formula for Steel Arches[J]. Journal of Structural Engineering,109(3):613-627.
    27. T. Yabuki, Le-Wu, and S. Kuranishi.1987. An ultimate strength design aid for fixed-end steel arches under vertical loads[J], Proceedings of the Japan Society of Civil Engineers, Structural Eng./Earthquake Eng., 4(1):115s-123s.
    28. T. Yabuki, and S. Kuranishi.1986. Fixed-end restraint effect on steel arch strength[J]. Journal of Structural Engineering,112(4):p653-665.
    29. Timoshenko, S.P., and Gere, J.M.1961. Theory of Elastic Stability[M],2nd ed. McGraw-Hill New York.
    30. Vander Neut A.1969. The Interaction of Local Buckling and Column Failure of Thin Walled Compression Members.Proc.12th IntCong. Appl. Mech. Stanford University,389-399.
    31. Walter J. Austin.1971. In-Plane Bending and Buckling of Arches[J]. Journal of Structural Division, Proceedings of the American Society of Civil Engineers,97(ST 5).
    32. Y.-L. Pi, M.A. Bradford, B. Uy.2002. In-plane stability of arches. International Journal of Solids and Structures (39):105-125.
    33. Yong-Lin Pi & N. S. Trahair,1999.In-plane buckling and design of steel arches[J]. Journal of Structural Engineering.125(11):1291-1298.
    34. Yong-Lin Pi, Mark A. Bradford.2004. In-plane strength and design of fixed steel I-section arches[J]. Engineering Structures, (26):291-301.
    35.#12
    36.#12
    37.松井千秋.2004.建築合成構造.日本東京.
    42.蔡绍怀.1989.钢管混凝土格构柱的强度计算[J].建筑科学,3(1):15-20.
    43.蔡绍怀.2003.现代钢管混凝土结构[M].北京:人民交通出版社.
    44.蔡绍怀,邸小坛.1985.钢管混凝土偏压柱的性能和强度计算[J].建筑结构学报,6(4):32-42.
    45.蔡绍怀,顾万黎.1985a.钢管混凝土长柱的性能和强度计算[J].建筑结构学报,6(1):32-40.
    46.蔡绍怀,顾万黎.1985b.钢管混凝土抗弯强度的试验研究[J].建筑技术通讯(建筑结构),(3):28-29.
    47.蔡绍怀,焦占拴.1984.钢管混凝土短柱的基本性能和强度计算[J].建筑结构学报,5(6):13-29.
    48.陈宝春.2002.钢管混凝土拱桥实例集(一)[M].北京:人民交通出版社
    49.陈宝春.2007.钢管混凝土拱桥(第二版)[M].北京:人民交通出版社.
    50.陈宝春.2008.钢管混凝土拱桥实例集(二)[M].北京:人民交通出版社
    51.陈宝春,陈友杰.2000.钢管混凝土肋拱面内受力全过程试验研究[J].工程力学,17(2):44-50.
    52.陈海滨.2006.桁式钢管混凝土拱桥极限承载能力研究[D].硕士学位论文.浙江:浙江大学.
    53.陈宝春,欧智菁.2006.钢管混凝土偏压格构柱长细比影响试验研究[J].建筑结构学报,27(4):73-79.
    54.陈宝春,欧智菁.2007.钢管混凝土格构柱试验研究[J].土木工程学报,40(6):32-41.
    55.陈宝春,秦泽豹.2006.钢管混凝土(单圆管)肋拱面内极限承载力计算的等效梁柱法[J].铁道学报,28(6):99-106.
    56.陈宝春,秦泽豹,陈友杰.2004.钢管混凝土拱极限承载力简化计算的等效梁柱法[C].中国土木工程学会桥梁与结构工程学会第十六届年会论文集:375-380,北京:人民交通出版社.
    57.陈宝春,秦泽豹,彦坂熙等.2003.钢管混凝土拱(单圆管)面内受力双重非线性有限元分析[J].铁道学报,25(4):80-84
    58.陈宝春,杨亚林.2006.钢管混凝土拱桥调查与分析[J].世界桥梁,(6):73-77.
    59.陈绍蕃.1994.钢结构[M].北京:中国建筑工业出版社.
    60.陈友杰.1999.钢管混凝土单圆管肋拱面内极限承载力试验研究[D].硕士学位论文,福州:福州大学.
    61.陈友杰,陈宝春.2003.钢管混凝土桁拱双重非线性有限元分析[J].福州大学学报(自然科学版),(2):82-85.
    62.陈周熠,易伟建,赵国藩.2006.以圆钢管为钢骨的劲性高强混凝土柱的弯矩-轴力相关曲线的数值分析[J].36(4):75-77.
    63.程进,江见鲸,肖汝诚,项海帆.2003.大跨度钢拱桥结构极限承载力分析[J].工程力学.:7-10.
