在役拉索金属截面积测量方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拉索广泛应用于大跨度桥梁、大型建筑、游览设施,为确保其安全运营,在役定期检测十分必要。本学位针对拉索大直径、厚保护层的结构特征,对在役拉索金属截面积测量方法和关键技术进行系统、深入的研究,实现了拉索金属截面积变化量的精确测量和变化部位的准确测定。
     为解决拉索金属截面积变化量的测定问题,提出了一种基于导出磁通量的磁性测量方法。建立了该测量方法的磁阻分析模型,揭示出测量点处霍尔元件输出电压变化率与拉索金属截面积变化率成正比关系。然后,通过实验进行了验证。系统地分析了测量系统的标定、截面积变化的径向位置、磁化电流的大小、导磁磁路的数量、霍尔元件的放置位置、拉索的应力等对测量精度的影响。
     为确定拉索断面上金属截面积变化的部位,提出了一种基于磁通量离散阵列模型的测定方法。构建出金属截面磁通量离散阵列模型及测量方程组,并经过实验进行了验证。为满足在线实时定位测量的要求,引入粒子群优化算法解决模型参数的优化迭代计算,完成反演定位测量问题的快速求解。通过实验验证了该反演定位测量方法的有效性。
     针对拉索直径大、难以有效磁化的特点,采用有限元仿真计算,分析了拉索磁化线圈长径比、层数等参数对磁场分布的影响规律,给出了非均匀磁化时不同长径比、不同磁导率、整体磁化、局部磁化等条件下圆柱棒的退磁因子,研究了退磁场的作用规律,在此基础上,并通过圆柱棒和拉索钢丝束局部磁化效果的等效性分析,得到了可使拉索局部磁化效果最优的主路技术磁化方法,有效减小了磁化器的重量。为适应不同的应用需求,提出了分离式和可重构式两种爬行器结构,在现场进行了爬升实验,爬行器样机负载能力强、体积小、重量轻、拆装方便,能够适应不同直径拉索的在役检测。这两项技术是解决工程化在役拉索检测的关键。
Cables are widely used in large-span bridges, large buildings and tour facilities. To ensure safe operation of the in-service cables, it is necessary to periodically test them. In this dissertation, for the cable's structure with large diameter and thick protecting layer, the metal cross-sectional area measurement methods and key technologies are studied systemically in depth. Precise measurement of the variation of metal cross-sectional area of cable and the position of metal cross-sectional area change are achieved.
     To measure the variation of metal cross-sectional area of cable, a magnetic measurement method based on lead-out magnetic flux is proposed. The analytical model of the reluctance for this method has been established, which reveals the variation rate of the Hall elements output voltage at the measurement point is proportional to the variation rate of the cable's metal cross-sectional area. Later, the model is verified by experiments. Analysis has been conducted systematically for the impacting factors to measurement accuracy, which include the calibration of the measuring system, the radial position of the cross-sectional area change, the magnitude of the magnetizing current, the number of the magnetic circuits, the placement of the Hall elements and the stress in cable.
     To determine the location of the cable's metal cross-sectional area change, a method based on magnetic flux discrete array model has been developed. The corresponding discrete array model of magnetic flux in metal cross-section and mathematic equations have been constructed. The model is verified by experiments. To meet the requirements of online real-time locating measurement, the particle swarm optimization algorithm has been introduced to optimize iteration calculation of the model parameters, achieving the fast solution of the inverse problem of locating measurement. The effectiveness of this inversion locating measurement method is verified by experiment.
     On the cable's features of large diameter and difficulty of being magnetized effectively, finite element simulation calculation is applied to analyze the impacts of the parameters such as the ratio of the length and diameter, number of layers of magnetization coil, etc. on the magnetic field distribution, and the demagnetization factors of cylindrical rod under the conditions of different ratios of the length and diameter, permeability, overall magnetization and local magnetization in non-uniform magnetization are achieved, and the effect of demagnetizing field is also studied. On this basis of the results above, by the equivalence analysis of local magnetization effect of the cylindrical rod and the wire bundle, the main road magnetization method has been obtained to optimize the cable local magnetizaiton. The method effectively reduces the weight of the magnetizer. Two crawler structures, namely separate and reconfigurable structures have been put forward to adapt to different application requirements. Climbing experiments have been carried in field. The crawler prototypes have strong loading capacity, small size and light weight, which is easy to dismantle and able to adapt to the testing of cables with different diameters in service. These two technologies are the key points to solve the problem of engineering testing of in-service cables.
