主管内填混凝土矩形钢管桁架受力机理及设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
主管内填混凝土矩形钢管桁架结构由矩形钢管混凝土主管和矩形钢管支管组成,支管和主管采用焊缝直接相贯连接,是一种新型结构形式,具有良好的应用前景。本文在国家西部交通建设科技项目(2006318812112)和交通部应用基础研究项目(2006319812130)的资助下,对该新型结构的受力机理和设计方法进行了研究,为其在桥梁结构中的应用提供了理论依据。论文主要研究内容、方法和结论如下:
     1.完成了主管内填混凝土带竖杆warren形式和warren形式矩形钢管桁架的试验研究。主管内填混凝土矩形钢管桁架比空钢管桁架具有更高的整体承载力和节点承载力,但桁架整体变形能力减小。在受剪效应比较明显时,结构均发生节点破坏,但节点破坏模式并不相同,主管内填混凝土改变了节点的失效位置和失效模式。
     2.完成了主管内填混凝土warren形式矩形截面钢管桁架与圆形截面钢管桁架的对比试验研究。在几何尺寸及杆件材料性能相近情况下,两种截面形式的空钢管桁架在承载力及变形方面没多大差异;主管内填混凝土后,圆形截面桁架的整体和节点承载力比相应的矩形截面桁架承载力要高。矩形截面桁架能取得更大抗弯刚度,但延性相比较差,而且节点变形占桁架整体变形比例要大。
     3.基于试验结果,得到了主管内填混凝土对支主管应力、节点应力和桁架整体刚度的影响。受压主管内填混凝土能很好地协助钢管受力、减小钢管应变;受拉主管内填混凝土初期作用不明显,在受力后期能够阻止钢管的紧缩变形,提高桁架后期承载力;主管内填混凝土对支管影响不明显;主管内填混凝土能很好地提高受压节点的抗压刚度和强度,减小受拉节点的变形并提高强度。
     4.利用ANSYS通用程序建立了主管内填混凝土矩形钢管桁架结构的数值分析模型,得到了有限元分析参数,有限元分析结果与试验结果吻合较好。利用有限元分析参数进行了支主管等宽桁架受力性能的研究,分析结果表明,节点间隙处主管是桁架的薄弱部位,往往发生此处主管的剪切失效,主管内填混凝土能够提高主管的抗剪切能力。
     5.分析了主管内填混凝土矩形钢管桁架结构的刚度组成及受压主管内填混凝土抗压刚度和抗弯刚度取值对桁架静力性能的影响,抗压刚度取值对桁架的受力性能有较大影响,而抗弯刚度影响较小。在计算受压主管应力时,建议受压主管抗压刚度取作EA=EsAs+EcAc;在计算桁架的整体变形时,需要考虑节点变形的影响,建议对受压主管的抗弯刚度和抗压刚度进行折减。
     6.分析了节点的受力特点,得到了支主管等宽桁架主管的剪切破坏模式并提出了相应的承载力计算方法。探讨了主管内填混凝土矩形钢管桁架受压杆件的计算长度系数取值,建议受压主管取1.0,受压支管取0.75;在考虑节点变形影响基础上,提出了桁架整体变形的放大系数计算方法,建议对空钢管桁架和仅受压主管内填充混凝土桁架的变形放大系数取为1.15,拉压主管内均填充混凝土桁架取为1.20。
The rectangular hollow section (RHS) steel tubular truss with the concrete-filled in chord is a kind of novel structural system, which chord members are concrete-filled rectangular section steel tube and its web members with rectangular section steel tube are welded on the surface of chords. Supported by the Program for West Transport Construction Science and Technology(2006319812112), and Applied Basic Research Programs of ministry of transport of China (2006319812130), the mechanical behaviors and design method of the trusses were studied in this paper, provided a theoretical basis for its application in bridge structure. The main achievements are summarized as follows:
     1. Test on two types RHS steel tubular trusses under static point loading at middle span were carried. The failure mode of trusses was due to the joints failure, but the failure modes were different, the concrete-filled in chord changed the failure mode.