    64.崔军,孙炳楠,楼文娟等.2004.钢管混凝土桁架拱桥模型试验研究[J].工程力学,21(5):83-86
    65.邓继华,邵旭东.2004.钢管混凝土拱极限承载力计算及相关参数分析[J].长沙理工大学学报(自然科学版),1(3):23-30.
    66.范崇仁.1984.关于轴心受压格构柱剪力的计算[J].武汉水利电力学院学报,(2):39-47.
    67.福建省工程建设地方标准.DBJ 13-51-2003.2003.钢管混凝土结构技术规程.
    68.公路桥涵施工技术规范.2000.北京:人民交通出版社.
    69.郭彦林,黄李骥.2007.腹板开洞钢拱的平面内稳定极限承载力设计理论及方法[J].建筑结构学报,28(3):23-30.
    70.哈尔滨建筑工程学院编.1995.大跨房屋钢结构.北京:建筑工业出版设.
    71.韩林海.1998.钢管(高强)混凝土轴压稳定承载力研究[J].哈尔滨建筑大学学报,(3):23-28.
    72.韩林海.2000.钢管混凝土力学[M].北京:科学出版社.
    73.韩林海.2004.钢管混凝土结构——理论与实践[M].北京;科学出版社.
    74.黄大元,黄平明,张征文等.2002.钢管混凝土桁式拱桥简化计算模式研究[J].桥梁建设.(2):30-33
    75.黄李骥,郭彦林.2006.腹板开洞的工形截面拱的平面内特征值屈曲性能[J].工程力学,23(3):126-133.
    76.黄李骥,郭彦林.2007.实腹圆弧钢拱的平面内稳定极限承载力设计理论及方法[J].建筑结构学报,28(3):15-22
    77.陈宝春,黄文金.2007.圆管截面桁梁极限承载力试验研究[J].建筑结构学报,28(3):31-36.
    78.贾金青,赵国藩,张树建.2001.钢骨钢筋高强混凝土构件正截面承载力[J].大连理工大学学报,41 (6):726-730
    79.蒋家奋,汤关祚.1998.三向应力混凝土[M].北京:中国铁道出版社
    80.建筑结构静力计算手册编写组.1998.建筑结构静力计算手册[M].北京:建筑工业出版社.
    81.林英.2001.钢管——混凝土复合拱桥面内受力性能试脸研究[D].硕士学位论文,福州:福州大学
    82.李国豪.1992.桥梁结构稳定与振动[M].北京:中国铁道出版社.
    83.李涛.1995.三峡工程对外公路黄柏河特大桥设计.哈尔滨建筑大学学报,中国钢协钢-混凝土组合结构协会第五次年会论文集,(5)
    84.刘古岷,张若晞,张田丰.2004.应用结构稳定计算[M].科学出版社.
    85.刘书江童根树.2004.格构式压弯杆平面内稳定计算[J].钢结构,19(2):58-61.
    86.刘毓栋,王志赛.1991.钢结构稳定性原理[M].西安交通大学出版社.
    87. 欧智菁.2000.钢管砼偏心受压本构关系及其在钢管砼拱桥受力分析中的应用[D].硕士学位论文,福州:福州大学.
    88.欧智菁.2007.四肢钢管混凝土格构柱极限承载力研究[D].博士学位论文,福州:福州大学.
    89.欧智菁,陈宝春.2006.钢管混凝土格构柱偏心受压面内极限承载力研究[J].建筑结构学报,27(4):80-83.
    90.潘友光.1989.圆钢管混凝土轴心受力作用下本构关系的研究[D],哈尔滨:哈尔滨建筑工程学院.
    91.彭兴黔.2000.等边角钢四肢方阵式格构柱截面的优化设计[J].华侨大学学报(自然科学版).21(2):161.163.
    92.任伟新,曾庆元.1994.钢压杆稳定极限承载力分析[明.北京:中国铁道出版设.
    93.邵旭东,成尚锋,李立峰.2003.钢管混凝土拱肋节段模型试验[J].长安大学学报长安大学学报,23(4);34-37
    94.申明文,李国平,朱玉晓.2002.钢管混凝土拱的稳定与极限承载力分析.结构工程师.
    95.沈希明,汤关祚,招炳泉.1982.钢管混凝土工业厂房柱设计[J].建筑结构学报,(1):32-37.
    96.沈尧兴,赵志军,华旭刚.2003.大跨度钢管混凝土拱桥的稳定性分析[J].西南交通大学学报,38(6):655-657.
    97.盛叶.2007.哑铃形钢管混凝土结构极限承载力研究[D].博士学位论文,福州:福州大学.
