基于响应面方法的立管结构可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋立管是海洋油气开发中的重要设备之一,是连接海底井口与海面浮式结构物的最重要媒介。在深海条件下,海洋立管的结构形态为细长体,其所处的工作环境十分复杂和恶劣,风、浪、流等多种载荷都会影响到立管的结构安全。而在对深海立管结构安全的评价中,由于大量不可测量和预知的影响因素的存在,导致立管结构响应出现随机性。目前,借助专用有限元软件,可以计算出立管在特定的环境下的强度情况,但是在复杂的环境载荷作用下,很难能够定量的确定立管结构在多大程度上是安全的。所以,充分考虑各种随机性的影响,对深海立管结构进行可靠性分析,是十分必要和有意义的。
     由于立管的结构响应的功能函数都是随机变量的隐性表达式,无法直接应用传统方法进行可靠性分析。因此,本文引入了响应面方法和最弱失效模式组理论,结合试验设计、有限元方法、一阶二次矩方法和蒙特卡洛法等方法,进行了极限风暴载荷及波流联合作用下的钻井立管结构可靠性研究,和流载荷作用下钻井立管涡激振动疲劳可靠性研究。本文首先应用通用有限元软件对深海立管结构进行了整体分析,掌握了顶端张力式立管在操作及悬挂工况下的整体响应特征。然后,在对立管进行试验设计和专用有限元建模的基础上,筛选出影响立管在各种工况下结构响应的主要因素,采用多项式响应面方法建立结构响应与随机输入变量之间的近似解析表达式,在此基础上确定立管在不同工况下的不同位置的结构响应功能函数,继而进行了立管在极限风暴载荷下的结构可靠性分析。在这一方法的基础上,结合疲劳累积损伤理论,进行了钻井立管在涡激振动作用下的疲劳可靠性分析,并分别应用基于重要抽样法的蒙特卡洛方法对以上可靠性分析结果进行了验证。最后,通过广泛的调研,针对可靠性分析的研究成果,给出了深海立管完整性监测系统设计方案。
     本文所提出的方法基于响应面方法的可靠性分析方法可以直接使用现有的确定性有限元分析软件,并可以为有限元方法和蒙特卡洛法建立了应用的桥梁,解决了立管结构响应隐性功能函数的问题,降低的立管可靠性计算的工作量,具有一定的理论和工程应用价值。
Riser is one of the most important equipment of the development ofthe ocean oil and gas. It is the most important medium between the wellhead at the sea bottom and the floating structure at the sea surface. Indeep sea condition, the geometric shape of the riser is a slender column incomplex and extreme working environment. All kinds of load, like storm,wave and current would affect the structural safety of the risers. At thesame time, because of the considerable unmeasured and unforeseeablefactors in the estimation of the safety of the deep sea risers, the responseof the riser results in randomness. At the present time, the strength of theriser under specific conditions can be calculated with the help of thespecific finite element software.However, it is extraordinary difficult toquantitatively determine how much is safe of the riser under complicatedenvironment loads. Thus,considering all kinds of stochastic influence, thereliability analysis of riser is necessary and significant.
     As the limite state function of the riser response cannot be expressedas an analytical form in terms of basic random variables, the traditionalmethod cannot be applied to procee reliability analysis. Therefore, anapproach combines design of experiment (DOE), finite element method(FEM), response surface method (RSM), and first order second momentmethod (FORM) is put forward to calculate the riser’s structural strengthreliability under extreme storm condition and the riser’s fatigue reliabilityunder wave load or vortex-induced-vibration, take top-tensioned riser(TTR) as an example. In this thesis, the general finite element software isapplied to proceed the global analysis of the deep sea riser to master theglobal response characters of the TTR under operation and hang-offworking conditions. And then, on the basis of design of experiment andspecific finite element software modeling, the main factors which affectthe structural response under different load conditions are selected. Usingthe polynomial response surface method, the approximate analyticalexpression between the structural response and random input variables is built. And under this basic procedure, the riser’s structural performancefunctions of different load conditions and different locations aredetermined. Afterwards, the riser’s structural strength reliability underextreme storm condition and the riser’s fatigue reliability under waveload or vortex-induced-vibration are finished. Furthermore, the results arevalidated by the Monte Carlo method based on selective sampling method.At last, an integrity monitoring system application plan is put forwardbased on the reliability analysis results.
     The proposed method based on RSM can directly use thedeterministic FEM software, and build a bridge between the finiteelement method and the first order second moment method or MonteCarlo method, which can solve the reliability analysis of riser withimplicit performance function and reduce the word load. It has goodtheoretical and application value in practical engineering applications.
