普通烟草(Nicotiana tabacum L.)类型间重要性状差异及其遗传特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国按烟叶品质特点、生物学性状和栽培方法,把普通烟草划分为烤烟、晒烟、晾烟、白肋烟、香料烟五个类型。由于目前国际烟草生产上的主要栽培种多以烤烟类型为主,因此有关烟草品种遗传改良研究多集中在烤烟类型内的品种间进行,不同烟草类型间的重要相关有益性状还没有得到充分聚合和有效利用,因此生产上使用的栽培品种其遗传基础相对狭窄,烟叶品质、产量、抗性、适应性等还不能适应烟草生产发展的需求。研究烟草类型间重要性状差异及其遗传特性,探讨寻找烟草类型间的重要相关性状的遗传变异规律,有效利用烟草类型间的有益或优异性状扩大烟草栽培种的遗传变异背景,成为烟草品种改良工作中越来越关注的问题。
     研究的目的旨在于:1)分析普通烟草类型间的植物学性状和致香物质差异,为以提高烟叶香气为主攻方向的烟草品质育种,提供改善烟叶香气的有益基因源;2)利用主基因+多基因遗传模型分析方法,研究普通烟草类型间的主要植物学性状的遗传规律,为在新品种选育过程中的性状选择提供理论依据,提高育种工作的预见性、减少选择工作的盲目性;3)利用分子标记技术,在分子水平上筛选普通烟草类型间的分子标记,为烟草类型间杂交育种工作提供稳定、不受环境影响的选择标准,提高性状选择的准确性;4)通过分析普通烟草类型间基因型差异,研究烟草类型间的遗传多样性和亲缘关系,为烟草育种工作中的亲本选择提供理论与实验依据。
     研究以普通烟草不同类型间代表品种为供试材料,通过田间种植观察、双列杂交试验、致香物质成分检测与聚类分析、主基因+多基因遗传分离分析、SRAP标记等技术,分别从供试材料的表现型、基因型分析其遗传特点和重要性状差异。主要研究结果如下。
     1、利用普通烟草不同类型间代表性品种,测定了烟草类型间的重要植物学性状和烟叶重要致香物质成分,并进行了R因子聚类分析,检测到5种致香物质与不同类型香气的产生有较大关系。供试的12个代表品种的系统聚类分析结果,与我国对普通烟草类型的习惯划分结果基本一致,为我国烟草类型的习惯划分方法提供了实验依据和理论佐证。
     2、以烤烟品种与香料烟、白肋烟和名优晾晒烟品种为研究对象,通过杂交构建遗传分析群体,利用数量性状主基因+多基因遗传体系分离分析方法,对普通烟草栽培种内不同品种类型间的株高性状进行了遗传鉴定研究。结果表明:普通烟草类型间的株高性状遗传,符合两对加性-显性-上位性主基因+加性-显性多基因混合遗传模型(E1),各组合的遗传效应都表现出了加性、显性效应。各主基因和多基因遗传率计算结果,烤烟与晒晾烟、烤烟与香料烟组合的主基因遗传率较高,分别为71.60%和88.55%,可作为烟草株高性状早期世代选择的理论依据。同时研究证明,本实验采用的数量性状分离分析方法,适用于研究烟草数量性状的遗传规律,为烟草数量性状的遗传研究奠定了一种有效可行的分析方法。
     3、进一步利用数量性状主基因+多基因遗传体系分离分析方法,对烤烟、香料烟及其杂交种一代的节距、叶数、叶长、叶宽等植物学性状的遗传规律进行了研究分析,初步揭示了烤烟与香料烟主要植物学性状的遗传特点,并估计了各性状的遗传力。其中,叶数遗传符合两对显性主基因+加性-显性多基因模型(E6);节距、叶长和叶宽的遗传符合两对加性-显性-上位性主基因+加性-显性多基因混合遗传模型(E1)。研究结果可作为烤烟与香料烟类型间的杂种鉴定利用的实验与理论依据。
     4、利用SRAP标记技术,研究和分析了烤烟、晒烟、晾烟、白肋烟、香料烟等不同栽培类型间的基因型差异,初步筛选出了能够在分子水平上反映不同烟草类型差异的特征性标记带:晾烟MD40、Ky17、Burley21、TN90基因型共有的特征带有两对引物组合,分别为SF25*SR2和SF3*SR26;晒烟小牛舌、青梗、小花青和香料烟Sumsun、komotini Basma、Xanthi Basma共有的特征带引物组合为SF20*SR14;NC89、K326、G-28、大白筋和MD40、Ky17、Burley21、TN90共有的特征带引物组合为SF16*SR14,烤烟中大白筋599的特征带引物组合SF22*SR14。
     5、利用61对SRAP引物组合,研究了普通烟草不同类型间的亲缘关系,将普通烟草类型间8个不同供试材料划分为3类别。I:烤烟类型(G-28);II:白肋烟类型(MD40、By21、大白筋599);III:香料烟类型(Basma、Sumsun、小牛舌、千层塔)。聚类结果与经验评价结果基本一致。
     6、利用正交设计,从DNA浓度、dNTP、Mg2+、引物、Taq DNA聚合酶5个因素4个水平上,获得了最优的ILP标记的PCR反应体系,20ul反应体系包括:模板DNA 20ng,Taq酶1.0U,Mg2+ 2.0mmol/L,dNTP150umol/L,引物0.3umol/L。
According to the quality of tobacco leaf characteristics, biological characteristics and cultivation methods, Nicotiana tabacum is divided into flue-cured tobacco, sun-cured tobacco, air-cured, burley and oriental tobacco in China. Flue-cured tobacco is the most important type in international tobacco production, currently. So the tobacco breeder play most attention in flue-cured tobacco variety development and neglected the useful trait of other types in improving the tobacco variety, causing the genetic background of the cultivars is very narrow and many traits ,such as leaf quality, yield, resistance and adaptability, still can’t meet the demand. Therefore, it is very important to study the differences of traits and their genetic characteristics among different types.