引文
[1]王文涛.斜拉桥换索工程.(第二:版).北京:人民交通出版社,2006
    [2]URL:http://news.sina.com.cn/c/2002-09-13/0823721894.html
    [3]URL:http://news.china.com/zh_cn/focus/ybtq
    [4]URL:http://www.chinanews.com/sh/2011/04-12/2966293.shtml
    [5]URL:http://www.chinanews.com/sh/2011/07-16/3187435.shtml
    [6]URL:http://www.jxcn.cn/525/2009-9-1/30079@565840.htm
    [7]Inspection and Maintenance of Bridge Stay Cable Systems. National Cooperative Highway Research Program. WASHINGTON, D.C.2005
    [8]Henriksen C F, Knudsen A, Braestrup M W. Cable corrosion:undetected. Concrete International,1998,20(10):69-72
    [9]罗均,吕恬生,张家梁,王殿臣.拉索维护机器人系统的研制.上海交通大学学报,2000,34(3):360-362
    [10]郑李明,王兴松.斜拉桥拉索检测机器人控制系统设计.机械制造与自动化,2008,24(6):57-60
    [11]屠凯.拉索表面检测机器人的系统设计和仿真研究.[硕士学位论文].重庆,重庆大学,2008
    [12]王治国,冷护基,陈霞.新型拉索机器人爬升机构力学分析及试验.安徽工业大学学报,2008,25(2):1 47-1 50
    [13]余朝阳.利用机器人检查斜拉索初探.广东公路交通,2009(4):34-36
    [14]郝超,裴岷山,强士中.斜拉桥索力测试新方法一一磁通量法.公路.2000(11):30-31
    [15]吴海军,陈思甜等.斜拉桥索力测试方法研究.重庆交通学院学报.2001,20(4):19-25
    [16]施洲,蒲黔辉,佘川.钢管混凝土拱桥自振特性分析及其检测应用.公路交通科技,2005.(1):62-65
    [17]Pollock A A, Smith B. Stress-Wave Emission monitoring of a military bridge. Non-Destructive Testing,1972,5 (6):348-353
    [18]Mo hammed R. An insight into the NDT of steel cables by acoustic emission. Proceedings of the 14th World Conference on Non-Destructive Testing, New Delhi, 1996.201-210
    [19]李冬生,欧进萍.声发射技术在拱桥吊杆损伤监测中的应用.沈阳建筑大学!学报(自然科学版),2007,23(1):6-10
    [20]Suzuki N, H Takamatsu, S Kawashima, K Sugi, M Iwazaki. Ultrasonic Detection Method for Wire Breakage. Kobelco Technology Review, No.4, August 1988, pp. 23-26
    [21]H.Kwun, C.M.Teller. Detection of fractured wires in steel cables using magnetostrictive sensors. Materials Evaluation,1994,52:503-507
    [22]Monssef Drissi-Habti, Bojidar Yanev amd Raimondo Betti, Suspension Bridge Cables: Pathologies, Inspection, Alternative Materials. Materials Evaluation,2009, Vol.67, No. 12,pp.1379-1386
    [23]Elliott, J.,Kwun, H.,Sluszka, P. Recent developments in inspection and monitoring of cable-supported bridges. Conference on Operation, Maintenance and Rehabilitation of Large Infrastructure Projects, Bridges and Tunnels, Copenhagen, Denmark, May 15-17,2006. Zurich, Switzerland:ETH Honggerberg,2006
    [24]Rizzo, P.,Lanza di Scalea, F., Load measurement and health monitoring in cable stays via guided wave magnetostrictive ultrasonics, Materials Evaluation,2004,62(10): 1057-1065
    [25]Jiang Xu, Huan Tang, Xinjun Wu, Anran Ben and Yihua Kang. Broken wire detection in stay cables based on guided waves.2010 International Conference on Mechanic Automation and Control Engineering,2010:1207-1210
    [26]徐江,汤欢,武新军.桥梁拉索断丝导波无损检测系统研制.无损探伤,2010,34(3):19-21
    [27]林阳子,武新军,张宇峰,徐江.基于磁致伸缩技术的桥梁拉索损伤定位研究.公路交通科技,2011,28(6):109-112
    [28]杨叔子,康宜华.刚丝绳断丝定量检测原理与技术.北京:国防工业出版社,1995
    [29]Intron Plus, Ltd. Non-Destructive Inspection of Steel Wire Ropes. Instruments & Services