引文
[1] Yong Bai and Qiang Bai, Subsea Pipelines and Risers, Elservier Science Ltd2005.
    [2] Matteo Chiesa, Bjorn Skallerud, Tore Holmas.Integrated Local and Global AnalysisAnd Fracture Assessment of Pipe—lines with Defects[R].Rio de Janeiro,Brazil,OMAE,2003June03-08
    [3] Leira B J,Karunakaran D,Bjorset A.Fracture and fatigue reliability assessment ofdeep-water risers.17th OMAE,Lisbon,Portugal,ASME,1998,98-1365,1-9.
    [4] Yang Jin, Liu Caihong. Strength and Stability Analysis of Deep Sea DrillingRisers[J].PETROLEUM SCIENCE,2007,4(2):60-65
    [5] Chang Yuanjiang, Chen Guomin, Sun Youyi. Nonlinear Dynamic Analysis ofDeepwater DrillingRisers Subjected to Random Loads[J]. CHINA OCEANENGINEERING,2008,22(4):683-691
    [6]余折,王德禹.凹陷立管的极限强度和疲劳寿命分析[J].中国海洋平台,2010,25(3):30-35
    [7]刘极莉,夏秋玲.基于规范的绑扎式立管系统的强度计算[J].中国造船,2005,49(A02):482-489
    [8]周灿丰,焦向东,曹静,沙勇.海洋深水立管环缝疲劳性能研究现状及建议[J].焊接,2011,4:5-10
    [9]王建军,林凯,宫少涛.海洋深水钻井隔水管材料性能标准研究[J].天然气工业,2010,4:84-86
    [10]杨进,段异生,杨鸿波.卡簧式钻井隔水管快速接头力学性能研究[J].天然气工业,2010,2:13-15
    [11]石晓兵,陈平.三维载荷对海洋深水钻井隔水管强度的影响分析[J].天然气工业,2004,24(12):86-88
    [12]石晓兵,郭昭学,聂荣国.海洋深水钻井隔水管变形及载荷分布规律研究[J].天然气工业,2004,24(3):88-90
    [13]李中,杨进,曹式敬.深海水域钻井隔水管力学特性分析[J].石油钻采工艺,2007,29(1):19-21
    [14]于洪旭,杨俊,罗超.自升式钻井平台风暴自存工况下动力响应分析[J].中国造船,2011,52(A02):1-11
    [15]刘德辅,王树青.海洋立管综合环境条件设计标准研究[J].海洋工程,2001,19(2):13-17
    [16]李军强,刘宏昭,何钦象.波浪力作用下海洋钻井隔水管随机振动研究[J].机械科学与技术,2004,23(1):7-10
    [17] Buitrago J, Zettlemoyer N. Fatigue design of critical girth welds for deepwaterapplications[R].17th International Conference on Offshore Mechanics and ArcticEngineering,1998:98-2004
    [18] Pesce C P,Aranha J A P.Steel catenary risers for deep water applications[R].5thInternational Offshore and Polar Engineering Conference,1995,Vo1.1I,190—202
    [19] Karunakaran D,Lund K M,Nordsve N T.Steel catenary riser configurations for NorthSea field developments[R]. OTC10979,1999:331—338.
    [20] Bjorset A,Leiira B J,Remseth S.Local buckling analysis of Titanium pipes byprobabilistic response surface methods[R].17th International Conference on OffshoreMechanics and Arctic Engineering,1998:98-1487.
    [21] Sparks C P, Odru P. Composite riser tubes: Defect tolerance assessment andnondestructive testing[R].OTC6894,1992:191-198.
    [22] Sparks C P,Odru P.Defect tolerance assessment and nondestructive of testingcomposite riser tubes[R].ASME,1992:209—214.
    [23] Nilsen A U,Hanson T D.Reliability based design of a15’’ dynamic flexible gas exportriser[R].Proc.of the Fifth International Offshore and Polar Engineering Conference,1995,Vo1.IV,373-382.
    [24] Karunakaran D, Olufsen A. Reliability analysis of a deepwater flexible risersystem[R].Proc.of the Fifth International Offshore and Polar Enginering Co nference,1995,V01.IV,365—372.
    [25] Leira B J,Mathisen J.Reliability—based safety factors for flexible risers[R].ASME,1995,OMAE,II,295—312.