     There are four purpose in this study. The first purpose analyzes the differences of the botany traits and the flavor matters to provide the genetic source of aroma for quality breeding. The second uses the mixed major-gene plus polygene inheritance model to study the inheritance of the main botany traits to reduce the difficulty and errors in selection. The third uses the molecular marker technology to select the belt of different culture spawns and provide a stable selection criteria for the tobacco breeding. The fourth analyze the genotypic differences to study the diversity and the relationship among different tobacco to provide the theoretical basis for breeding.
     Therefore, this study analyzes the phenotypic differences and the genetic differences among the representative varieties of the different types of tobacco, by observing the traits, detecting aroma substances and using diallel crossing test, cluster analysisthe, mixed major-gene plus polygene inheritance model, SRAP technology. The results are as follows:
     1) The differences of traits and aroma of different types of tobacco are analyzed and clustered into five groups by R factor cluster method based on 12 varieties; meanwhile, the 12 varieties are systematically clustered based on 32 traits. The result is similar to the practice.
     2) The mixed major-gene plus polygene inheritance model is used to analyze the inheritance of plant height in Nicotiana tabacum L. cross between flue-cured tobacco and burley tobacco, oriental tobacco, sun-cured tobacco. The results showed that the inheritance of plant height is accorded with the E1 model, and there were additive gene effect and dominant gene effect in the three cross combinations; the heritability of major genes for G-28×Qiancengta and G-28×Basma, were 71.60% and 88.55% respectively. The higher heritability will provide the theoretical basis for choosing the plant height at earlier generation. Meanwhile, this result shows that the mixed major-gene plus polygene inheritance model could be used in the inheritance study of quantitative characters of tobacco.
     3) The mixed major-gene plus polygene inheritance model is also used to analyze the inheritance of the main botanical traits, including pitch, leaf number, leaf length and leaf width etc., cross between flue-cured tobacco (G-28)and oriental tobacco (Basma). The results showed that the inheritance of pitch, leaf length and width are all accorded with the E1 model, the leaf number is accorded with the E6 model. The result would be used in tobacco breeding.
     4) SRAP technology is used to study the genetic differences among different types of tobacco, including flue-cured tobacco, oriental tobacco, maryland tobacco, burley tobacco, and air/sun cured tobacco, five pairs of primer combinations which can amplify characteristic bands has been screened. Among the five combinations, two of them (SF25*SR2 and SF3*SR26) can distinguish air-cured tobacco including maryland tobacco and Burley tobacco from the other cultivated forms; SF20*SR14 can distinguish sun cured tobacco including oriental tobacco and sun-cured tobacco; SF16*SR14 can distinguish flue-cured tobacco and air-cured tobacco, and SF22*SR14 can distinguish DBJ599 with specisl aroma and the other flue-cured tobacco.
     5) 8 varieties , which represent the different types of tobacco, are divided into 3 groups. I: G-28, II:DBJ599、MD40、By21, III: Basma、Sumsun、XNS、QCT. The cluster analysis result es consistant with experience evatuation.
     6) Anorthogonal design was used to optimize a ILP-PCR system with 5 factors (DNA, Mg2+, dNTP, primer and Taq polymerase) at 4 levels.The result showed the optimized ILP-PCR system for Nicotiana tabacum L. was: 2uL10×PCRbuffer, 20ng template DNA, Mg2+ 2.0mmol/L, dNTP 150umol/L, primer 0.3umol/L, Taq DNA polymerase 1 U in a total of 20uL reactionsolution. Each factor had different effecton on the results of PCR. Taq DNA polymerase had the greatest effect, while DNA concentration had the least. The effection of Taq DNA polymerase, primer concentration and dNTP concentration all reached significant level.
