水稻铁磷互作的分子机理及富铁转基因水稻研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁是维持植物正常生命活动的重要微量元素。虽然土壤中富含铁素,但是由于铁的可利用性非常低,因此植物缺铁现象相当普遍。同时,由于植物是人类与其他动物铁营养的主要来源,研究并阐明植物中铁的吸收、转运、代谢、储存等机制,对于提高全球粮食产量和改善人类营养意义重大。
     磷是影响植物铁的吸收利用及其有效性的一个重要因素,铁磷元素之间存在的生理拮抗互作是植物营养研究领域备受关注的热点。为探明磷对于水稻铁的吸收利用的影响及铁磷互作的分子机制,本研究对苗期水稻植株进行不同铁磷营养的供给处理(+Fe+P,-Fe+P,+Fe-P,-Fe-P),分析了在不同磷铁供给水平下水稻幼苗的生理表现和基因表达的变化。研究发现,虽然水稻植株中的总铁含量在两种缺铁处理中(-Fe+P,-Fe-P)都显著的降低,但是水稻植株只在-Fe+P处理条件下表现为显著缺铁症状。进一步对四种处理条件下的植株水溶性铁含量的分析结果显示相对于-Fe+P处理条件,-Fe-P条件下水稻植株中有效铁含量显著提高,表明缺磷能够显著提高植株中铁的有效性。这一结论在两种+Fe条件下同样适用,即+Fe+P条件下铁的有效性显著的低于+Fe-P条件。以上结果更明确了植物铁磷拮抗互作的普遍性。
     利用Affymetrix水稻全基因组芯片对上述四种不同铁磷水平处理的水稻根及地上部分的基因表达的转录本分析得到如下结果。首先,基因表达的主成分分析与基因差异表达数都表明,相对于单种元素的缺乏(缺铁或缺磷),铁磷双缺与正常培养条件的基因表达谱相似度较高,说明铁磷间存在的拮抗互作关系。其次,与+Fe+P条件相比,-Fe+P条件下产生了总共7,628个显著性(P<0.05)差异表达基因,而这些基因中仅有约15%在-Fe-P条件下仍存在显著性差异。说明缺磷能够很大程度上回复缺铁响应基因的差异性诱导表达。此外,通过上述基因差异表达分析,发现了许多参与铁的吸收与转运,缺铁响应基因的表达调控基因以及代谢途径相关基因缺铁响应基因,其中不仅包含了一些已知的缺铁响应基因(例如IRO2,OsIRT1,OsNAS1,OsYSL15等),还发掘了许多未有报道的新的缺铁响应基因,例如OPT转运体家族基因OsOPT1与OsOPT2,bHLH家族转录因子OsIRbHLH1与OsIRbHLH2等。对这些新发现的缺铁响应基因功能的研究将大大提高我们对植物缺铁响应过程的了解,也将为这些基因在分子育种中的应用提供理论基础。
     在上述新发现的缺铁应基因中,我们选取一个在水稻根及地上部分都显著受缺铁上调表达的bHLH转录因子OsIRbHLH2进行了功能的初步研究。通过各种缺素处理下基因表达分析表明该基因在水稻根及地上部分受缺铁特异响应,该基因与sGFP的融合表达亚细胞定位结果表明OsIRbHLH2蛋白定位于细胞核内,可能为转录因子。对OsIRbHLH2超表达转基因水稻的缺铁响应表型及基因表达的分析表明,OsIRbHLH2对水稻缺铁响应基因的表达有负调控效应,过量表达OsIRbHLH2造成转基因水稻在低铁条件下不能有效的诱导缺铁响应机制,从而表现出对缺铁超敏感的现象。
     对植物缺铁响应机制及铁的动态平衡的研究的一个重要目标是应用于培育富铁作物来解决目前全球性缺铁流行的问题,本研究利用基因工程技术与铁生物有效性评价的细胞模型筛选并发现了一种新的能够促进铁吸收的成分物质-尼克酰胺(Nicotianamine,NA)。水稻种子中特异超表达NA合成酶基因OsNAS1后获得的NA高积累的转基因水稻,在人结肠癌细胞系(human colonadenocarcinoma cell line,Caco-2)细胞模型评价体系中,其籽粒的铁吸收效价显著高于原始品种。用化学合成的NA添加到米粉中,同样能够显著地提高米粉中铁的有效性,NA与抗坏血酸(AA)添加至FeSO_4与FeCl_3中的对比实验表明,NA对铁有效性的促进作用高于AA。综上所述,我们发现了一种新型的植物来源的铁吸收促进剂NA,为生物强化解决全球性缺铁问题提供了一种切实有效的策略。
Fe is an essential micronutrient for plants.Although Fe is one of the most abundant elements in the Earth's crust,Fe deficiency is a worldwide agricultural problem on calcareous soils with low-Fe availability.On the other hand,because plant based food is the main diet for peoples from many developping areas,Fe deficiency is the most prevalent micronutrient deficiency.Therefore,understanding of the machanisms of the iron uptake,transport,metabolism,storage and their regulation is not only important for the improvement of crop production,but also for the development of crop varieties with densed Fe to alleviate the world-wide Fe deficiency problem.
     Interaction between Fe and P has been noted in the field of plant nutrition.To understand the physiology and molecular mechanisms of their interaction,we studied the growth performance,nutrient concentration,and gene expression profiles of root and shoot segments derived from 10 day old rice seedlings under four different nutrient conditions;ⅰ) full strength of Fe and P,(+Fe+P),ⅱ) full strength of P and no Fe(-Fe+P),ⅲ) full strength of Fe and no P(+Fe-P) andⅳ) without both Fe and P (-Fe-P).While removal of Fe in the