    [26] Leira B J, Torhaug R, Kirkvik R H.Reliability aspects of deepwater risers design[R].ASME,1997, OMAE, II,315-325.
    [27]娄敏,董文乙,王腾.浮式装置升沉及横荡运动下海洋立管动力响应研究[J].中国海洋平台,2010,25(4):14-18
    [28]娄敏,董文乙,郭海燕.波浪作用下海洋立管试验研究及ANSYS数值模拟[J].中国造船,2010,51(1):73-77
    [29]白兴兰,黄维平.考虑海床土吸力的SCR-Spar整体波浪响应分析[J].中国海洋平台,2010,28(2):58-64
    [30]孙友义,陈国明.超深水钻井系统隔水管波致疲劳研究[J].石油学报,2009,30(3):460-464
    [31]刘秀全,陈国明,畅元江,鞠少栋.海洋油气立管疲劳试验方法[J].中国造船,2011,9(A02):34-39
    [32]高云,宗智,周力,吴宗铎.钢悬链式立管的浪致疲劳[J].大连海事大学学报:自然科学版,2011,2:1-5
    [33]杨和振,李华军.深海钢悬链立管时域疲劳寿命预估研究[J].振动与冲击,2010,29(3):22-25
    [34]黄维平,孙传栋,唐世振,刘超.深水顶张式生产立管的浪致疲劳研究[J].中国海洋平台,2009,24(3):26-30
    [35]范佰明,嵇春艳,张强,霍发力.波流联合作用下深海立管疲劳寿命计算方法研究[J].船海工程,2008,37(2):91-94
    [36] Stahl B,Banon H.Fatigue Safety Factors For Deepwater Risers[R].Oslo,Norway.OMAE2002, June23-28
    [37] Basim B.Mekha.On the Wave and VIV Fatigue of Steel Catenary Risers Connected toFloating Structures [R]. Oslo,Norway. OMAE2002, June23-28
    [38] Grant R, Litton R.Highly compliany rigid risers:field test benchmarking a time domainVIV algorithm [R].OCT11995,2000:5470555.
    [39] Vandiver J K.Research challenges in the vortex-induced vibration prediction of marinerisers[R].OCT8698,1998:155-163.
    [40] Trond Stokka Meling,Kenneth Johannessen Eik.An Assessment of EOF current scatterdiagrams with respect to riser VIV fatigue damage[R].Oslo,Norway. OMAE2002,June23-28
    [41]上官丽红.顶张力对深水刚性立管涡激振动及疲劳损伤的影响[J].船海工程,2011,40(2):51-59
    [42]陈晓贤,刘亮,范会渠,许亮斌.深水悬链线立管涡激疲劳损伤预报[J].中国造船,2010,12(A02):51-59
    [43]高云,宗智,周力,曹静.钢悬链式立管涡激振动疲劳损伤分析[J].中国舰船研究,2010,5:54-58
    [44]张永波,郭海燕,孟凡顺,李效民.多用途输液立管涡激振动实验研究与疲劳分析[J].实验力学,2011,3:303-310
    [45]薛鸿祥,唐文勇,张圣坤.深海立管涡激共振疲劳寿命简化计算方法[J].工程力学,2008,25(5):26-30
    [46]王一飞,吴晓源,潘志远,黄小平,崔维成.弹性模量对深海立管涡激振动疲劳损伤的影响[J].船舶力学,2007,11(6):867-878
    [47] E.Huse, G.Kleiven. Large Scale Model Testing Of Deep Sea Risers [R]. Houston, USA.Offshore Technology Conference,1998, May4-7
    [48] Donald W.Allen,Dean L. Henning. Performance Comparisons of Helical Strakes forVIV Suppression of Risers and Tendons [R]. Houston, USA. Offshore TechnologyConference,2004, May3-6
    [49] Stephane F.A.Cornut, J. Kim Vandiver. OFFSHORE VIV MONITORING ATSCHIEHALLION-ANALYSIS OF RISER VIV RESPONSE [R]. New Orleans,USA.OMAE2000, Feb14-17.
    [50] H. Lie,d K. Mo. VIV model test of a bare and staggered buoyancy riser in a rotatingrug[R]. Houston, USA. Offshore Technology Conference,1998, May4-7
    [51] G.K.Furnes, T.Hassanein. A Field Study of Flow Induced Vibrations on a DeepwaterDrilling Riser[R]. Houston, USA. Offshore Technology Conference,1998, May4-7
    [52] K.H.Halse. Comparison of models for vortex induced vibrations of slender marinestructures[J]. Marine Structures,1997,10(6):413-441
    [53] E.Kaasen, Halvor Lie. Analysis of Vortex Induced Vibrations of Marine Risers [J].Modeling, Identification and Control,2003,24(2):71-85
    [54]秦权,林道锦,梅刚.结构可靠度随机有限元——理论及工程应用[M].北京:清华大学出版社,2006.