     2. Test on trusses made with RHS and circular hollow section (CHS) steel tube were carried. The trusses of RHS and CHS have not much difference in the bearing capacity and deformation, but with chord concrete-filled, the CHS trusses have the higher bearing capacity of the overall truss and joints, better deformability than the corresponding RHS trusses, and the less proportion of joints deformation in the total deformation.
     3. Based on experimental results, the influence from concrete-filled in chords on chords members, branch members, joints stress and the overall stiffness of truss were obtained. The concrete-filled in compression chord can help compression chord members very well, and reduce the steel tube strain; The concrete-filled in tension chord do not effect the tension chord members obviously at start state, but can prevent the contraction deformation of tension steel tube at late stage, so increse the bearing capacity; The concrete-filled in chords do not effect the branchs obviously; The concrete-filled in chords can greatly enhanced the strength and rigidities of compression joints, reduce the deformation and increase the strength of tension joints,
     4. The nonlinear finite element model according to ANSYS program of RHS steel tubular trusses with concrete-filled chord was also built up, the calculating results of nonlinear finite element method kept in with those from tests. The mechanism of trusses with branch and chord section width equal were studied by FEA, the joints gap is the weak positon, the trusses failure were due to the chord shear failure, the concrete-filled chord can improve the shear capacity.
     5. The rigidity of concrete-filled in compression chord effect on trusses mechanical behavior was analyzed. The compressive stiffness of concrete-filled in compression chord does a greater effect than the bending rigidity. When in the calculation of compression chord stress, the suggestion value of compression stiffness is EA=EsAs+EcAc, as to the trusses deformation calculation, for the effect of joints deformation, the bending rigidity and compression rigidity should be reduced, but reduce method and reduce coefficient should be further discussed.
     6. The mechanical behavior and failure mode of joints were analyzed, the failure mode of trusses with branch and chord section width equal were provided, and the corresponding formula to calculate ultimate bearing capacity. The mechanism and failure path of overall trusses were studied, the effective length coefficient of compressive member were provided, as to compressive chord, it is 1.0, as to compressive branch, it is 0.75. the amplification factor method of calculation the overall deformation were provided, the amplification factor for RHS truss and RHS truss with concrete-filled in the compression chord is 1.15, and amplification factor for RHS truss with concrete-filled in both compression and tension chords is 1.2.
引文
[1]韩林海.钢管混凝土结构:理论与实践[M].北京:科学出版社,2004.
    [2]蔡绍怀.现代钢管混凝土结构[M].北京:人民交通出版社,2003.
    [3]钟善桐.钢管混凝土结构[M].北京:清华大学出版社(第三版),2003.
    [4]Wardenier J. Hollow sections in structural applications [M]. Australia: John Wiley & Sons,2001.
    [5]Wardenier J.钢管截面的结构应用[M].张其林,刘大康,译.上海:同济大学出版社,2004.
    [6]赵晓林,Wilkinson T, Hancock G.冷弯钢管计算与设计[M].蒋首超,赵晓林,译.北京:建筑工业出版社.
    [7]陈宝春.钢管混凝土拱桥[M].北京:人民交通出版社(第二版),2007.
    [8]刘永健.矩形钢管混凝土桁架节点极限承载力试验与设计方法研究[D].长沙:湖南大学博士学位论文,2003.
    [9]Packer J A. Ultimate strength of gapped Joints in RHS trusses[J]. Journal of Structural Engineering.1982,108(2):411-431.
    [10]Packer J A. Web crippling of rectangular hollow sections[J]. Journal of Structural Engineering.1984,110(10):2357-2373.
    [11]Packer J A. Review of American RHS web cripvling provisions [J]. Journal of Structural Engineering.1987,113(12):2508-2513.