引文
1. Swberson RF,Johnson AW,JacksonA DM.烟草表面成分是影响其产量,抗虫病能力及烟气质量的因素[J].烟草科技情报资料,1987,(1):63~108
    2.艾树理,王秀蓉.烤烟数量性状配合力和遗传力研究[J].烟草科技,1984(3):40~46
    3.蔡长春,陈宝元,傅廷栋,等.甘蓝型油菜开花期和光周期敏感性的遗传分析[J].作物学报,2007,33(2):345~348
    4.陈海梅.小麦EST~SSR标记的开发、定位和作图.山东农业大学硕士学位论文,2005
    5.陈景堂,根本和洋,刘志增等.RAPD技术在几个觅属植物遗传分类中的应用研究.西北植物学报,2001,21(5):872~878
    6.陈军方,任正隆,高丽锋,贾继增.从小麦EST序列中开发新的SSR引物.作物学报,2005,31(2):154~158
    7.陈万胜,王元英,罗成刚,杨爱国,蒋彩虹,范静苑,利用正交设计优化烟草SRAP反应体系.分子植物育种, 2008,6(1):177~182
    8.杜雄明,汪若海,刘国强,等.棉花纤维相关性状的主基因~多基因混合遗传分析[J].棉花学报,1999,11(2):73~78
    9.盖钧镒,王建康.大豆对豆秆黑潜蝇抗性的主基因+多基因遗传[A].全国作物育种学术讨论会论文集[C].中国农业科技出版社,1998,241~248
    10.盖钧镒,章元明,王建康.植物数量性状遗传体系[M].北京:科学出版社,2003
    11.何川生,何兴金,葛颂,李天飞,许凌云,许美玲,许介眉.烤烟品种资源的RAPD分析.植物学报,2001,43:610~614
    12.黄培堂,俞炜源,陈添弥,译.PCR技术实验指南.科学出版社,中国,北京,2002
    13.晋艳,杨宇虹,段玉琪.烤烟轮作、连作对烟叶产量质量的影响[J].西南农业学报,2004,(7):267~271
    14.景建州,孙渭,李沛光.同工酶谱技术在烟草种子鉴别中的应用研究[J].1998,28(6)::540~544
    15.景延秋,宫长荣,张月华,等.烟草香味物质分析研究进展.中国烟草科学,2005(2):44~48
    16.兰海,余月,王凤格,等.玉米种子休眠性数量遗传体系的判别[J].玉米科学,2007,15(2):5~8
    17.李宏伟,高丽锋,刘曙东,李永强,贾继增.用EST~SSRs研究小麦遗传多样性,中国农业科学,2005,38(1):7~12
    18.李润田.中国烟草地理[M].北京:农业出版社,1988:30~31
    19.梁景霞,祁建民,方平平,王涛,陈顺辉,周东新,陶爱芬,梁康迳,吴为人.烟草种植资源遗传多样性与亲缘关系的ISSR聚类分析.中国农业科学,2008,41(1):286~294
    20.梁景霞,祁建民,吴为人,周东新,陈顺辉,王涛,陶爱芬.烟草DNA的提取与SRAP反应体系的建立.中国烟草学报,2005,11(4):33~38
    21.梁明山,杨晓娟,侯留计.烟草种子蛋白的SDS-PAGE测定[J].西南农业学报,1998,11(3):118~120
    22.廖要明,周小蓉.气候变化对我国烟草生产及其适生地选择的影响研究[J].中国生态农业学报,2003,11(4):137~138
    23.林国平,蔡长春,王毅,周永碧,黄文昌.白肋烟品种资源的聚类分析.中国烟草学报,2008, 14(5):33~38
    24.林忠旭,张献龙,聂以春,贺道华,吴茂青.棉花SRAP遗传连锁图构建.科学通报,2003,48(15):1676~1679
    25.林忠旭,张献龙,聂以春.新型标记SRAP在棉花F2分离群体及遗传多样性评价中的适用性分析.遗传学报,2004,31:622~626
    26.刘洪祥.烤烟几个性状间相关性的初步分析[J].中国烟草,1980(2):13~16
    27.刘建丰,王志德,刘艳华,牟建民.应用SRAP标记研究烟草种质资源的遗传多样性.中国烟草科学,2007
    28.莫惠栋.质量~数量性状的遗传分析.1、遗传组成和主基因型的鉴别[J].作物学报,1993,19(1):1~6
    29.莫惠栋.质量~数量性状的遗传分析.2、世代平均数与遗传方差[J].作物学报,1993,19(3):193~200
    30.牛佩兰,佟道儒,骆启章.烤烟几个主要数量性状遗传力的估算[J].中国烟草,1980(1):13~14
    31.牛佩兰,佟道儒.烟草几个主要农艺性状的基因效应分析[J].中国烟草,1989(1):9~12
    32.钱文成,张桂华,陈飞雪,韩毅科,陈德富,杜胜利,陈喜文.SRAP在检测黄瓜基因组多态性中的特征.遗传,2006,28(11):1435~1439
    33.任民,贾兴华,蒋彩虹,杨爱国,王日新.Bassam和Sanguinetti银染方法在SRAP和TRAP标记中的比较研究.生物技术通报,2008,1:113~116
    34.任民,王日新,贾兴华,邱军,冯全福,王绍美,罗成刚,姜自斌.普通烟草种内主要栽培类型间烟叶香味成分的比较与分析.中国烟草科学,2008,29(6):36~41
    35.苏德成主编.中国烟草栽培学.上海科技出版社,上海,2005
    36.唐莉娜,刘淑欣,熊德中.调节土壤酸度对烤烟生长和品质的影响[J].福建农业大学学报,1999,28(1):71~76
    37.佟道儒主编.烟草育种学.中国农业出版社,北京,1997
    38.王闯,符云鹏,艾永峰.土壤特性与烟叶品质的关系[J].安徽农业科学,2005,33(5):862~863
    39.王春娥,盖钧镒,傅三雄,等.大豆豆腐和豆乳得率的遗传分析与QTL定位[J].中国农业科学,2008,41(5):1274~1282