growth medium resulted in very low shoot and root Fe concentrations,the chlorotic symptoms and retarded seedling growth were only observed on seedlings grown in the presence of P.Microarray data showed that in roots,7,628 transcripts were significantly changing in abundance in the absence of Fe alone.Interestingly,many of these were changes were reversed if P was also absent (-Fe-P),with only~15%overlapping with-Fe alone(-Fe+P).Analysis of the soluble Fe concentration in rice seedling shoots showed that P deficiency resulted in significantly increased Fe availability within the plants.The soluble Fe concentration under -Fe-P conditions was similar to that under +Fe+P conditions.These results provide evidence that the presence of P can affect Fe availability and in turn can influence the regulation of Fe responsive genes.
     The microarray analysis identified many Fe deficiency response genes,including many classical -Fe response genes,such as IRO2,OsIRT1,OsNAS1,OsYSL15,and many novel genes with unknown functions.These genes includes OPT transport family genes OsOPT1 and OsOPT2,bHLH transcription factors OsIRbHLH1 and OsIRbHLH2 and so on.Among these novel Fe regulated genes,the bHLH-domain contained putative transcripofion factor OsIRbHLH2 was studied.Nutrient deplete treatments show that the expression of OsIRbHLH2 was specifically induced by Fe deficiency conditions,but not by other nutrients(-N,-P,-K,-Zn,-Mn,-Cu). OsIRbHLH2 protein is localized into nucleus,supporting that OsIRbHLH2 is an putative transcription factor.The physiological and molecular responses of the OsIRbHLH2-overexpressing transgenic rice lines suggest that OsIRbHLH2 is a negative regulator in Fe deficiency responses in rice.
     Development of crop varieties with improved iron content and bioavailiablility is important approach for the alleviation of Fe deficiency problem world-wide.In this study,rice nicotianamine(NA) synthase gene(OsNAS1) was endosperm-specifically expressed in rice grain.The resulted transgenic rice accumulated a significant amount of NA in the grains.Bioavailability of iron from the high NA grain,as measured by ferritin synthesis in an in vitro Caco-2 cell model that simulates the human digestive system,was twice as much as that of the control line.When added at 1:1 molar ratio to ferrous iron in the in vitro system,NA produced two times more ferritin than that of ascorbic acid(AA),one of the most potent enhancers of iron bioavailability.These data demonstrated that NA is a novel and powerful promoter of iron utilization. Biofortifying polished rice with this compound has great potential in combating global human iron deficiency in people dependent on rice for their sustenance.
引文
Baxter IR, Vitek O, Lahner B, Muthukumar B, Borghi M, Morrissey J, Guerinot ML, Salt DE (2008) The leaf ionome as a multivariable system to detect a plant's physiological status. Proc Natl Acad Sci U S A 105: 12081-12086
    