    [30]URL:http://www.intron.ru/index.phtml?section=defectoscope&page=119&lang=en
    [31]R Christen, A Bergamini, M Motavalli. Influence of steel wrapping on magneto-inductive testing of the main cables of suspension bridges. NDT&E Int.2009, 42:22-27
    [32]Rocio Maldonado-Lopez, Rouven Christen. Position-Controlled Data Acquisition Embedded System for Magnetic NDE of Bridge Stay Cables. Sensors,2011,No. 11:162-179
    [33]R Christen, A Bergamini, M Motavalli. Three-Dimensional Localization of Defects in Stay Cables Using Magnetic Flux Leakage Methods. Journal of Nondestructive Evaluation,2003,Vol.22, No.3:93-101
    [34]武新军,王峻峰,杨叔子.斜拉桥拉索缺陷检测系统的研制.机械科学与技术,2001,20(6):901-903
    [35]张家梁,吕恬生,罗均,姚香根.气动蠕动式拉索维护机器人的研制.机器人,2000,22(5):397-401
    [36]张家辉,吕恬生,罗均.大倾斜度缆索机器人的研制.高技术通讯,2001,(01):88-90
    [37]郑李明,王兴松.斜拉桥拉索径向畸变CCD图像的边缘检测与图像提取.机械制造与自动化,2008,37(6):107-110
    [38]王亚斌,周忆.一种轻型斜拉桥拉索检测机器人的结构与动力学分析.机械与电子,2008,(1):48-50
    [39]柳忠彬,周忆.斜拉桥拉索检测机器人的自适应研究.机械与电子,2009,(12):48-51
    [40]王亚斌.斜拉桥缆索检测机器人运动学及结构研究.[硕士学位论文].重庆,重庆大学,2008
    [41]武新军,康宜华,杨叔子.斜拉桥拉索缺陷检测机器人的研制.机械与电子,2001,(1):47-48
    [42]Kenzo Miya. Recent Advancement of Electromagnetic Nondestructive Inspection Technology in Japan. IEEE transaction on magnetics,2002,38(2):312-326
    [43]Tomaiuolo, F.G., Lang, J.G.. Method and Apparatus for Nondestructive Testing of Magnetically Permeable Bodies Using a First Flux to Saturate the Body and a Second Flux Opposing the First Flux to Produce a Measurable Flux. US. patent, no.4495465, 1985
    [44]Ridge, I.M.L., et al.. Investigation of Failure of Crane Rope From DSV DSND PELICAN. HSE Report, OTO 2002-031
    [45]褚建新,顾伟.钢丝绳缺陷漏磁场的磁通门检测法.仪器仪表学报,1997,18(4):437-440
    [46]李劲松,刘克明,卢文祥等.钢丝绳断丝探伤传感器的研制.华中理工大学学报,1988,1 6(3):75-80
    [47]康宜华.钢丝绳断丝定量检测方法及仪器的研究.[博士学位论文].武汉:华中理工大学图书馆,1993
    [48]Haller A. New Methods of Measuring the Cross-Sections of Ropes. International Seilbahn-Rundschau,1984, (3):121-124
    [49]李劲松,马宏党,卢文祥等.钢丝绳截面积耗损探伤传感器的研制.华中理工大学学报,1991,19(2):107-112
    [50]武新军.钢丝绳截面积损失的磁性无损检测原理与技术.[博士学位论文].武汉:华中理工大学图书馆,1999
    [51]Jin J.H., Kang Y.H., Yang S.Z.. An Improved Corrosion Inspection and Monitoring Instrument for Used Oil Well Tubing. Materials Performance,2000,39(2):72-76
    [52]田志勇,黄忠慧.钢丝绳检测中有源励磁器的设计.机电工程,2005,22(12):32-35
    [53]李劲松.钢丝绳状态在线自动定量检测原理与实践.[博士学位论文].武汉:华中理工大学图书馆,1991
    [54]黄锐.钢丝绳内部损伤自动定量无损检测技术及其装置的研究.[博士学位论文].武汉:华中理工大学图书馆,1994
    [55]谈兵.钢丝绳缺陷定量检测技术及仪器的研究.[博士学位论文].武汉:华中理工大学图书馆,1995
    [56]杨洗陈.漏磁探伤中漏磁场和缺陷的相互作用理论.无损探伤,1997,9,9-15
    [57]Zhang, Yaobang, Kazuyoshi, Sekine E.T.. Magnetic Leakage Field Due to Sub-surface Defects in Ferromagnetic Specimens. NDT&E international,1995,28(2):67-71
    [58]胡险峰.漏磁通检测中铁磁材料的磁化状态.无损检测,2001,23(4):139-143
    [59]王庆国,潘华锦,张灵振等.漏磁法无损检测中铁磁材料内部磁场分布的研究.无损检测,2001,23(1):6-9
    [60]胡险峰.法向漏磁通随磁化场和矩形槽尺寸的变化.无损检测,2001,23(7):277-281