    40.王建康,盖钧镒.利用杂种F2世代鉴定数量性状主基因~~多基因混合遗传模型并估计其遗传效应[J].遗传学报,1997,24(5):432~440
    41.王建康,盖钧镒.数量性状主基因~~多基因混合遗传的P1、P2、F1、F2和F2︰3的联合分析方法[J].作物学报,1998,24(6):651~659
    42.王建设,王建康,朱立宏,等.水稻主基因~多基因混合遗传控制白叶枯病抗性的基因效应分析[J].遗传学报,2000,27(1):34~38
    43.王守现,刘宇,耿小丽,孟莉莉,谢宝贵.应用SRAP标记对六个鸡腿菇菌株的多态性分析.江西农业大学学报,2006,28(5):753~757
    44.王志德,牟建民,戴培刚,王伟峰,蒋予恩.部分烟草核心种质RAPD分析.中国烟草学报, 2003, 9(4): 20~25
    45.韦翔华,自厚义,陈佩琼.镁、硼营养对烟草产量和产值的效应研究[J].土壤通报,2000,19(4):239~242
    46.吴海滨,朱汝财,李迪,赵德刚,白羊年.一个内含子长度多态性标记与栽培稻F1花粉育性基因座连锁.分子植物育种,2006,4(3):323~328
    47.吴敏生,戴景瑞.RAPD在玉米品种鉴定和纯度分析中的应用.作物学报,1999,25(4):489~493
    48.吴为人.分子标记开发与分之育种[R].烟草基因组学培训班,2007-03-31~2007-04-05
    49.冼可法,沈朝智,戚万敏.云南烤烟中性香味物质分析研究.中国烟草学报,1992,1(2):1~9
    50.肖炳光,徐照丽,陈学军,申爱荣,李永平,朱军.利用DH群体构建烤烟分子标记遗传连锁图.中国烟草学报,2006,12(4):35~40
    51.肖炳光,杨本超.利用ISSR标记分析烟草种质的遗传多样性.中国农业科学,2007,40(10):2153~2161
    52.肖炳光.烤烟农艺性状和烟叶化学成分的遗传分析[D].浙江大学,2005年
    53.许明辉,郑民慧,刘广田.烟草品种RAPD分子标记遗传差异研究.农业生物技术学报,1998,6:282~284
    54.严莉.现代生物技术在作物品种纯度鉴定上的研究进展[J].种子,2002,(6):45~46
    55.杨本超,肖炳光,陈学军.基于ISSR标记的烤烟种质遗传多样性研究.遗传,2005,27(5):753~758
    56.杨涛,段焰青,奚家勤,李青青.烟株叶片化学差异及聚类分组法在烟叶分组中的应用.云南大学学报(自然科学版), 2007,29 (S1): 200~204
    57.杨永霞,李青常,赵彦宏,朱军,肖炳光.烟草SSR反应体系的优化,烟草科技,2005,12:33~35
    58.杨友才,周清明,尹晗琪.利用RAPD和AFLP标记分析烟草种质资源的遗传多样性.农业生物技术学报,2006,14(4):585~593
    59.袁有禄,张天真,郭旺珍,John Yu,Russell,J Kohel.棉花高品质纤维性状的主基因与多基因遗传分析.遗传学报,29(9):827~834,2002
    60.张继益,董玉琛.旱麦草属种质资源的随机扩增多态性DNA(RAPDs)分析.遗传学报,1999,26(1):54~60
    61.张建成,王传堂,焦坤,杨新道.SRAP标记技术在花生种子纯度鉴定中的应用.中国农学通报,2005,21(12):35~39
    62.张立平,赵昌平,单福华,等.小麦光温敏雄性不育系BS210育性的主基因+多基因混合遗传分析[J].作物学报,2007,33(9):1553~1557
    63.张书芬,傅廷栋,李媛媛,朱家成,王建平,马朝芝.SRAP标记分析甘蓝型油菜多态性.华北农学报,2006,21(1):50~54
    64.张兴伟,王志德,刘艳华,牟建民.内含子多态性标记及其在烟草分子育种上的应用.安徽农业科学,2008,36(8): 3147~3148
    65.赵向前,吴为人.水稻ILP标记遗传图谱的构建遗.2008,30(2): 225―230
    66.郑轶琦,王志勇,郭海林,薛丹丹,刘建秀.正交设计优化假俭草SRAP-PCR反应体系及引物筛选.草业学报,2008,17(4):110~117
    67.中国农业科学院烟草研究所.中国烟草栽培学.上海科学技术出版社,2005
    68.周冀衡,王勇.烤烟和白肋烟及香料烟抗旱能力的比较研究[J].湖南农业大学学报(自然科学版),2005,31(1):15~19
    69.朱世杨,郭媛,洪德林.水稻种子抗老化遗传分析[J].遗传,2008,30(2):217~224
    70. Barrera, R. and E.A. Wernsman. Trichome type, density and distrabution on the leaves of certain tobacco varieties and hybrids. Tob. Sci. 1996. 19:157~161
    71. Beavis W D,Grant D.A linkage map based on information from four F2 populations of maize (Zea mays L.).Theoretical and Applied Genetics,1991,82(5):636~644
    72. Bindler G,Hoeven R,Gunduz I,Plieske J,Ganal M,Rossi L,Gadani F,Donini P.A microsatellite marker based linkage map of tobacco.Theor Appl Genet,2007,114:341~349