    [55]段巍.汽轮机叶片强度可靠性分析的响应面方法研究[D].北京:华北电力大学,2009
    [56] Cornell C A.Bounds on the reliability of structural system [J]. Journal of the StructuralDivision, ASCE,1967,93(ST1):171—200.
    [57] Cornell C A.A probability-based structural code [J]. Journal of the American ConcreteInstitute,1969,66(12):974-985.
    [58] Hasofer A M, Lind N C. Exact an invariant second moment code format[J].Journal ofEngineering Mechanics Division, ASCE,1974,100(EM1):111-121.
    [59] Rackwitz R Fiessler B.Note on discrete safety checking when using non-normalstochastic models for basic variables [M].Load Project Working Session, MIT,Cambridge,MA,June1976.
    [60] Chen X, Lind N C. Fast probability integration by three-parameter normal tailapproximation [J]. Structural Safety,1983,1(4):269-276.
    [61] Wu Y T, Wirsching P H. New algorithm for structural reliability estimation [J]. Journalof Engineering Mechanics, ASCE,1987,113(9):1319-1336.
    [62] Shinozuka M.Basic Analysis of Structural Safety [J]. Journal of Structural Engineering,ASCE,1983,109(3):721-740.
    [63] Bjerager P, Krenk S. Sensitivity Measures in Structural Reliability Analysis. InReliability and Optimization of Structural Systems[C].Proceedings of the First IFIPWG7.5Working Conference, Aalborg, Denmark: Springer-Verlag,1987:459-470.
    [64] Fiessler B, Neumann H J, Rackwitz R. Quadratic limit states in structural reliability.Journal of Engineering Mechanics [J]. ASCE,1979,105(4):661-676.
    [65] Breitung K. Asymptotic approximations for multi-normal integrals [J]. Journal ofEngineering Mechanics, ASCE,1984,110(3):357-366.
    [66] Tvedt L. Distribution of Quadratic Forms in the Normal Space Application to StructuralReliability [J]. Journal of Engineering Mechanics, ASCE,1990,116(6):1183-1197.
    [67] Cai G Q, Elishakoff I. Refined Second-Order Reliability Analysis [J]. Structural Safety,1994,14(4):267-276.
    [68] Koyluoglu H U, Nielsen S R K. New Approximations for SORM Integrals [J].Structural Safety, l994,13(4):235-246.
    [69] Zhao Y G, Ono T.New Approximations for SORM: Part I [J]. Journal of EngineeringMechanics, ASCE,1999,125(1):79-85.
    [70] Der Kiureghian A. Measures of Structural Safety under Imperfect States of Knowledge[J]. Journal of Structural Engineering, ASCE,1989,115(5):1119-1140.
    [71] Der Kiureghian A. De Stefano M. Efficient Algorithm for Second-Order ReliabilityAnalysis [J]. Journal of Engineering Mechanics, ASCE,1991,117(12):2904-2923.
    [72] Florian A. An efficient sampling scheme: updated Latin Hypercube Sampling [J].Probabilistic Engineering Mechanics,1992,7(2):123-130.
    [73] Huntingtong D E,Lyrintztis C S.Improvements to and limitations of Latin HypercubeSampling[J].Probability Engineering Mechanics,1998,13(4):245-253.
    [74] Iman R L,Canover WJ.Small sample sensitivity techniques for computer models withan application to risk assessment.Communications in Statistics [J].Theory and Methods,1980,A9:1749-1842.
    [75] Olsson A, Sandberg G, Dahlblom O. On Latin Hypercube sampling for structuralreliability analysis [J]. Structural Safety,2003,25(1):47-68.
    [76] Kalman Ziha.Deseriptive sampling in structural safety [J]. Structural Safety,1995,17(1):33-41.
    [77] Harbitz A. An efficient sampling method for probability of failure calculation[J].Structural Safety,1986,3(2):109-115.
    [78] Schueller G I,Bucher C G, Bourgrund U.On efficient computational schemes tocalculate failure probabilities[J].Probabilistic Engineering Mechanics,1989,4(1):10-18.
    [79] Ditlevsen O, Madsen H O. Structural Reliability Methods [M]. Chichester: John Wileyand Sons,1996.