    [61]徐章遂,蕲英卫,张政保等.铁磁材料组合裂纹的漏磁数学模型.兵器材料科学与工程,2001,24(2):3-7
    [62]赵凯华,陈熙谋.电磁学北京:高等教育出版社,2003
    [63]周强.钢丝绳漏磁通应力效应的研究.武汉理工大学学报(交通科学与工程版),2002,26(6):347-349
    [64]Kalwa E., Piekarski K.. Design of Inductive Sensors for Magnetic Testing of Steel Ropes. NDT international,1987,20(6):347-353
    [65]Kalwa E., Piekarski K.. Design of Hall-effect Sensors for Magnetic Testing of Steel Ropes. NDT international,1987,20(5):295-301
    [66]Lord W.,Hwang J.H.. Defect Characterization from Magnetic Leakage Fields. British journal of NDT,1977,19(1):3-6
    [67]刘圣民.电磁场的数值方法.武汉:华中理工大学出版社,1991
    [68]Charlton P.C., Donne K.E.. The Computer Modeling of Magnetic Flux Leakage Signals Using the Boundary Element Method. European Journal of NDT,1993, 3(1):6-9
    [69]Brader B.. Magnetic Leakage Field Calculation by Method for Finite Difference. NDT Int.,1985,18:353-357
    [70]王桂兰,孙建芳,张海鸥.钢丝绳捻制成形的空间几何模型与有限元分析.应用力学 学报,2003,20(3):82-86
    [71]王桂兰,孙建芳,张海鸥.钢丝绳捻制成形接触问题的有限元分析.固体力学学报,2005,26(4):414-420
    [72]王桂兰,张海鸥.钢丝绳成形力学行为的非线性有限元分析.工程力学,2002,19(3):166-170
    [73]Jiang W.G., Yao M.S., Walton J.M.. A Concise Finite Element Model for Simple Wire Rope Strand. International Journal of Mechanical Sciences,1998,41(2):143-161
    [74]Jiang W.G., Yao M.S., Walton J.M.. Modeling of Rope Strand under Axial and Torsional Loads by Finite Element Method. In:Proceedings of The Application of Endurance Prediction for Wire Ropes'97,Reading,1997:17-35
    [75]Anne, Nawrocki, Michel, Labrosse. A Finite Element Model for Simple Straight Wire Rope Strands. Computers and Structures,2000,77:345-359
    [76]胡阳.漏磁计算机断层成象技术及漏磁场可视化技术的研究.[博士学位论文].华中理工大学图书馆,1997
    [77]D.Minkov, T.Shoji. Method for sizing of 3-D surface breaking flaws by leakage flux. NDT&E International,1998,31(5):317-324
    [78]R.Schifini, Gladchtein, A. C.Bruno. Three-dimensional reconstruction of surface-breaking flaws using finite element methods. Review of Progress in Quantitative Evaluation 2000
    [79]刘志平.基于有限元分析的储罐底板磁性检测与评价方法研究.[博士学位论文].华中科技大学图书馆,2003
    [80]Mingye Yang, Statish Udpa, Shreekanth Mandayam et al. Solution of inverse problems in electromagnetic NDE Using Finite Element Method. IEEE Transaction on magnetics,1998,34(5):2924-2927
    [81]loannis T.Rekanos,Theodoros D Tsiboukis,A Combined finite element-nonlinear conjugate gradient spatial method for the reconstruction of unknown scatter profiles. IEEE transaction on magnetics,1998,34(5):2829-2832
    [82]R. Christen, A. Bergamini. Automatic Flaw Detection in NDE Signals Using a Panel of Neural Networks. NDT&E International,2006,39:547-553
    [83]Pradeep Ramuhalli. Neural network based iterative algorithms for solving electromagnetic NDE inverse problems. [Doctoral dissertation]. Iowa State University, Ames, IA,2002
    [84]Kyungtae HWang.3-D defect profile reconstruction from magnetic flux leakage signatures using wavelet basis function neural networks. [Doctoral dissertation]. Iowa: Iowa State University,2000