    Beiseigel JM, Hunt JR, Glahn RP, Welch RM, Menkir A, Maziya-Dixon BB (2007) Iron bioavailability from maize and beans: a comparison of human measurements with Caco-2 cell and algorithm predictions. Am J Clin Nutr 86: 388-396
    Benjamini Y, Hochberg Y (1995) Controlling false discovery rate: a practical and powerful approach to multiple testing. J Roy Statist Soc Ser B Methodological 57:289-300
    Briat J-F, Fobis-Loisy I, Grignon N, Lobreaux S, Pascal N, Savino G, Thoiron S, von Wiren N, Van Wuytswinkel O (1995) Cellular and molecular aspects of iron metabolism in plants. Biol. Cell 84: 69-81
    Briat JF, Lobreaux S, Grignon N, Vansuyt G (1999) Regulation of plant ferritin synthesis: how and why. Cell Mol Life Sci 56: 155-166
    Bughio N, Yamaguchi H, Nishizawa NK, Nakanishi H, Mori S (2002) Cloning an iron-regulated metal transporter from rice. J Exp Bot 53: 1677-1682
    Cheng L, Wang F, Shou H, Huang F, Zheng L, He F, Li J, Zhao FJ, Ueno D, Ma JF, Wu P (2007) Mutation in nicotianamine aminotransferase stimulated the Fe(II) acquisition system and led to iron accumulation in rice. Plant Physiol 145: 1647-1657
    Cockell K (2007) An overview of methods for assessment of iron bioavailability from foods nutritionally enhanced through biotechnology. J AOAC Int. 90: 1480-1491
    Colangelo EP, Guerinot ML (2004) The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell 16: 3400-3412
    Connolly EL, Campbell NH, Grotz N, Prichard CL, Guerinot ML (2003) Overexpression of the FRO2 Ferric Chelate Reductase Confers Tolerance to Growth on Low Iron and Uncovers Posttranscriptional Control. Plant Physiol 133: 1102-1110
    Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 Metal Transporter Is Controlled by Metals at the Levels of Transcript and Protein Accumulation. Plant Cell 14: 1347-1357
    