    98.沈祖炎,陈扬骥.1997.网架与网壳[M].上海:同济大学出版社
    99.孙潮,郑怀颖,陈宝春.2006.东莞水道特大桥面内受力双重非线性有限元分析,福州大学学报,34(1):109-113
    100.唐毅.2005.剪切变形对大跨格构拱平面内整体稳定的影响[D].硕士学位论文.重庆:重庆大学.
    101.汤关祚,招炳泉,竺惠仙等.1982.钢管混凝土基本力学性能的研究[J].建筑结构学报,(1):13-31.
    102.童根树.1987.格构柱的夹层梁—相关屈曲理论[J].西安冶全建筑学院学报,(3):95-104.
    103.童根树.2005.钢结构的平面内稳定[M].北京:中国建筑出版社.
    104.童蔷,熊峰.2003.钢管混凝土拱结构的非线性分析[J].土木工程学报,(6):66-70.
    105.韦建刚.2002.钢管混凝土对称弯压拱分枝点失稳问题研究[D].硕士学位论文,福州:福州大学
    106.韦建刚.2007.管拱面内非线性失稳临界荷载研究[D].博士学位论文,福州:福州大学.
    107.韦建刚,陈宝春.2004.钢管混凝土拱材料非线性有限元分析方法[J].福州大学学报(自然科学版),32(3);345-348.
    108.王頠,颜全胜.2008.钢管混凝土拱桥弹塑性分析[J].兰州理工大学学报,34(2);123-127
    109.夏志斌.1981.格构式轴心受压构件的计算[J].钢结构.12(2):31-36.
    110.谢肖礼,赵国藩,邹存俊.2004.钢管混凝土拱桥肋拱面内极限承载力全过程计算机模拟[J].土木工程学报.(5);54-58.
    111.向中富,杨虎根.2008.格构式钢管混凝土拱承载能力稳定试验研究[C].第十八届全国桥梁学术会议论文集:1336-1343.
    112.叶梅新,盖红环.2007.非对称有推力钢管混凝土拱桥模型试验研究,铁道标准设计,(6):24-26
    113.赵根田.1992.格构式轴心受压柱的剪力分析[J].钢结构,(3):21-23..
    114.张宇力,对《钢结构》教材中格构柱问题之商榷[J].1997.华南建设学院西院学报,5(1):76-78.
    115.张建民,郑皆连,秦荣.2002.南宁永和大桥双重非线性稳定分析[J].公路交通科技,19(3):58-62.
    116.张建民,肖汝诚.2004.巫峡长江大桥极限承载能力分析[J].公路交通科技,21(2):37-40.
    117.张素梅,郭兰慧,王玉银等.2004.方钢管高强混凝土偏压构件的试验研究与理论分析[J].建筑结构学报,45(1):17-24
    118.曾国锋,范立础,章关永.2003.应用复合梁单元实现钢管混凝土拱桥的极限承载力分析.铁道学报,25(5):97-102.
    119.郑宏.1999.钢结构相关屈曲的理论发展[J].西北建筑工程学院学报.6(2):1-5.
    120.钟善桐.1994.钢管混凝土结构[M].哈尔滨:黑龙江科学技术出版社.
    121.钟善桐.2003.钢管混凝土结构(第三版)[M].北京:清华大学出版社.
    122.钟善桐,王用纯.1979.国产建筑钢材弹塑性阶段工作性能和泊桑比的实验研究[J].哈尔滨建筑工程学院学报,(1):18-30.
    123.中华人民共和国行业标准TB10002.1-99.2000.铁路桥涵设计基本规范[S].北京:中国铁道出版社.
    124.中华人民共和国行业标准CJJ 77-98.1998.城市桥梁设计荷载标准[S].北京:中国建筑工业出版社.
    125.中华人民共和国行业标准JTJ022—85.1985.公路砖石及混凝土桥涵设计规范[S].北京:人民交通出版社.
    126.中华人民共和国行业标准JTJ 021-89.1989.公路桥涵设计通用规范[S].北京;人民交通出版社.
    127.中华人民共和国行业标准JTG D62—2004.2004.公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社.
    128.中华人民共和国行业标准GB50017-2003.2003.钢结构设计规范[s].北京:中国计划出版社.
    129.中华人民共和国行业标准DL/T 5085—-1999.1999.钢—混凝土组合结构设计规程[S].北京:中国电力出版社.
    130.中华人民共和国行业标准CECS 28:90.1990.钢管混凝土结构设计与施工规程[S].北京:中国计划出版社.
    131.中华人民共和国行业标准JCJ 01—89.1989.钢管混凝土结构设计与施工规程[S].上海:同济大学出版社.
    132.朱伯芳,1998.有限单元法原理与应用[M].中国水利水电出版社.
    133.朱林生,王英英,宋敏.1996.钢结构偏心受压格构柱的优化设计[J].试验技术与试验机,36(3,4):22-25.