    [12]Bauer D, Redwood R G, Triangular truss joints using rectangular tubes[J]. Journal of Structural Engineering.1988,114(2):408-424.
    [13]Zhao X L, Hancock G J. Plastic mechanism analysis of T-joints in RHS under concentruted force[R]. Sydney: University of sydney,1991.
    [14]Zhao X L, Hancock G J. T—joints in rectangular hollow sections subject to combined actions[J]. Journal of Structural Engineering.1991,117(8):2258-2277.
    [15]Zhao X L, Hancock G J. Analysis of T-joints in RHS subjected to combined bending and concentrated force[R]. Sydney: University of sydney,1993.
    [16]Yanrong Yu.The static strength on uniplanar and multiplanlar connections in rectangular hollow sections[D]. The Netherlands:Delft University,1997.
    [17]GB 50017-2003钢结构设计规范[S].
    [18]张志良,沈祖炎,陈学潮.方管节点极限承载力的非线形有限元分析[J].土木工程学报,1990,23(1):12-22.
    [19]沈祖炎,张志良.焊接方管节点极限承载力计算[J].同济大学学报,1990,18(3):273-279.
    [20]傅振岐,何保康,顾强.矩形管间隙K型节点极限承载力的有限元分析[J].西安建筑科技大学学报,1996,28(4):428-432.
    [21]武振宇,张耀春.直接焊接钢管节点静力工作性能的研究现状[J].哈尔滨建筑大学学报,1996,29(6):102-109.
    [22]武振宇.直接焊接钢管节点静力工作性能的研究[D].哈尔滨:哈尔滨建筑大学博士学位论文,1997.
    [23]武振宇,张耀春.直接焊接T型钢管节点性能的试验研究[J].钢结构,1999,14(2):36-40.
    [24]武振宇,谭慧光,张耀春.不等宽T型方钢管节点的刚度计算[J].哈尔滨建筑大学学报,2002,35(5):13-16.
    [25]武振宇,张耀春.等宽T型方管节点承载力计算[J].钢结构,2002,17(4):13-15.
    [26]武振宇,张耀春.弯矩作用下不等宽T形方管节点的塑性铰线分析[J].建筑结构学报,2003,24(4):65-69.
    [27]武胜,武振宇.等宽K型间隙方管节点静力工作性能的研究[J].哈尔滨工业大学学报,2003,35(3):269-275.
    [28]武胜,武振宇.弦杆轴力作用下K型间隙方管节点静力性能的研究[J].钢结构,2003,18(2):38-42.
    [29]武胜,武振宇.一杆等宽K型间隙方管节点静力工作性能研究[J].哈尔滨工业大学学报,2003,35(5):513-519.
    [30]武振宇,张壮南,丁玉坤,等.K型、KK型间隙方钢管节点静力工作性能的试验研究[J].建筑结构学报,2004,25(2):32-38.
    [31]武振宇,谭慧光.不等宽T型方钢管节点初始抗弯刚度计算[J].哈尔滨工业大学学报,2008,40(10):1517-1522.
    [32]武振宇,丁玉坤,赵靖伟.K型、KK型部分搭接方管节点极限承载力的对比分析[J].沈阳建筑大学学报(自然科学版),2008,24(5):809-813.
    [33]刘娟,武振宇.方管搭接支杆平面内计算长度有限元分析[J].哈尔滨工业大学学报,2008,40(6):851-854,890.
    [34]刘建平.钢管相贯节点的承载力性能研究[D].北京:清华大学硕士学位论文,2000.
    [35]陈以一,彭礼.矩形钢管贯通式节点抗弯性能研究[J].建筑结构学报,2004,25(3):1-7.
    [36]童乐为,王新毅,陈以一,等.国家体育场焊接方管桁架双弦杆KK型节点试验研究[J].建筑结构学报,2007,28(2):49-53,80.
    [37]陈以一,李万祺,赵宪忠,等.国家体育场焊接方管桁架单K节点试验研究[J].建筑结构学报,2007,28(2):41-48.