    [85]A. Joshi, L. Udpa, S. UdPa, and A. Tamburrino. Adaptive wavelets for characterizing magnetic flux leakage signals from pipeline inspection. IEEE Trans. Magn.,2006, 42(10):3168-3170
    [86]Ameet Vijay Joshi. Inverse problems in non-destructive evaluation of gas transmission pipelines using magnetic flux leakage. [Doctoral dissertation]. East Lansing:Michigan State University,2006
    [87]C. Jomdecha, A. Prateepasen. Design of modified electromagnetic main-flux for steel wire rope inspection. NDT&E International,2009,42:77-83
    [88]C.Jomdech. Characterization of Wire Rope Defects from Magnetic Flux Leakage Signals. Thammasat Int. J. Sc.Tech.,2003,Vol.8, No.1:54-63
    [89]Cheng Shunfeng, Wu Xinjun, Kang Yihua. Local area magnetization and inspection method for aerial pipelines. NDT and E International,2005,38(6):448-452
    [90]Ramuhalli P, Udpa L, Udpa SS. Electromagnetic NDE signal inversion by function-approximation neural networks. IEEE Trans Magnetics,2002,38(6): 3633-3342
    [91]Bergamini A. Nondestructive Testing of Stay Cables—Field Experience in South East Asia. In:Third World conference on structural control,2002,vol.2:1057-1064
    [92]雷银照.轴对称线圈磁场计算.北京:中国计量出版社,1991
    [93]戴道生,钱昆明.铁磁学.北京:中国科学出版社,1987
    [94]近角聪信.铁磁性物理.葛世慧.兰州:兰州大学出版社,2002
    [95]David Jiles磁学及磁性材料导论.肖春涛.兰州:兰州大学出版社,2003
    [96]Andrea Bergamini, Rouven Christen. A Simple Approach to the Localization of Flaws in Large Diameter Steel Cables. In:Proceedings of SPIE,2003, Vol.5047:243-251
    [97]Xinjun Wu, Yihua kang, Hougui Chen. Nondestructive Testing Method and Technique for Cable-stayed Bridge Steel Cables. Key Engineering Materials,2004,270-273 (7):1493-1499.
    [98]刘次华.概率论与数理统计.武汉:华中科技大学出版社,2009
    [99]国家质量监督检验检疫总局计量司.测量仪器特性评定指南.北京:中国计量出版社,2003
    [100]费业泰.误差理论与数据处理(第五版).北京:机械工业出版社,2005
    [101]燕乐纬,陈树辉.基于改进遗传算法的非线性方程组求解.中山大学学报(自然科学版),2011,50(1):9-13
    [102]He J, Xu J Y, Yao X. Solving Equations by Hybrid Evolutionary Computation Techniques. IEEE Trans on Evolutionary Computation,2000,4(3):295-304
    [103]曾毅.改进的遗传算法在非线性方程组求解中的应用.华东交通大学学报,2004,21(4):32-34
    [104]许小勇,张海芳,钟太勇.求解非线性方程及方程组的模拟退火算法.航空计算技术,2007,37(1):44-46
    [105]邬丽丽,王知人,朱成娟.用基于模拟退火算法的进化策略求解非线性方程组.合肥工业大学学报(自然科学版),2008,31(2):301-304
    [106]胡斐,赵治国.基于自适应模拟退火遗传算法的非线性方程组求解.微型电脑应用,2010,26(9):25-27
    [107]赵华敏,陈开周.用神经网络解非线性方程组.西安电子科技大学学报(自然科学版),200 1,28(1):35-38
    [108]吴灵敏,柳重堪.用神经网络解多元非线性方程组.北方交通大学学报,1997,21(2):45-247
    [109]孙银慧,白振兴,王兵等.求解非线性方程组的迭代神经网络算法.计算机工程与应用,2009,45(6):55-59
    [110]欧阳艾嘉,刘利斌,乐光学等.求解非线性方程组的混合粒子群算法.计算机工程与应用,2011,47(9):33-36
    [111]张建科,王晓智,刘三阳等.求解非线性方程及方程组的粒子群算法.计算机工程及应用.2006,07:56-58
    [112]莫愿斌,陈德钊,胡上序.求解非线性方程组的粒子群复形法.信息与控制,2006,35(4),43-427
    [113]Kennedy J, Eberhart R C. Particle Swarm Optimization. Proceedings of ICNN'95 IEEE International Conference on Neural Networks. In:IEEE, Piscataway, NJ, USA, 1995:1942-1948
