单双层网格结构建造技术与节点试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国家经济的飞速发展,对大跨度空间的需求越来越大,在此背景下,近年来国家建造了一大批体育场馆、会展中心、火车站房、航站楼以及大型厂房等大跨度建筑结构。除传统的网架、网壳和桁架结构外,在一些工程中创新的应用了很多新型高效的结构体系,如张弦梁、张弦桁架、弦支穹顶、弦支筒壳、索穹顶、空腹网壳等结构体系。
     为解决单层网壳结构平面外刚度弱以及双层网壳结构杆件密影响建筑效果的问题,结合鄂尔多斯新建航站楼机场A区穹顶,采用了单双层网格结构体系。基于有限元理论,对单双层网格结构的静力性能、温度效应以及稳定性能进行了研究,得出单双层网格结构具有较好的静力性能和稳定性能。单双层网格结构对考虑太阳辐射作用的温度荷载较为敏感,建议设计此类结构时,对结构的温度荷载和温度效应进行细致分析。
     采用瞬态动力学理论,对单双层网格结构在脉动风作用下以及多点地震激励下的动力响应进行了研究,得出结构位移平均风振系数在2.0左右;当波速度分别为V=300m/s、V=800m/s和V=1200m/s时,结构杆件地震行波影响系数的分布范围分别为0.43~3.76、0.33~2.04和0.40~1.75。
     鄂尔多斯机场航站楼A区穹顶的支撑采用了Y型支撑,在网格结构与Y型支撑汇交处,存在多杆件汇交、受力复杂的特点,此处采用了带肋铸钢球节点,本文对其力学性能进行了数值分析。网格结构中常用的螺栓球节点存在假拧紧问题,给工程的安全使用带来了隐患,为解决此问题,本文提出了一种螺栓球节点的改进形式,根据改进型螺栓球节点的构造特点,提出了改进型螺栓球节点的设计方法。
     结合鄂尔多斯单双层网格结构旋转滑移施工的特点,提出了施工支撑架的设计方法和原则。为了解改进螺栓球节点的破坏机理,对其进行了材料的材性试验、套筒的抗压试验以及高强螺栓的抗拉试验,得到了改进型螺栓球节点的破坏模式,为改进型螺栓球节点设计方法的建立奠定了试验基础。
With the development of the economics, more and more large span space are needed. Therefore, a large number of large span structures, such as stadiums and gymnasiums, exhibition centers, train station, airport and large workshop and so on, were co nstructed. Except the traditional spatial truss and latticed shell, some new large span structures w ere ad opted i n s ome e ngineerings, s uch as b eam s tring structures, truss s tring structures, sus pen-dome structures, cabl e-supported b arrel vault structures, cable domes, vierendeel latticed shell and so on.
     In o rder to overcome t he weak out-of-plane stability o f s ingle layer latticed shell and bad appearance of double-layer latticed shell, a new structure, single and double layer latticed shell structure, was adopted in the airport of EERDUOSI. In the second chapter, the static bahvior temperature effect and stability of the presented structure were analyzed based on the finite element analysis. Based on the analysis results, the pr esented structure has a good static behavior a nd s tability, a nd it is sensitive to the temperature load, especially to the temperature load considering the solar radiation.
     A systematical research on the dynamic response under fluctuating wind and multiple seismic exciations were carried out using the transient dynamic theory. The displacement average wind vibration coefficient were obtained and the value is about 2.0. And the t ravlling wave influence co efficient is 0.43~3.76, 0.33~2.04 and 0.40~1.75 under V=300 m/s, 800 m/s and 1200 m/s respectively.
     The Y-shaped supported structure was adopted in the airport of EERDUOSI. And the cast-steel joint including stiffening rib was used in between the latticed shell and the Y-shaped supported structures. The stress distribution of the cast-steel joint was analyzed using nonlinear finite element theory. Based on the analysis results, it is concluded that the caset-steel joint including stiffening rib has a good mechanical behavior.
     The false t ightening phenomenon is a main pr oblem o f t he bolt-ball joint in engineering application. And this problem make the structure under danger. In order to overcome this problem,a new bolt-ball joint is presented in this paper. In addition, the design method for this new bolt-ball joint is also presented.
     Considering the characteristic of the rotary sliding construction in the airport of EERDUOSI, some design method and principle were presented in this paper.
     In order to understand the failure mechanism of the presented bolt-ball joint, the material testing, compressive test of sleeve and the tensile test of high strength bolt were carried out. And based on the test results, the failure modes of the presented bolt-ball joint were obtained, which can provide a important reference for its design method.