    [38]范重,彭翼,李鸣,等.国家体育场焊接方管桁架双弦杆KK节点设计研究[J].建筑结构学报,2007,28(2):54-58.
    [39]Packer J A. Concrete-Filled HSS Connections[J]. Journal of Structural Engineering, 1995,121(3),458-467.
    [40]刘永健,周绪红,邹银生,等.矩形钢管混凝土横向局部承压强度的试验研究[J].建筑结构学报,2003,24(2):42-48.
    [41]刘永健,周绪红,肖龙.矩形钢管混凝土桁架受压节点承载力[J].建筑结构,2004,34(1):24-26.
    [42]刘永健,周绪红,刘君平.矩形钢管混凝土K型节点受力性能试验[J].建筑科学与工程学报,2007,24(2):36-42.
    [43]刘永健,周绪红,刘君平.矩形钢管混凝土T、Y型节点受压性能试[J].长安大学学报:自然科学版,2008,28(5):48-52.
    [44]刘永健,周绪红,刘君平.主管内填混凝土的矩形钢管X型节点受拉和受弯性能试验研究[J].建筑结构学报,2009,30(1):82-86,94.
    [45]周绪红,刘永健,莫涛.矩形钢管混凝土桁架设计[J].建筑结构,2004,34(1):20-23.
    [46]CECS 159:2004矩形钢管混凝土结构技术规程[S].
    [47]张格明.预应力内置灌浆方钢管桁架混凝土组合梁基本问题研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2007.
    [48]郑文忠,张格明,柳旭东,等.灌浆方钢管压陷极限承载力试验[J].吉林大学学报:工学版,2007,37(4):794-799.
    [49]Zheng Wenzhong, Zhang Geming, Liu Xudong, et al. Experimental research on ultimate bearing capacity of N-joints of grouted square steel tube trusses[J]. Journal of Southeast University:English Edition,2007,23(4):566-570.
    [50]Ran Feng, Ben Young. Tests of concrete-filled stainless steel tubular T-joints [J]. Journal of Constructional Steel Research,2008,64(11):1283-1293.
    [51]Ran Feng, Ben Young. Behaviour of concrete-filled stainless steel tubular X-joints subjected to compression[J]. Thin-Walled Structures,2009,47(4):365-374.
    [52]尧国皇.钢管混凝土构件在复杂受力状态下的工作机理研究[D].福州:福州大学博士学位论文,2006.
    [53]刘永健,李运喜,刘君平,等.受压弦管填充混凝土矩形钢管桁架静力性能[J].建筑科学与工程学报,2008,25(4):65-72.
    [54]蔡健,陈国栋,左志亮,等.受压弦杆填充混凝土的带悬挑预应力矩形钢管桁架[J].吉林大学学报:工学版,2009,39(2):393-397.
    [55]杨春,蔡健,陈国栋,等.矩形钢管混凝土大跨度带悬挑桁架的试验研[J].华南理工大学学报:自然科学版,2008,36(3):128-133.
    [56]柳旭东.空腹灌浆圆钢管桁架—混凝土组合梁受力性能研究及应用[D].哈尔滨:哈尔滨工业大学博士学位论文,2007.
    [57]郑文忠,柳旭东,张博一,等.灌浆圆钢管压陷极限承载力试验研究[J].建筑结构学报,2008,29(2):85-91.
    [58]郑文忠,柳旭东,张博一.灌浆圆钢管桁架—混凝土组合梁试验研究[J].建筑结构学报,2009,30(1):15-22.
    [59]张博一,郑文忠,苑忠国.预应力内置圆钢管桁架混凝土组合梁的受力性能[J].吉林大学学报:工学版,2008,38(3):636-641.
    [60]陈宝春,黄文金.圆管截面桁梁极限承载力试验研究[J].建筑结构学报,2007,28(3):31-36.
    [61]黄文金,陈宝春.钢管混凝土桁梁受弯试验研究[J].建筑科学与工程学报,2006,23(1):29-33.