    Crichton RR, Ward RJ (1998) Iron homeostasis. Met Ions Biol Syst 35: 633-665
    Curie C, Briat J-F (2003) Iron transport and signaling in plants. Annu. Rev. Plant Biol. 54: 183-206
    Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1 -like transporters. Ann Bot (Lond) 103: 1-11
    Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat J-F, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409: 346-349
    Dalton CC, Iqbal K, Turner DA (1983) Iron phosphate precipitation in Murashige and Skoog media. Physiol Plant 57: 472-476
    Dardick C, Chen J, Richter T, Ouyang S, Ronald P (2007) The Rice Kinase Database. A Phylogenomic Database for the Rice Kinome. Plant Physiol 143: 579-586
    Deak M, Horvath GV, Davletova S, Torok K, Sass L, Vass I, Barna B, Kiraly Z, Dudits D (1999) Plants ectopically expressing the iron-binding protein, ferritin, are tolerant to oxidative damage and pathogens. Nat Biotechnol 17: 192-196
    Delhaize E, Randall PJ (1995) Characterization of a phosphate-accumulator mutant of Arabidopsis thaliana. Plant Physiol 107: 207-213
    Dell'Orto M, Santi S, De Nisi P, Cesco S, Varanini Z, Zocchi G, Pinton R (2000) Development of Fe-deficiency responses in cucumber (Cucumis sativus L.) roots: involvement of plasma membrane H+-ATPase activity. J Exp Bot 51: 695-701
    Douchkov D, Gryczka C, Stephan UW, Hell R, Umlein H (2005) Ectopic expression of nicotianamine synthase genes results in improved iron accumulation and increased nickel tolerance in transgenic tobacco. Plant, Cell & Environment 28: 365-374
    Durrett TP, Gassmann W, Rogers EE (2007) The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol 144: 197-205
    Duy D, Wanner G, Meda AR, von Wiren N, Soll J, Philippar K (2007) PIC1, an ancient permease in Arabidopsis chloroplasts, mediates iron transport. Plant Cell 19: 986-1006
    Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci U S A 93: 5624-5628
    Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C, Fonger TM, Pegg SEK, Li B, Nettleton DS, Pei D, Wang K (2002) Agrobacterium tumefaciens-Mediated Transformation of Maize Embryos Using a Standard Binary Vector System. Plant Physiol 129: 13-22
    Gao G, Zhong Y, Guo A, Zhu Q, Tang W, Zheng W, Gu X, Wei L, Luo J (2006) DRTF: a database of rice transcription factors. Bioinformatics 22: 1286-1287
    Glahn RP, Cheng Z, Welch RM, Gregorio GB (2002) Comparison of Iron Bioavailability from 15 Rice Genotypes: Studies Using an in Vitro Digestion/Caco-2 Cell Culture Model. J. Agric. Food Chem. 50: 3586-3591
    Glahn RP, Lee OA, Yeung A, Goldman MI, Miller DD (1998) Caco-2 Cell Ferritin Formation Predicts Nonradiolabeled Food Iron Availability in an In Vitro Digestion/Caco-2 Cell Culture Model. J Nutr 128: 1555-1561
    Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17: 282-286
    Graziano M, Beligni MV, Lamattina L (2002) Nitric oxide improves internal iron availability in plants. Plant Physiol 130: 1852-1859
    Grusak MA, Pezeshgi S (1996) Shoot-to-Root Signal Transmission Regulates Root Fe(III) Reductase Activity in the dgl Mutant of Pea. Plant Physiol 110: 329-334
    Hammond JP, Bennett MJ, Bowen HC, Broadley MR, Eastwood DC, May ST, Rahn C, Swarup R, Woolaway KE, White PJ (2003) Changes in Gene Expression in Arabidopsis Shoots during Phosphate Starvation and the Potential for Developing Smart Plants. Plant Physiol 132: 578-596
    Hayashi A KK (2007) Nicotianamine preferentially inhibits Angiotensin I-converting enzyme. J Nutr Sci Vitaminol (Tokyo) 53: 331-336
    Hirsch J, Marin E, Floriani M, Chiarenza S, Richaud P, Nussaume L, Thibaud MC (2006) Phosphate deficiency promotes modification of iron distribution in arabidopsis plants. Biochimie 88: 1767-1771
    Horiguchi T (1995) Rhizosphere and root functions. In T Matsuo, K Kumazawa, R Ishii, K Ishihara, H Hirata, eds, Science of the Rice Plant, Vol 2. Nobunkyo, Tokyo, pp 221-248
    Hurrell R (2002) How to ensure adequate iron absorption from iron-fortifi ed food. Nutr Rev 60:S7-15
    Hurrell R, Lynch S, Bothwell T, Cori H, Glahn R, Hertrampf E, Kratky Z, Miller D, Rodenstein M, Streekstra H, Teucher B, Turner E, Yeung C, Zimmermann M (2004) Enhancing the absorption of fortification iron. Int J Vitam Nutr Res 74: 387-401
    Ilka S, Claudia K, Rene Frommichen, Gunter Scholz, Udo WS (1999) Phloem loading and transport characteristics of iron in interaction with plant-endogenous ligands in castor bean seedlings. physiol Plant 106: 82-89
    Inoue H, Higuchi K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2003) Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. Plant J 36: 366-381
    Inoue H, Higuchi K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2003) Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. Plant J 36: 366-381
    Inoue H, Takahashi M, Kobayashi T, Suzuki M, Nakanishi H, Mori S, Nishizawa NK (2008) Identification and localisation of the rice nicotianamine aminotransferase gene OsNAAT1 expression suggests the site of phytosiderophore synthesis in rice. Plant Mol Biol 66: 193-203
    Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J 45: 335-346
    Jeong J, Cohu C, Kerkeb L, Pilon M, Connolly EL, Guerinot ML (2008) Chloroplast Fe(III) chelate reductase activity is essential for seedling viability under iron limiting conditions. Proc Natl Acad Sci U S A 105: 10619-10624
    