引文
[1]刘锡良.现代空间结构[M].天津:天津大学出版社,2003.
    [2]董石麟,罗尧治,赵阳等,新型空间结构分析、设计与施工[M].北京:人民交通出版社,2006
    [3]陈志华.弦支穹顶结构[M].北京:科学出版社,2010.
    [4]闫翔宇.基于拉索的弦支复合结构体系研究[博士学位论文],天津:天津大学,2010.
    [5]董石麟.中国空间结构的发展与展望[J].建筑结构学报,2010,31(6):1-14.
    [6] R. Fuller, tensegrity. Portfolio and art news annual, 1961.
    [7] R.B.Fuller. Tensile-integrity Structures [P]. U.S.Patent, No.3063521, 1962.
    [8]陈志华.张拉整体结构的理论分析与实验研究[D].天津:天津大学,1994.
    [9] Masao Saitoh and Kurasiro Tosiya,“A study on structural behaviors of beam string structure”, Summaries of technical papers of annual meeting architectural institute of Japan [C], Tokyo, Japan, B 1.1985, pp.280–284.
    [10] Masao Saitoh, Ohtake Tohru, A Study on beam string structure with flat circular arch, Summaries of technical papers of annual meeting architectural institute of Japan [C], Tokyo, Japan, B 1.1988: 1369–1374.
    [11] Masao S aitoh, A s tudy on s tructural pl anning of r adial t ype be am string structures, S ummaries o f t echnical pa pers o f annual meeting architectural institute of Japan [C], Tokyo, Japan, B 1.1988: 1365–1366.
    [12] Masao S aitoh, A kira O kada, K atsuo M aejima, et al ., S tudy o n m echanical characteristics of a light-weight complex structure composed of a membrane and a beam string structure, Spatial, lattice and tension structures, In: Proc. of the IASS-ASCE Int. Symp., 1994:632–641.
    [13] S. K ato, et al., A ctive co ntrol o f a xial forces in b eam s tring space frames,Spatial, lattice and tension structures, In: Proc. of the IASS-ASCE Int. Symp., 1994: 664-673.
    [14] Masao S aitoh, a kira o kada. T he r ole o f s tring i n hybrid s tring s tructure[J]. Engineering Structures, 1999, 21(8), pp.280–284.
    [15] Mamoru Kawaguchi, Masaru Abe, Tatsuo Hatato, et al. On a structural system“suspen-dome”system, Proc. of IASS Symposium,Istanbul, 1993, pp:523-530.
    [16] Mamoru Kawaguchi, Masaru Abe, Ikuo Tatemichi. Design, tests and realization of‘suspen-dome’System. Journal of the IAAS, 1999, 40(131):179-192
    [17]陈志华,荣彬,孙国军等.弦支结构体系概念与分类[J].工业建筑,2010,40(8):1-5.
    [18]沈世钊,陈昕.网壳结构的稳定性[M].北京:科学出版社,1999.
    [19]陈志华,闫翔宇等.弦支筒壳结构体系[P].中国:2008100537228,2008.
    [20]陈志华,乔文涛等.弦支混凝土集成楼盖结构及其施工方法[P].中国:2008100534380,2008.
    [21]刘红波,陈志华.一种新型空间结构形式——弦支拱壳结构[J].工业建筑, 2010,40(445):10-12.
    [22]钱英欣,吴金志,王丰等.预应力金属薄板结构体系研究[C]. 201 1年空间结构技术交流会论文集,2011:64-72.
    [23] Geiger, D.H., Stefaniuk. A., Chen, D.. The design and construction of two cable domes for the Korean Olympics. In Proceedings of the International Symposium on Shell and Spatial Structures, 1986, pp. 265-272.
    [24] Yuan XF, Dong SL. Nonlinear analysis and optimum design of cable domes. Eng Struct 2002; 24(7):965-77.
    [25] Yuan XF, Dong SL. Integral feasible prestress state of cable domes. Comput Struct 2003; 81(21):2111-19.
    [26] Yuan XF, Chen LM, and Dong SL. Prestress design of cable domes with new forms. Int J Solids Struct 2007; 44(9):2773-82.
    [27] Wang ZH, Yuan XF, and Dong SL. Simple approach for force finding analysis of circular Geiger domes with consideration of self-weight. J Constr Steel Res 2010; 66(2):317-22
    [28] Mamoru Kawaguchi. E ngineering aspects o f s pace f rames[A]. Current a nd Emergine Technologies of Shell and spatial Structures[C]. Madrid:Procedings of the colloquium,1997.