    [62]黄文金,陈宝春.腹杆形式对钢管混凝土桁梁受力性能影响的研究[J].建筑结构学报,2009,30(1):55-61.
    [63]王俊华,陈宝春,黄文金编译.现代钢管桁架桥[J].中外公路,2006,26(4):138-142.
    [64]陈建兵,万水编译.新撒丁高架桥的实腹梁和桁架组合结构[J].世界桥梁,2005,(2):7-10.
    [65]H.-G. Dauner, A. Oribasi, D. Wery. The lully viaduct, a composite bridge with steel tube truss[J]. Journal of Constructional Steel Research,1998,46(1-3):67-68.
    [66]Scott Walbridge, Alain Nussbaumer. A probabilistic assessment of the effect of post-weld treatment on the fatigue performance of tubular truss bridges[J]. Engineering Structures,2008,30(1):247-257.
    [67]Scott Walbridge, Alain Nussbaumer. Probabilistic fatigue analysis of shop and field treated tubular truss bridges[J]. Journal of Constructional Steel Research,2008,64(2): 156-166.
    [68]Scott Walbridge, Alain Nussbaumer. A probabilistic model for determining the effect of post-weldtreatment on the fatigue performance of tubular bridge joints[J]. International Journal of Fatigue,2007,29(3):516-532.
    [69]Ann Schumacher, Alain Nussbaumer. Experimental study on the fatigue behaviour of welded tubular K-joints for bridges[J]. Engineering Structures,2006,28(5):745-755.
    [70]Scott Walbridge. Fatigue analysis of post-weld fatigue improvement treatments using a strain-based fracture mechanics model[J]. Engineering Fracture Mechanics,2008, 75(18):5057-5071.
    [71]S.C. Haldimann-Sturm, A. Nussbaumer. Fatigue design of cast steel nodes in tubular bridge structures [J]. International Journal of Fatigue,2008,30(3):528-537.
    [72]刘玉擎.组合结构桥梁[M].北京:人民交通出版社,2005.
    [73]杨啟彬.钢管桁架加劲梁——悬索桥简介[J].公路,2001,(5):2-5.
    [74]王宗仁,吴建英.悬索桥桁架梁加载方式的比较[J].公路,2006,(3):182-184.
    [75]唐春霞.钢管桁架式人行桥设计[J].市政技术,2008,26(6):501-502,510.
    [76]黄智华,刘胜友,张芳途.空间钢管桁架人行天桥的设计与分析[J].城市道桥与防洪,2009,(7):96-100.
    [77]张联燕,李泽生,程懋方.钢管混凝土空间桁架组合梁式结构[M].北京:人民交通出版社,1999.
    [78]张贵忠.万州大桥钢管混凝土桁架技术研究[D].成都:西南交通大学硕士学位论文,1999.
    [79]庄一舟,吴建华,吴开成,等.预应力钢管混凝土桁架应用与研究探讨[J].建筑结构学报,2003,24(2):38-41,48.
    [80]许兆军,侯文藏,张玉玲.公铁两用桥在我国的应用前景[J].铁道建筑,2000,(12):16-19.
    [81]孙建渊,陈阶亮.城市桥梁双层交通的概念设计[J].桥梁建设,2006,(2):39-42.
    [82]张强,卫军,文武松.世界首座双层交通预应力斜拉桥—澳凼三桥[J].桥梁建设,2004,(2):31-34.
    [83]彭振华.三桁刚性悬索加劲钢桁梁关键技术研究[D].上海:同济大学硕士论文,2007.
    [84]沈之容,蒋涛.矩形钢管混凝土结构的经济分析[J].特种结构,2001,18(4):1-4.
    [85]Packer J A, Henderson J E.空心管结构连接设计指南[M].曹俊杰,译.北京:科学出版社,1997.