    Kanako U, Yasuaki W, Yasuhiro I, Takanori K, Michiko T, Hiromi N, Yasuo N, Satoshi M, Naoko KN (2009) Genetically engineered rice containing larger amounts of nicotianamine to enhance the antihypertensive effect. In PB J, ed, Vol 7, pp 87-95
    
    Kim SA, Guerinot ML (2007) Mining iron: iron uptake and transport in plants. FEBS Lett 581: 2273-2280
    
    Kim SA, Punshon T, Lanzirotti A, Li L, Alonso JM, Ecker JR, Kaplan J, Guerinot ML (2006) Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314: 1295-1298
    
    Klatte M, Schuler M, Wirtz M, Fink-Straube C, Hell R, Bauer P (2009) The Analysis of Arabidopsis Nicotianamine Synthase Mutants Reveals Functions for Nicotianamine in Seed Iron Loading and Iron Deficiency Responses. Plant Physiol 150: 257-271
    
    Kobayashi T, Nakayama Y, Itai RN, Nakanishi H, Yoshihara T, Mori S, Nishizawa NK (2003) Identification of novel cis-acting elements, IDE1 and IDE2, of the barley IDS2 gene promoter conferring iron-deficiency-inducible, root-specific expression in heterogeneous tobacco plants. Plant J 36: 780-793
    
    Kobayashi T, Ogo Y, Itai RN, Nakanishi H, Takahashi M, Mori S, Nishizawa NK (2007) The transcription factor IDEF1 regulates the response to and tolerance of iron deficiency in plants. Proc Natl Acad Sci USA 104: 19150-19155
    
    Kobayashi T, Suzuki M, Inoue H, Itai RN, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) Expression of iron-acquisition-related genes in iron-deficient rice is co-ordinately induced by partially conserved iron-deficiency-responsive elements. J Exp Bot 56: 1305-1316
    
    Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39: 415-424
    
    Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40: 37-44
    
    Kreps JA, Wu Y, Chang H-S, Zhu T, Wang X, Harper JF (2002) Transcriptome Changes for Arabidopsis in Response to Salt, Osmotic, and Cold Stress. Plant Physiol 130: 2129-2141
    
    Kruger C, Berkowitz O, Stephan UW, Hell R (2002) A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L. J Biol Chem 277: 25062-25069
    
    Kushnir S, Babiychuk E, Storozhenko S, Davey MW, Papenbrock J, De Rycke R, Engler G, Stephan UW, Lange H, Kispal G, Lill R, Van Montagu M (2001) A Mutation of the Mitochondrial ABC Transporter Sta1 Leads to Dwarfism and Chlorosis in the Arabidopsis Mutant starik. Plant Cell 13: 89-100
    