    [80] Faravelli L. Response surface approach for reliability analysis [J]. Journal ofEngineering Mechanics, ASCE,1989,115(12):2763-2781.
    [81] Wong F. S. Slope reliability and response surface method [J]. Journal of GeotechnicalEngineering Division. ASCE,1985,111(1):32-53.
    [82] Bucher C. G, Bourgrund U. A fast and efficient response surface approach for structuralreliability problem[J]. Structural Safety,1990,7(1):57-66.
    [83] Schueller GI, Stix R. A critical appraisal of methods to determine failure probabilities[J].Structural Safety,1987,4(4):193-209.
    [84] Rajashekhar M R, Ellingwood B R. A new look at the response surface approach forreliability analysis[J]. Structural Safety,1993,10(12):205-220.
    [85] Kim S H,Na S N. Response surface method using vector projected sampling points[J].Structural Safety,1997,14(1):3-19.
    [86] Zheng Y, Das P K. Improved response surface method and its application to stiffenedplate reliability analysis [J]. Engineering Structures,2000,22(5):544-551.
    [87] Chowdhury R N, Xu D W. Rational polynomial technique in slope-reliabilityanalysis[J].Journal of Geotechnical Engineering,1993,119(12):1910-1928.
    [88]徐军,郑颖人.基于响应面方法的围岩参数随机反应分析[J].岩土力学,2001,22(2):167—170.
    [89]苏永华,方祖烈,高谦.用响应面方法分析特殊地下岩体空间的可靠性[J].岩石力学与工程学报,2000,19(1):55-58.
    [90]苏永华,王旭春,张宗社.岩体工程可靠性分析的响应面方法及应用[J].工程地质学报,2001,9(4):381-384.
    [91]帅长斌,张银龙,常大民等.基于响应面法的桥面结构可靠度近似计算[J].中国公路学报,2003,16(3):52-57.
    [92]张弥,沈永涛.用响应面方法分析铁路明洞结构荷载效应[J].土木工程学报,1993,26(2):58-65.
    [93]佟晓利,赵国藩.一种与结构可靠度分析几何法相结合的响应面方法[J].土木工程学报,1997,30(4):51-57.
    [94]徐军,刘东升,郑颖人.具有高次非线性和复杂性功能函数的岩土工程可靠度分析[J].岩石力学与工程学报,2001,20(2):160-163.
    [95]徐军,郑颖人.响应面重构的若干方法研究及其在可靠度分析中的应用[J].计算力学学报,2002,19(2):217-221.
    [96] Der Kiureghian, L. Structural reliability methods for seismic safety assessment:areview[J]. Engineering Structures,1996,18(6):412-424.
    [97] Guan X L, Melchers R E. Effect of response surface parameter variation on structuralreliability estimates[J]. Structural Safety,2001,23(4),429-444.
    [98] Kim SangHyo, Na SeongWon. Response surface method using vector projectedsampling points[J]. Structural Safety,1997,14(1):3-19.
    [99] API RP16Q,Recommended Practice for Design, Selection, Operation and Maintenanceof Marine Drilling Riser System[S].Washington, DC:American Petroleum Institute,1993.
    [100]高峰.超深水顶端张力式钻井隔水管结构与VIV疲劳分析[D].哈尔滨:哈尔滨工程大学,2010
    [101]聂武,刘玉秋.海洋工程结构动力分析[M].哈尔滨:哈尔滨工程大学出版社,2002.
    [102] Winterstein, Steven R. and Kumar. Reliability of Floating Structures: Extreme Responseand Load Factor Design [R]. OTC7758,1994
    [103]陈云水,王德禹.深水立管的若干结构力学研究进展[J].中国海洋平台,2007,22(5):1-6
    [104]谢彬,段梦兰,秦太验,孙政策,李杰.海洋深水立管的疲劳断裂与可靠性评估研究进展[J].石油学报,2004,25(3):95-100
    [105] Dai Wei, Gao Feng, and Bai Yong. FEM analysis of deepwater drilling risers under theoperability and hang-off working conditions [J]. Journal of Marine Science andApplication,2009,8(2):156-162
    [106]孙海.结构体系抗震可靠度的优化与控制研究[D].哈尔滨:哈尔滨工程大学,2009
    [107]范佰明.深海立管的疲劳寿命预报方法[D].镇江:江苏科技大学,2008
    [108]白勇,戴伟,周维星.基于水声的隔水管监测系统[P].中国:CN200820091053.9,2008