    73. Bogdanieski M.Trichome density in the variety Prilep depending on tobacco irrgations and leaf insertions [J]. Tutun,1993,43(1~2):3~16.
    74. Bryan G J,Collins A J.Soephenson P.Isolation and characterization of microsatellites from hexpaolid bread wheat.Theor Appl Genet,1997(94):557~563
    75. Budak H,Shearman R C,Parmaksiz I,Gaussoin R E,Riordan T P,Dweikat I. Molecular haracterization of buffalograss germplasm using sequence~related amplified polymorphism markers.Theoretical and Applied Genetics,2004,108:328~334
    76. Carrera A ,M Poverene. Isozyme variation in Helianthus petiolaris and sunflower, H. annuus. Euphytica, 1995, 81(3): 251~257
    77. Chaplin,J.F.and T.J.Mann. Evaluation of tabacco mosaic resistance factor transferred from burley to flre~cured tobacco.Jour.Hered. 1978.69:175~178
    78. Cho Y G,McCouch S R,Kuiper M,Kang M R,Pot J,Groenen J T M,Eun M Y.Integrated map of AFLP, SSLP and RFLP markers using a recombinant inbred population of rice (Oryza sativa L.). Theor Appl Genet,1998,97:370~380
    79. Chubert R, Miiller~Starck G, Riegel R. Devel~opment of EST~PCR markers and monitoring their in~trapopulational genetic variation in Picea bies L. karst. Theor appl genet.2001,103:1223~1231.
    80. Chuman T.Acidic aroma constituents of Turkish tobacco.Inter Conger Essential Oil,1977(7):435
    81. Cordeiro G M, Casu R, McIntyre C L,et al. Microsatellite markers from sugarcane (Sacchurum spp.) ESTs cross transferable to erianthus and sorghum Plant Sci, 2001 May, 160(6):1115~1123.
    82. Coussirat J C.Genetic diversity and varietal identification in the species Nicotiana tabacum by RAPD markers.Annales du Tabac Section~2,1994,26:1~7
    83. Da Long Guo, Zheng~Rong, Luo. Genetic relationships of some PCNA persimmons (Diospyros kaki Thunb.)from China and Japan revealed by SRAP analysis.Genetic Resources and Crop Evolution ,2006,53:1597–1603
    84. Demole E and Berthet D A.chemical study of Burley tobacco flavor. l. Volatile to medium volatile constituents.Helv. Chim. Acta.,1972a,55:1886~1882
    85. Demole E and Berthet D A.chemical study of Burley tobacco flavor. 2. Medium volatile, free acidic constituents.Helv. Chim. Acta.,1972b,55:1898~1910
    86. Dirinck P.Comparison of headspeace components with different region and different tobacco leaf.Tob Sci,1980(24):157~161
    87. Elkind Y, Cahaner A, Kedar N. A mixed model for the effects of single gene ,polygenes and their interaction on quantitative traits 2. The effects of the nor gene and polygenes on tomato fruit soft~ ness [J]. Heridity,1990:205~213.