    [114]Eberhart R, Kennedy J. New Optimizer Using Particle Swarm Theory. MHS'95 Proceedings of the Sixth International Symposium on Micro Machine and Human Science. In:IEEE, Picataway, NJ, USA,1995:39-43
    [115]Kennedy J. The Particle Swarm:Social Adaptation of Knowledge. In:Proceedings of 1997 IEEE International Conference on Evolutionary Computation,1997:303-308
    [116]Omkar S N, Khandelwal R, Ananth T V S,et al. Quantum behaved Particle Swarm Optimization(QPSO) for Multi-objective Design Optimization of Composite Structures. Expert Systems with Application 2009,36(8):11312-11322
    [117]Sun J, Xu W, Liu J. Training RBF Neural Network Via Quantum-Behaved Particle Swarm Optimization. In:Neural Information Processing,2006,1156-1163
    [118]Lei T, Fu-Zhen X. Using Data to Design Fuzzy System Based on Quantum-Behaved Particle Swarm Optimization. In:Machine Learning and Cybernetics,2008 International Conference on,2008,624-628
    [119]Kong X, Sun J, Ye B, Xu W. An Efficient Quantum-Behaved Particle Swarm Optimization for Multiprocessor Scheduling. In:Proceedings of the 7th International Conference on Computational Science, Part I:ICCS 2007,2007,278-285
    [120]Gao F, Gao H, Li Z, et al. Detecting Unstable Periodic Orbits Of Nonlinear Mappings by a Novel Quantum-Behaved Particle Swarm Optimization Non-Lyapunov Way. Chaos, Solitons & Fractals,2009,42(4):2450-2463
    [121]Shi Y, Eberhart R C. Parameter Selection in Particle Swarm Optimizer. In: Proceedings of 7th International Conference-Evolutionary Programming Ⅶ. Berlin: Springer-Verlag,1998:591-600
    [122]Shi Y, Eberhart R C. A Modified Particle Swarm Optimizer. In:Proceedings of IEEE International Conference on Evolutionary Computation, Anchorage,1998,69-73
    [123]GB/T 18365-2001,斜拉桥热挤聚乙烯高强钢丝拉索技术条件
    [124]D.C. Jiles, D.LAtherton. Theory Of The Magntisation Proeess in Fermmagnets and it Application to the Magnetomechanical Effeet. J.Phys.D:Appl.Phys.,1984,17:1265-1281
    [125]D.C. Jiles. Theory of Magnetomechanical Effect. J.Phys.D:Appl.Phys.,1995,28: 1537-1546
    [126]M.E. KuruZar, B.D. Cullity. The Magnetostriction of Iron under Tensile and Compressive Stress. International Journal of Magnetism,1971,1:323-325
    [127]M.J. Sablik, D.C. Jiles. Coupled Magnetoelastic Theory of Magnetic and Magnetostrictive Hysteresis. IEEE Trans. Magn.,1993,29:2113-2123
    [128]M. Besbes, Z. Ren, A. RaZek. Finite Element Analysis of Magneto-Mechanical Coupled Phenomena in magnetostrictive Mateirals. IEEE Transaction on Magnetics, 1996,32(3):1058-1061
    [129]Roderic K S. Simple Explanation of Theory of the Total Magnetic Flux Method for the Measure of Ferromagnetic Cross Section. Materials Evaluation,1995,53(1):71-75
    [130]闫云友,庞维林,黄芳玮.OVM250平行钢绞线拉索单根换索试验研究.预应力技术,2005,52(5):19-22
    [131]康宜华,武新军,杨叔子.磁性无损检测技术中的磁化技术.无损检测,1999,21(5):206-209