    Lanquar V, Lelievre F, Bolte S, Hames C, Alcon C, Neumann D, Vansuyt G, Curie C, Schroder A, Kramer U, Barbier-Brygoo H, Thomine S (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 24: 4041-4051
    Li X, Duan X, Jiang H, Sun Y, Tang Y, Yuan Z, Guo J, Liang W, Chen L, Yin J, Ma H, Wang J, Zhang D (2006) Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiol 141: 1167-1184 Lill R, Kispal G (2000) Maturation of cellular Fe-S proteins: an essential function of mitochondria. Trends Biochem Sci 25: 352-356
    Ling HQ, Bauer P, Bereczky Z, Keller B, Ganal M (2002) The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots. Proc Natl Acad Sci USA 99: 13938-13943
    Ling HQ, Koch G, Baumlein H, Ganal MW (1999) Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc Natl Acad Sci U S A 96: 7098-7103
    Lucca P, Hurrell R, Potrykus I (2002) Fighting iron deficiency anemia with iron-rich rice. J Am Coll Nutr 21:184S-190S
    Lucena C, Waters BM, Romera FJ, Garcia MJ, Morales M, Alcantara E, Perez-Vicente R (2006) Ethylene could influence ferric reductase, iron transporter, and H+-ATPase gene expression by affecting FER (or FER-like) gene activity. J Exp Bot 57:4145-4154
    Maas FM, van de Wetering DAM, van Beusichem ML, Bienfait HF (1988) Characterization of Phloem Iron and Its Possible Role in the Regulation of Fe-Efficiency Reactions. Plant Physiol 87: 167-171
    Marentes E, Grusak MA (1998) Iron transport and storage within the seed coat and embryo of developing seeds of pea ( Pisum sativum L.). Seed Science Research 8: 367-375
    Marschner H, Romheld V, Kissel M (1986) Different strategies in higher plants in mobilization and uptake of iron. J Plant Nutr 9: 695-713
    McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, Miret S, Bomford A, Peters TJ, Farzaneh F, Hediger MA, Hentze MW, Simpson RJ (2000) A Novel Duodenal Iron-Regulated Transporter, IREG1, Implicated in the Basolateral Transfer of Iron to the Circulation. Mol Cell 5: 299-309
    Mihucz VG, Tatar E, Kmethy B, Zaray G, Cseh E (2000) Investigation of the transported heavy metal ions in xylem sap of cucumber plants by size exclusion chromatography and atomic absorption spectrometry. J Inorg Biochem 81: 81-87
    Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L, Thibaud M-C (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA 102: 11934-11939
    Mukherjee I, Campbell NH, Ash JS, Connolly EL (2006) Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper. Planta 223: 1178-1190
    Murgia I, Delledonne M, Soave C (2002) Nitric oxide mediates iron-induced ferritin accumulation in Arabidopsis. Plant J 30: 521 -528
    Negishi T, Nakanishi H, Yazaki J, Kishimoto N, Fujii F, Shimbo K, Yamamoto K, Sakata K, Sasaki T, Kikuchi S, Mori S, Nishizawa NK (2002) cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots. Plant J 30: 83-94
    Nozoye T, Inoue H, Takahashi M, Ishimaru Y, Nakanishi H, Mori S, Nishizawa NK (2007) The expression of iron homeostasis-related genes during rice germination. Plant Mol Biol 64: 35-47
    Ogo Y, Itai R, Nakanishi H, Inoue H, Kobayashi T, Suzuki M, Takahashi M, Mori S, . NN (2006) Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants. J Exp Bot 57: 2867-2878
    Ogo Y, Itai RN, Nakanishi H, Inoue H, Kobayashi T, Suzuki M, Takahashi M, Mori S, Nishizawa NK (2006) Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants. J Exp Bot 57: 2867-2878
    Ogo Y, Itai RN, Nakanishi H, Kobayashi T, Takahashi M, Mori S, Nishizawa NK (2007) The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions. Plant J 51: 366-377
    Ogo Y, Kobayashi T, Nakanishi Itai R, Nakanishi H, Kakei Y, Takahashi M, Toki S, Mori S, Nishizawa NK (2008) A novel NAC transcription factor, IDEF2, that recognizes the iron deficiency-responsive element 2 regulates the genes involved in iron homeostasis in plants. J Biol Chem 283: 13407-13417
    Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat biotechnol 23: 482 - 487
    Petit JM, Briat JF, Lobreaux S (2001) Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family. Biochem J 359: 575-582
    Pirrung MC, Cao J, Chen J (1998) Ethylene biosynthesis: processing of a substrate analog supports a radical mechanism for the ethylene-forming enzyme. Chem Biol 5: 49-57
    Puig S, Askeland E, Thiele DJ (2005) Coordinated Remodeling of Cellular Metabolism during Iron Deficiency through Targeted mRNA Degradation. Cell 120: 99-110