    [86]Saidani M. The effect of joint eccentricity on the distribution of forces in RHS lattice girders[J]. Journal of Constructional Steel Research,1998,47(3):211-221.
    [87]Design guide for rectangular hollow section(RHS) joints under predominantly static loading[S].
    [88]American Institute of Steel Construction. Load and resistance factor design specification for structural steel buildings[S].
    [89]Design guide for circular hollow section(CHS) joints under predominantly static loading[S].
    [90]Yoshinaga Sakai, Tetsuya Hosaka, Akira Isoe, et al. Experiments on concrete filled and reinforced tubular K-joints of truss girder [J]. Journal of Constructional Steel Research, 2004,60(3-5):683-699.
    [91]周天华.方钢管混凝土柱—钢梁框架节点抗震性能及承载力研究[D].西安:西安建筑科技大学博士论文,2004.
    [92]莫时旭.钢箱一混凝土组合梁结构行为试验研究与分析[D].成都:西南交通大学博士论文,2006.
    [93]ANSYS Release7.0[M].ANSYS,Inc.,2003.
    [94]朱伯芳.有限单元法原理和应用[M].北京:水利电力出版社,1979.
    [95]王勖成,邵敏.有限单元法基本原理和数值方法(第2版)[M].北京:清华大学出版 社,1996.
    [96]何君毅,林祥都,工程结构非线性问题的数值解法[M].北京:国防工业出版社,1993.
    [97]查晓雄,唐家祥.钢管混凝土结构非线性有限元分析中混凝土边界面模型的研究及应用[J].工程力学,1999,16(6):29-35.
    [98]韦建刚,陈宝春.钢管混凝土拱桥拱肋刚度设计取值分析[J].交通运输工程学报,2008,8(2):34-39.
    [99]CECS 28:90钢管混凝土结构设计与施工规程[S].
    [100]JCJ 01-1989钢管混凝土结构设计与施工规程[S].
    [101]DL-5085/T-1999钢—混凝十组合结构设计规程[S].
    [102]GJB4142-2000战时军港抢修早强型组合结构技术规程[S].
    [103]British Standards Institute BS5400, Concrete and composite bridges[S].
    [104]Architechtural Institute of Japan(AIJ). Recommendations for design and construction of concrete filled tubular structures[S].
    [105]陈宝春,高婧.波形钢腹板钢管混凝土梁受弯试验研究[J].建筑结构学报,2008,29(1):75-82.
    [106]高婧,陈宝春.波形钢腹板钢管混凝土梁有限元分析及参数研究[J].福州大学学报(自然科学版),2008,36(5):722-728.
    [107]GB 50010-2002,混凝土结构设计规范[S].
    [108]Xiao-Ling Zhao. Deformation limit and ultimate strength of welded T-joints in cold-formed RHS sections[J]. Journal of Constructional Steel Research,2000,53(2): 149-165.
    [109]贺喜霞.空间相贯节点钢管桁架中受压杆件的计算长度[D].西安:西安建筑科技大学硕士学位论文,2003.
    [110]彭晓彤,梁启龙,满杰.相贯节点平面钢管桁架中受压腹杆的计算长度研究[J].工业建筑,2005,35(6):76-79.
    [111]蔡健,陈国栋.相邻腹杆刚度对桁架受压腹杆计算长度的影响[J].华南理工大学学报(自然科学版),2008,36(6):1-5.
    [112]陈绍蕃.钢结构设计原理(第二版)[M].北京:科学出版社,2000.
    [113]李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社,1996.
    [114]陈骥.钢结构稳定理论与设计[M].北京:科学出版社,2001.
    [11 5]刘君平.矩形钢管混凝土桁架设计方法研究[D].长沙:长沙理工大学硕士学位论文,2005.
    [116]F.Bleich,中译本.金属结构的屈曲强度[M].北京:科学出版社,1965.
    [117]娄俊杰.钢管桁架压杆稳定分析及节点偏心性能研究[D].北京:清华大学硕士学位论文,2004.