    88. Elkind Y, Cahaner A. A mixed model for the effects of single gene ,polygenes and their interaction on quantitative traits 1. The model and experimental design[J] .Theor Appl Genet 1986,72:377~383.
    89. Enjaul I, Sledge M K, Wang L,et al. Medicago truncatula EST~SSRs reveal cross~species genetic markers for Medicago spp. Theor appl genet,2004, 108(3):414~422.
    90. Enzell C R.Terpenoid components of leaf and their relationship to smoking quality and aroma.Rec.Adv.Tob.Sci.,1976(6):32~60
    91. Eujayl I, Sorrells M, Baum M, et al..Isolation of EST derived microsatellite markers for genotyping the A and B genomes of wheat.Theor Appl Genet,2002(104):399~407
    92. Ferriol M,Pico B,Nuez F.Genetic diversity of a germplasm collection of cucurbit apepo using SRAP and AFLP marker.Theor Appl Genet,2003,107:271~282
    93. Filippis L,Hoffmann E,Hampp R.Identification of somatic hybrids of tobacco generated by electrofusion and culture of protoplasts using RAPD~PCR.Plant Science Limerick,1996,121(1):39~46
    94. G. J. Vandemark,J. J. Ariss,G. A. Bauchan,R. C. Larsen,T. J. Hughes.Estimating genetic relationships among historical sourcesof alfalfa germplasm and selected cultivars with sequence related amplified polymorphisms.Euphytica,2006,152:9–16
    95. G. Li,M. Gao,B. Yang,C. F. Quiros.Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping.Theor Appl Genet,2003,107:168–180
    96. Gai Y, Zhang Y M, Wang J K. A joint analysis of multiple generations for QTL models extended to mixed two major genes plus polygene[J]. Acta Agronomica Sinica,2000,26(4):385~391
    97. Gllding, G. V. Jr., E. A. Wernsman and R.C. Rufty. Reaction of Nicotiana tabacum L. cultivar Havana 307 to potato virus Y. tobacco vein mottling virus, tobacco etch virus and peronospora tabacina. Tob.Sci. 1985. 29:32~35
    98. Goodwin I D,AiTKen E A B,Smith L W.Ampication of inter~simple sequence repeat (ISSR)markers to plant genetics.Electrophoresis,1997,18:1524~1528.
    99. Gupta P K,Balyan H S,Edwards K J,et.al..Genetic mapping of 66 new microsatellite (SSR) in bread wheat.Theor Appl Genet,2002,105:413~422
    100. Gwynn, G. R. and et al. Registration of budworm resistant I~514 tobacco germplasm. Crop Sci . 1990.30:1371
    101. H. Budak,R. C. Shearman,I. Parmaksiz,R. E. Gaussoin,T. P. Riordan,I. Dweikat.Molecular characterization of Buffalograss germplasm using sequence~related amplified polymorphism markers.Theor Appl Genet ,2004, 108:328–334
    102. H.Fufa,P.S. Baenziger, B.S. Beecher, I. Dweikat, R.A. Graybosch K.M. Eskridge.Comparison of phenotypic and molecular marker~based lassifications of hard red winter wheat cultivars.Euphytica ,2005,145: 133~146
    103. Helentjaris T,Slocum M,Wright S,Schaefer A,Nienhuis J.Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms.Theoretical and Applied Genetics,1986,72(6):761~769
    104. Jackson, D. M. and et al. Ovipositional response of tobacco budworm moths (Lepidoptera: Notuidae)to tobacco introduction 1112 and NC2326 in cage tests. J. Econ .Entomol. 1983.76:1303~1308
    105. Jackson, D. M. and et al. Ovipositional response of tobacco budworm moths (Lepidoiptera :Noctuidae) to cuticular chemical isolates from green tobacco leaves. Environ Entomol. 1984.13:1023~1030
    106. Jackson, D.M. and et al. Effects of cuticular duvane diterpenes from green tobacco leaves on tobacco budworm (Lepidoptera :Noctuidae) oviposition. J. Chem. Ecol. 1986.12:1349~1359
    107. Jackson,D. M. and et al. Identifying mechanisms of resistance in Nicotiana to tobacco aphids, Myzus nicotianae (Blackman).45th Tobacco Chemists′Research Conference, Ash ev ill e, N.C.Abstract 1991,6:45~16
    108. Jonhson E S, Wolff M F, Wernsman E A, et al..Origin of the black shank resistance gene, Ph,in tobacco cultivar Coker371~Gold.Plant Disease,2002,86(10):1080~1084
    109. Kaemmer D .Oligonucleotide and amplification finger printing of wild species and cultivars of banana (Musa spp.).Bio Technology,1996,10:1030~1035