    [29] John Chilton. Space Grid Structures[M].Architectural Press 2000.
    [30]王小盾,攀达穹顶结构体系的理论分析与工程实践研究,博士,天津大学,2003
    [31]卓新,姚纪庆,Pantadome体系及其施工技术,施工技术,2003,32(6),53~54
    [32]川口卫,奈良大会堂与攀达穹顶体系,空间结构,1998,4(4),56~60
    [33]赵剑利,刘锡良,陈志华等,攀达穹顶体系,工程力学(增刊),1999
    [34]赵剑利,刘锡良,陈志华,攀达穹顶体系顶升过程的机构运动分析和计算机模拟,工业建筑(增刊),2001
    [35]范重,赵长军,李丽等.国内外开合屋盖的应用现状与实践[J].施工技术,2010,39(8):1-7.
    [36] Jorg schlaich, hans sc hoter. G lass-covered grid-shells. S tructural e ngineering international, 1996(2):235-244
    [37]宋同,吴明儿.预应力双向网格单层网壳结构整体稳定性分析[J].建筑钢结构进展,2010,12(1):45-49.
    [38]李欣,武岳.索撑网壳——一种新型空间结构形式.空间结构[J],2007,13(2):17-21.
    [39]吴明儿,邢鹏举,宋同等.索支撑单层网壳结构及其整体稳定性[C]. 201 1年空间结构技术交流会论文集,2011:100-106.
    [40]杨大彬,张毅刚,吴金志.新型落地索拱结构及其力学性能分析[J].建筑结构学报,2011,32(8):51-58.
    [41]魏协进.鄂尔多斯机场航站楼屋盖钢结构关键技术研究[硕士学位论文],天津:天津大学,2010.
    [42]吴锋,筒壳施工分析及空间网格结构节点研究,天津大学硕士学位论文,2006
    [43]陈志华,吴锋,闫翔宇,国内空间节点综述,建筑科学,第23卷,第9期:93-97页,2007年9月
    [44]陈志华,刘红波,周婷等.空间钢结构APDL参数计算与分析[M].北京:中国水利水电出版社,2009.
    [45] M.M Alinia, S. Kashizadeh. Effect of flexibility of substructures upon thermal behaviour of spherical double layer space truss domes. Part I: Uniform thermal loading[J]. Journal of Constructional Steel Research, 2006, Vol. 62: 359-368.
    [46] M.M Alinia, S. Kashizadeh. Effect of flexibility of substructures upon thermal behaviour o f s pherical do uble layer s pace t russ do mes. P art I I: G radient & partial loading[J]. J ournal o f Constructional S teel R esearch, 2006, Vol. 62, 675-681.
    [47] M.M A linia, S . K ashizadeh. E ffects o f support po sitioning o n t he t hermal behaviour of double layer space truss domes[J]. Journal of Constructional Steel Research, 2007, Vol.63, 375-382.
    [48] Tong M,Tham L G ,Au F T K . N umerical modeling for t emperature distribution in steel bridges[J]. Computers and structures, 2000, 79:583-593.
    [49] Xu Y. L., Chen B., Ng C. L., Wong K. Y., Chan W. Y.. Monitoring temperature effect on a long suspension bridge[J].Structural Control and Health Monitoring, 2010, Vol. 17:632–653
    [50] S.-H. KIM, K.-I. CHO, J.-H. WON, J.-H. KIM. A study on thermal behavior of curved steel box girder bridges considering solar radiation[J]. Archives of Civil and Mechanical Engineering, 2009, vol. 9, No. 3, pp:59-76.
    [51] Brisn K. D iefenderfer, I mad L. A l-Qadi, S tacey D . D iefenderfer. M odel t o predict pavement temperature profile: development and validation. Journal of Transportation Engineering, vol. 132, no. 2, pp:162-167.
    [52] Andrew D. Chiasson, Cenk Yavuzturk, Khaled Ksaibati. Linearized approach for pr edicting thermal s tresses in asphalt pa vements due t o en vironmental conditions[J]. Jo urnal o f Ma terials in C ivil E ngineering, Vol. 20, N o. 2 , pp : 118-127.
    [53] Chen-Ming Kuo. E ffective t emperature differential in co ncrete pavements[J].Journal of transportation engineering, 1998, 124(2):112-116.
    [54] Wing-Gun W ong, Y ang Zhong. Flexible pa vement thermal s tresses w ith variable t emperature[J]. J ournal o f t ransportation e ngineering, 2000, 126(1):46-49.