    Romheld V, Marschner H (1986) Evidence for a Specific Uptake System for Iron Phytosiderophores in Roots of Grasses. Plant Physiol 80: 175-180
    Rampey RA, Woodward AW, Hobbs BN, Tierney MP, Lahner B, Salt DE, Bartel B (2006) An Arabidopsis basic helix-loop-helix leucine zipper protein modulates metal homeostasis and auxin conjugate responsiveness. Genetics 174: 1841-1857
    Rediske JH, Biddulph O (1953) The Absorption and Translocation of Iron. Plant Physiol 28: 576-593
    Riano-Pachon D, Ruzicic S, Dreyer I, Mueller-Roeber B (2007) PlnTFDB: an integrative plant transcription factor database. BMC Bioinformatics 8: 42
    Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397: 694-697
    Rogers EE, Guerinot ML (2002) FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis. Plant Cell 14: 1787-1799
    Ruan Y, Gilmore J, Conner T (1998) Towards Arabidopsis genome analysis: monitoring expression profiles of 1400 genes using cDNA microarrays Plant J 15: 821-833
    Seguela M, Briat J, Vert G, Curie C (2008) Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway. Plant J 55: 289-300
    Schaaf G, Honsbein A, Meda AR, Kirchner S, Wipf D, von Wiren N (2006) AtIREG2 encodes a tonoplast transport protein involved in iron-dependent nickel detoxification in Arabidopsis thaliana roots. J Biol Chem 281: 25532-25540
    Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, von Wiren N (2004) ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. J Biol Chem 279: 9091-9096
    Schaaf G, Schikora A, Haberle J, Vert G, Ludewig U, Briat JF, Curie C, von Wiren N (2005) A putative function for the arabidopsis Fe-Phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis. Plant Cell Physiol 46: 762-774
    Schena M, Shalon D, Davis R, Brown P (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467-470
    Schmidt W (2003) Iron solutions: acquisition strategies and signaling pathways in plants. Trends in Plant Science 8: 188-193
    Schmidt W, Tittel J, Schikora A (2000) Role of hormones in the induction of iron deficiency responses in Arabidopsis roots. Plant Physiol 122: 1109-1118
    Shojima S, Nishizawa NK, Fushiya S, Nozoe S, Irifune T, Mori S (1990) Biosynthesis of Phytosiderophores : In Vitro Biosynthesis of 2'-Deoxymugineic Acid from 1-Methionine and Nicotianamine. Plant Physiol 93: 1497-1503
    Shojima S, Nishizawa NK, Fushiya S, Nozoe S, Kumashiro T, Nagata T, Ohata T, Mori S (1989) Biosynthesis of nicotianamine in the suspension-cultured cells of tobacco (Nicotiana megalosiphon). BioMetals 2: 142-145
    Simonetta S, Wolfgang S (2009) Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytol Publish on line
    Stacey MG, Patel A, McClain WE, Mathieu M, Remley M, Rogers EE, Gassmann W, Blevins DG, Stacey G (2008) The Arabidopsis AtOPT3 protein functions in metal homeostasis and movement of iron to developing seeds. Plant Physiol 146: 589-601
    Su N, He K, Jiao Y, Chen C, Zhou J, Li L, Bai S, Li X, Deng XW (2007) Distinct reorganization of the genome transcription associates with organogenesis of somatic embryo, shoots, and roots in rice. Plant Mol Biol 63: 337-349
    Tamaoki M, Freeman JL, Pilon-Smits EAH (2008) Cooperative Ethylene and Jasmonic Acid Signaling Regulates Selenite Resistance in Arabidopsis. Plant Physiol 146: 1219-1230
    Thimm O, Essigmann B, Kloska S, Altmann T, Buckhout TJ (2001) Response of Arabidopsis to iron deficiency stress as revealed by microarray analysis. Plant Physiol 127: 1030-1043
    Toledo-Ortiz G, Huq E, Quail PH (2003) The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15: 1749-1770
    Varotto C, Maiwald D, Pesaresi P, Jahns P, Salamini F, Leister D (2002) The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana. Plant J 31: 589-599
    Vasconcelos MW, Li GW, Lubkowitz MA, Grusak MA (2008) Characterization of the PT Clade of Oligopeptide Transporters in Rice. Plant Gen 1: 77-88
    Vert G, Barberon M, Zelazny E, Seguela M, Briat JF, Curie C (2009) Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells. Planta 229: 1171 -1179
    Vert G, Briat JF, Curie C (2001) Arabidopsis IRT2 gene encodes a root-periphery iron transporter. Plant J 26: 181 -189
    Vert G, Briat JF, Curie C (2003) Dual Regulation of the Arabidopsis High-Affinity Root Iron Uptake System by Local and Long-Distance Signals. Plant Physiol 132: 796-804
    Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briat JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14: 1223-1233
    