    110. Li G,Quiros C F. Sequence ~ related amplified polymorphism(SRAP),A new marker system based on a simple PCR reaction : its application to mapping and gene tagging in Brassica.Theor.Appl.Genet.2001,103:455~461
    111. Lin T Y,Kao Y Y,Lin S,Lin R F,Chen C M,Huang C H,Wang C K,Lin Y Z,Chen C C.A geneticlinkage map of Nicotiana plumbaginifolia / Nicotiana longiflora based on RFLP and RAPD.Theor Appl Genet,2001,103:905~911
    112. Lin Zhongxu, Zhang Xianlong, Nie Yichun,He Daohua, Wu Maoqing. Construction of a genetic linkage map for cotton based on SRAP.Chinese Science Bulletin 2003,48 (19):2063—2067
    113. Liu Y G,Tsunewaki K.Restriction fragment length polymorphism(RFLP) analysis in wheat .Ⅱ. Linkage maps of the RFLP Sites in common wheat.Jpn. J . Genet,1991,66:617~633
    114. Lloyd R A, Miller C W, Roberts D L, et al. . Flue~cured tobacco flavor I. Essence and essential oil components .Tobacco Science,1976,20:43~51
    115. Loisel P et al. Detecting a major gene in an F2 population[J]. Biometics,1994,50:512~516
    116. Lucas , G. B. and et al. Reaction of Nicotiana Africana to black shank, Granville wilt, root knot,tobacco mosaic virus,and potato virus Y. Tob. Sci. 1990.24:141~142
    117. M. Ferriol,B. Picó,F. Nuez.Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet,2003,107:271–282
    118. Matsumoto,M. Hirai.Mapping and characterization of FLC homologs and QTL analysis of Xowering time in Brassica oleracea.Theor Appl Genet,2006,46~60
    119. McCouch S R,Kochert G,Yu Z H,Wang Z Y,Khush G S,Coffman W R,Tanksley S D.Molecular mapping of rice chromosomes.Theoretical and Applied Genetics,1988,76(6):815~829
    120. Moore S S,Sargeant L L,King T J,et al..The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species.Genomics,1991,10(3):654~60
    121. Nagamura Y,Antonio B A,Sasaki T.Rice molecular genetic map using RFLPs and its applications.Plant molecular Biology,1997,35:79~87
    122. Nielsen M T.Altering flavor and aroma constituents of burley tobacco.Tobacco Science,1991(35):69~73.
    123. Nielsen M T.Altering flavor and aroma constituents of burley tobacco.Tobacco Science,1991(35):69~73
    124. Nilsen,M. T. and et al. Inheritance pattern for secreting and nonsecreting glandular trichome in tobacco. Crop Sci. 1982.22:1050~1053
    125. Pandeya R S, Dirks V A, Poushinsky G. Quantitative genetic studies in flue~cured tobacco (Nicotiana tabacum).Ⅰ. Agronomic characters. Canadian Journal of Genetics and Cytology, 1983, 25(2): 336~345.
    126. Paran L, Michelmore R W. Development of reliable PCR~based markers linked to down mildew resistence genes in lettuce [ J ]. Theor Appl Genet, 1993, 85 (8): 985~993.
    127. Powell, A. P. and et al . Delay of disease development in transgenic plants that express tobacco ,osaic virus coat protern gene. Science 1986. 232:738~743
    128. R. J. Mailer, R. Scarth, B. Fristensky.Discrimination among cultivars of rapeseed (Brassica napus L.) using DNA polymorphisms amplified from arbitrary primers.TAG Theoretical and AppliedGenetics,1994,87(6):697~704
    129. R. L. Jarret, D. F. Austin.Genetic diversity and systematic relationships in sweetpotato (Ipomoea batatas (L.) Lam.) and related species as revealed by RAPD analysis.Genetic Resources and Crop Evolution,1994,41(3):165~173
    130. Reiter R S et al. Global and local genome mapping in Arabidopsis thaliarra by using recombinant inbred lines and random amplified polymorphic DNAs. Proc Natl Acad Sci USA,1992,89:1477~1481
    131. Ren N,Timko M P.AFLP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species.Genome Ottawa Ontario Canada: National Research Council of Canada,2001,44(4):559~571
    132. Roberts D L.Isolation and Identification of Flavor Components of Burley Tobacco.Tobacco Science,1972,16:107~112
    133. Rǒder M S,Korzun V,Wendehake K.A microsatellite map of wheat.Genetics,1998,149:2007~2023
    134. Sanchez de la Hoz,MP,Davilla JA,Loarce Y et al.Simple sequence repeat primers used in polymerase chain reaction amplifications to study the geneticdiversity in barley[J]. Genome, 1996, 39: 112~117.