    [55] J. Zhang, T. F. Fwa, K. H. Tan, X. P. Shi. Model for nonlinear thermal effect on pavement warping stresses[J]. Journal of transportation engineering, 2003, 129(6):695-702.
    [56] Robert Y. L iang, Y an-Zhou N iu. Temperature and curling stress in co ncrete pavements: analytical solutions[J]. Journal of transportation engineering, 1998, 124(1):91-100.
    [57] Jin Feng, C hen Z heng, W ang J inting, Y ang J ian. P ractical pr ocedure f or predicting non-uniform temperature on t he expo sed face o f ar ch da ms[J]. Applied Thermal Engineering, 2010, vol. 20:2146-2156.
    [58] Noorzaei J, Bayagoob KH, Thanoon WA, et al. Thermal and stress analysis of Kinta RCC dam[J]. Engineering Structures, 2006, 28(13): 1795-802.
    [59]孙国富.大跨度钢管混凝土拱日照温度效应理论及应用研究:[博士学位论文],山东:山东大学,2010
    [60]孙国晨,关荣财,姜英民等.钢-混凝土叠合梁横截面日照温度分布研究[J].工程力学,2006,23(11):122-127.
    [61]徐光亚,颜东煌,张克波.桁架式钢管混凝土拱桥合龙时温度影响对策与计算方法[J].工程力学,2008,25(4):236-240.
    [62]张元海,李乔.非线性日照梯度温度作用下斜支承箱梁的温度效应研究[J].工程力学,2009(1):131-136
    [63] Chen xiaoqiang, liu q iwei, zhu jun. measurement and t heoretical a nalysis o f solar t emperature f ield in steel-concrete co mposite g irder[J]. J ournal o f southeast university, 2009, 25(4):513-517
    [64]任志刚,胡曙光,丁庆军,吕林女.钢管膨胀混凝土墩柱日照温度场分析[J].武汉理工大学学报,2008,30(11):99-107
    [65]雷笑,叶见曙,王毅.日照作用下混凝土箱梁的温度代表值[J].东南大学学报,2008,38(6):1106-1109
    [66]张元海,李乔.斜支承箱梁的日照温度次内力研究[J].土木工程学报,2008,41(5):46-51
    [67]彭友松,强士中,李松.哑铃形钢管混凝土拱日照温度场分布研究[J].中国铁道科学,2006,27(5):71-75.
    [68]谭毅平,韩大建.预应力混凝土箱梁日照温度效应研究[J].深圳大学学报,2008,25(1):43-49.
    [69]
    [70]陈拯,金峰,王进廷.拱坝坝面太阳辐射强度计算[J].水利学报,2007,28(12):1460-1474.
    [71]林志祥.混凝土大坝温度应力数值仿真分析关键技术研究:[博士学位论文].南京:河海大学,2005.
    [72]李志磊,干钢,唐锦春.考虑辐射换热的建筑结构温度场的数值模拟[J].浙江大学学报(工学版),2004,38(7):915-920.
    [73]李红梅,金伟良,叶甲淳等.建筑维护结构的温度场数值模拟[J].建筑结构学报,2004,25(6):93-98.
    [74]肖建庄,宋志文,赵勇,钱岳红.基于气象参数的混凝土结构日照温度作用分析[J].土木工程学报,2010,43(4),30-36.
    [75]范重,王喆,唐杰.国家体育场大跨度钢结构温度场分析与合拢温度研究[J].建筑结构学报,2007,28(2):32-40.
    [76]孙锐锐.大跨度钢拱结构温度效应和焊接效应分析[硕士学位论文],天津:天津大学,2008.
    [77]王元清,林错错,石永久.露天日照条件下钢结构温度的试验研究[J].建筑钢结构学报,2010,增刊:140-147.
    [78] Faye C. McQuiston, Jerald D. Parker, Jeffrey D. Spitler. Heating, ventilating, and air conditioning analysis and design.UAS: John Wiley and Sons, 2005.
    [79]刘红波.弦支穹顶结构施工技术与温度效应研究[博士学位论文],天津:天津大学,2011.
    [80]李锦萍,宋爱国.北京晴天太阳辐射模型与ASHRAE模型比较[J].首都师范大学学报(自然科学版),1998,19(1):35-38.
    [81] AITM220018. A irbus industrie t est m ethod s olar a bsorption o f pa ints[R] . Airbus Industrie , 1998.
    [82]中华人民共和国行业标准.民用建筑热工设计规范GB 50176-1993.北京,中国计划版社,2001.
    [83]乔文涛.弦支结构体系研究[博士学位论文],天津:天津大学,2010.