    von Wiren N, Klair S, Bansal S, Briat JF, Khodr H, Shioiri T, Leigh RA, Hider RC (1999) Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants. Plant Physiol 119: 1107-1114
    Walker EL, Connolly EL (2008) Time to pump iron: iron-deficiency-signaling mechanisms of higher plants. Curr Opin Plant Biol 11: 530-535
    Wang H, Klatte M, Jakoby M, Baumlein H, Weisshaar B, Bauer P (2007) Iron deficiency-mediated stress regulation of four subgroup Ib BHLH genes in Arabidopsis thaliana. Planta 226: 897-908
    Wang YJ, Zhang ZG, He XJ, Zhou HL, Wen YX, Dai JX, Zhang JS, Chen SY (2003) A rice transcription factor OsbHLH1 is involved in cold stress response. Theor Appl Genet 107: 1402-1409
    
    Ward JT, Lahner B, Yakubova E, Salt DE, Raghothama KG (2008) The effect of iron on the primary root elongation of Arabidopsis during phosphate deficiency. Plant Physiol 147: 1181 -1191
    
    Waters BM, Blevins DG, Eide DJ (2002) Characterization of FRO1, a Pea Ferric-Chelate Reductase Involved in Root Iron Acquisition. Plant Physiol 129: 85-94
    Ye X, Al-Babili S, Kl, ouml, ti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the Provitamin A (-Carotene) Biosynthetic Pathway into (Carotenoid-Free) Rice Endosperm. Science 287: 303-305
    Yokosho K, Yamaji N, Ueno D, Mitani N, Ma JF (2009) OsFRDLl Is a Citrate Transporter Required for Efficient Translocation of Iron in Rice. Plant Physiol 149: 297-305
    Yoshida S, Forno D, Cock J, Gomez K (1976) Laboratory Manual for Physiological Studies of Rice, Ed 3. The International Rice Research Institute: Manila, The Philippines
    Yuan Q, Ouyang S, Wang A, Zhu W, Maiti R, Lin H, Hamilton J, Haas B, Sultana R, Cheung F, Wortman J, Buell C (2005) The Institute for Genomic Research Osal rice genome annotation database.. Plant Physiol 138:18-26
    Yuan Y, Wu H, Wang N, Li J, Zhao W, Du J, Wang D, Ling HQ (2008) FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Res 18: 385-397
    Zimmermann M, Chaouki N,. RH (2005) Iron deficiency due to consumption of a habitual diet low in bioavailable iron: a longitudinal cohort study in Moroccan children. Am J Clin Nutr. 81: 115-121
    Zimmermann MB, Hurrell RF (2007) Nutritional iron deficiency. The Lancet 370: 511-520
    
    http://copenhagenconsensus.com/Default.aspx?ID=158
    http://www.who.int/topics/anaemia/en/