    135. Schumacher J N,Vestal L.Isolation and indentification constitutes of some components of Turkish tobacco.Tob Sci,1974(18):43~48
    136. Severson R F,Johnson A W,Jackson D M.Cuticular constituents of tobacco:Factors affecting their production and their role in insect and disease resistance and smoke quality.Rec.Adv.Tob.Sci.,1985(11)105~174
    137. Severson, R. F. and et al. Isolation of preparative chromatography of the major cuticular diterpenes of green tobacco leaf. Tobacco Sci . 1988.32:99~103
    138. Sisson , R. C. and J. F. Chaplin. Reaction to potato virus Y and tobacco etch virus of doubled haploids from crosses of flue-curde tobacco cultivar×Havana 307.Tob. Sci. 1988.32:96~98
    139. Smeeton B W. Genetic control of tobacco quality..Rec.Adv.Tob.Sci.,1987(13):3~26
    140. Smith J S C, Simth O S. An evaluation of the utility of SSR loci a molecular markers in maize(Zea mays L.):Comparison with data from RFLPs and pedigree. Theor Appl Genet,1997(95):163~173
    141. Stedman R L.The chemical composition of tobacco and tobacco smoke.Chem. Rev.,1968,68:153~207
    142. Stevely, J. R. ,J. F. Chaplin ,and G. R. Gwynn. Registration of Bel 921 Brown spot resistant flue~cured tobacco Germplasm. Crop Sci. 1984. 24:830~831
    143. Tanksley S D, Ganal M W, Prince J P, et.al..High density molecular linkage maps of the tomato and potato genomes.Genetics,1992,132(4):1141~1160
    144. Tedford ,E. C. , T. L. Miller,and M. T. Nielsen. A detachedleaf technique for detecting resistance to Phytothora parasitica var. nicotianae in tobacco. Plant Dis. 1990.74:313~316
    145. Temnykh S,Park W D,Ayres N,Cartinhour S,Hauck N,Lipovich L,Cho Y G,Ishii T,McCouch SR.Mapping and genome organization of microsatellite sequences.Theor Appl Genet,2000,100:697~712
    146. Vos P. AFLP:a new concept for DNA fingerprinting.Nuceic Acids Res,1995,23:4407~4414.
    147. Wang Gang, Pan Jun~song, Li Xiao~zun,He Huan~le, Wu Ai~zhong, Cai Run.Construction of a Cucumber Genetic Linkage Map with RAPD,SRAP and SSR Markers.Journal of Shanghai Jiaotong University(Science), 2005,10( 1):045~049
    148. Welsh J,Mcclelland,M.Fingerprinting genomes using PCR with arbitrary primers[J]. Nucl Acids Res,1990,18:7213~7218.
    149. White F H, Pandeya R S, Dirks V A. Correlation studies among and between agronomic, chemical, physical and smoke characteristics in flue~cured tobacco (Nicotiana tabacum L.). Canadian Journal of Plant Science, 1979, 59(1):111~120
    150. Williams JG,Kubelik AR,Livak KJ,et al..DNA polymorphisms amplified by arbitrary primers are useful as genetic markers.Nucleic Acids Research,1990(18):6531~6535
    151. Yi Y H,Rufty R C,Wernsman E A.Identification of RAPD markers linked to the wildfire resistance gene of tobacco using bulked segregant analysis.Tobacco Science,1998a,42(3):52~57
    152. Yoshiaki Harushima,Masahiro Yano,Ayahiko Shomura,et.al..A High~Density Rice Genetic Linkage Map with 2275 Markers Using a Single F2 Population.Genetics,1998,148:479~494
    153. Zietkiewicz E, A Rafalski, and D Labuda. Genome fingerprinting by simple sequence repeat (SSR)~anchored polymerase chain reaction amplification. Genomics, 1994, 20:176~183
    154. Kurteva, G., Tabakova, E. Biological and ecological characterization of some perspective oriental tobacco lines. Plant Science, 1995,32(1-2):132~135
    155. Sue Porebski, L.Grant Bailey, Bernard R. Baum. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter, 1997, 15(1): 1572~9818
    156. Dudak H, Shearman R C, Parmaksiz I. Molecular characterization of Buffalograss germplasm using sequence-related amplified polymorphism markers[J]. Theor Appl Genet, 2004, 108: 328~334.