    [84]张相庭,结构风压和风振计算,上海:同济大学出版社,1985.5.
    [85]黄本才,结构抗风分析原理及应用,上海:同济大学出版社,2001.2.
    [86]星谷胜著,常宝琦译,随机振动分析,北京:地震出版社,1977.
    [87] H.Yasui, H.Marukawa, Study of wind-induced response of long-span structure, Journal of Wind Engineering and Industrial Aerodynamics,1999,83:277-288.
    [88] G.P.Killen, C .W.Letchford, A pa rametric s tudy o f w ind loads o n g randstand roofs, Engineering Structures,2001,23:725-735.
    [89]王之宏,风荷载的模拟研究,建筑结构学报,1994,15(1):44-52.
    [90]舒新玲,周岱,风速时程AR模型及其快速实现,空间结构,2003,9(4):27-32.
    [91]边建烽,魏德敏,大跨度空间结构风速时程的数值模拟理论,暨南大学学报(自然科学版),2005, 26(1):87-90.
    [92] A.Kareem,T.Kijewski,Time-frequency analysis of wind effects on structures,Journal of Wind Engineering and Industrial Aerodynamics, 2002,90:1435-1452.
    [93] H.Yasui,H.Marukawa,Study of wind-induced response of long-span structure,Journal of Wind Engineering and Industrial Aerodynamics,1999,83:277-288.
    [94]庄表中,结构随机振动,北京:国防工业出版社,1995.
    [95] Davenport A .G., N ote on the d istribution o f t he l argest va lue o f a r andom function with application to gust loading, Proc. ICE (24), 1964,187-196.
    [96]胡继军,网壳风振及控制研究,[博士学位论文],上海:上海交通大学,2000.
    [97]何艳丽,董石麟,龚景海,空间网格结构频域风振响应分析模态补偿法,工程力学,2001,19(4):1-6.
    [98]李元齐,董石麟,大跨度空间结构风荷载模拟技术研究及程序编制,空间结构,2001,7(3):4-5.
    [99]中国建筑科学研究院.鄂尔多斯机场风洞报告.
    [100]范立础,王君杰,陈玮,非一致地震激励下大跨度斜拉桥的响应特性,计算力学学报,2001,18(3):359-363.
    [101]潘旦光,楼梦麟,范立础,多点输入下大跨度结构地震反应分析研究现状,同济大学学报,2001,29(10):1213-1219.
    [102]丁阳,王波,大跨度空间网格结构在地震行波作用下的响应,地震工程与工程振动,2002,22(5):71-76.
    [103]王秀丽,丁南生,柴宏,大跨度弦支梁结构非线性地震响应及参数分析,空间结构,2006,12(2):34-38.
    [104] Loh C H and Yeh Y T, Spatial variation and stochastic modeling of seismic differential ground movement, EESD, 1988, 16:583-596.
    [105] Lin J H, Williams F W, Zhang W S, A new approach to multi-excitation stochastic seismic response, Micro. Computers in Civil Engineering, 1993, 8(4): 283-290.
    [106]中国工程建设协会,CECS 235:2008,铸钢节点应用技术规程,北京:中国计划出版社,2008
    [107]卞若宁,陈以一等.空间结构大型铸钢节点试验研究.建筑结构,2002,32(12):45~47
    [108]马人乐,牟宗磊,高险峰等.三角形螺栓球节点钢管塔架倒塌事故调查研究.建筑结构学报,1998,19(1):11-14.
    [109]董树森.螺栓球节点网架施工.建筑技术,1982,11期,47-49
    [110]中华人民共和国国家标准:中华人民共和国建设部,GB50017-2003,钢结构设计规范,北京:中国计划出版社,2003年
    [111]中华人民共和国国家标准:中华人民共和国建设部,GB50205-2001,钢结构工程施工质量验收规范,北京:中国计划出版社,2001年
    [112]中华人民共和国国家标准:中华人民共和国住房和城乡建设部,GB50011-2010,建筑抗震设计规范,北京:中国建筑工业出版社,2010年
    [113]中华人民共和国国家标准:中华人民共和国建设部,GB50009-2001,建筑结构荷载规范(2006年版),北京:中国建筑工业出版社,2006年
    [114]中华人民共和国行业标准:中华人民共和国建设部,JGJ61-2003,网壳结构技术规程,北京:中国建筑工业出版社,2003年
    [115]中华人民共和国建筑工业行业标准:中华人民共和国住房和城乡建设部,JG/T10-2009,钢网架螺栓球节点,北京:中国标准出版社,2009年