深海立管内孤立波作用的动力特性及动力响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,内波造成海洋工程结构物的破坏屡见报道,对于海洋油气开采中必不可少而又贯通水深的立管而言,内波经过时势必会对其产生重大影响。内波是以怎样的形式作用在细长的海洋立管上,立管在其作用下动力特性如何,当海洋内波与其他海洋环境荷载共同作用时,立管又会呈现怎样的动力响应,这些问题是当前海洋工程学术界和工业界共同面临的挑战。本文试图用实验和数值模拟两种方法探讨内波对圆柱体的作用力,再将此作用力施加在海洋工程中常用的两种立管(顶部施加张力的顶张力立管和自由悬挂的钢悬链线立管)上,用数值方法计算分析其动力特性,最后研究海洋内波与表面波和顶部浮式结构共同作用时海洋立管的动力响应。
     首先在内波水槽中进行小段竖直圆柱体上内孤立波作用力实验,采用染色摄影技术以及PIV示踪粒子技术获得内孤立波波形和流场时空特征,利用测力系统测量处于不同深度的小段圆柱体作用力,以此为基础,确定内孤立波对长圆柱体作用力沿深度的分布情况。同时探讨内孤立波振幅、圆柱体直径和圆柱体所在深度对作用力大小的影响。
     其次,采用KdV方程或mKdV方程模拟内孤立波波形、波致水质点速度和加速度,再结合Morison公式建立内孤立波作用力模型,将数值模拟的计算值与实测值进行对比,结果表明:采用KdV或mKdV方程得到的波形、下层流体中内波致流速大小、方向以及流速沿深度的变化情况与实验结果一致。
     然后,基于达朗伯原理建立顶张力立管的控制方程,采用内孤立波作用力数值模型模拟内孤立波作用力,利用Newmark-β法在时域内对内孤立波作用下顶张力立管的动力反应进行数值求解。基于以上理论编制程序TTR_ISW,并应用该程序对南海实测内孤立波作用下的顶张力立管进行数值模拟。结果表明:顶张力立管在内孤立波强烈的剪切作用下会产生很大的位移和应力,内孤立波波谷传到立管中心线时,立管位移达到最大,两层流体界面附近的顶张力立管区段有可能在此时发生剪切破坏,故对内波多发海域的立管进行设计计算时应该考虑内波作用。研究还表明:顶部张力、内流速度、弹性模量、壁厚等因素对于顶张力立管在内孤立波作用下的响应均有一定程度的影响。
     另外,基于细长柔性杆理论(the rod theory)考虑大变形建立钢悬链线立管控制方程,采用内孤立波作用力数值模型模拟内孤立波作用力,用Newton-Raphson方法迭代求解钢悬链线立管的静力位形,基于静力平衡位形,在时域内采用Adams-Moulton方法求解钢悬链线立管非线性运动方程,编制相应的计算程序SCR_ISW。应用该程序计算了当内孤立波传播方向与钢悬链线立管所在平面呈不同角度时钢悬链线立管的响应。结果表明:由于钢悬链线立管的三维特性,内孤立波传播方向不同会导致立管的响应不同,当内孤立波作用于钢悬链线立管平面内时立管的响应最大。
     最后,同时考虑内孤立波、波浪、顶部浮体运动等荷载的共同作用,建立深水顶张力立管和钢悬链线立管在多种荷载作用下的非线性运动方程,用有限元法在时域求解,进而求得立管的联合响应。波浪的模拟采用线性波浪理论,顶部浮体运动采用Sexton推荐的方法,内孤立波作用采用本文建立的作用力模型。计算结果表明:内孤立波对立管的影响远大于表面波的作用,顶部浮体运动的作用也相当显著。当立管遭受这三种荷载联合作用时,立管以表面波和顶部浮体运动的频率振动,而内孤立波的作用类似缓慢但巨大的冲击力。
There are more and more reports about the destruction of offshore structuresinduced by internal waves in recent years. As one of the indispensable facilities in themarine oil and gas exploration, marine riser goes through the whole depth of oceanthus internal wave may have great effect on the riser. Ocean engineering faces greatchallenges including the mechanical behavior of the slender marine riser sufferinginternal wave, the response and failure mode of the riser under internal wave and theresponse of the riser under combined excitation of internal wave, surface wave andthe motion of the floating structure. In this thesis, the force vertical distributionpattern of the circular cylinder under internal solitary wave is investigated bothexperimentally and numerically. The internal solitary wave forces are imposed on thetwo types of riser commonly used in the offshore engineering (top tensioned riser andsteel catenary riser), and dynamic charecteristics for these two risers are analyzednumerically. Moreover, the dynamic responses of risers under combined excitation ofinternal wave, surface wave and vessel motion are simulated respectively.
     Firstly, the force of a piece of short circular cylinder under internal solitarywave is investigated in an internal wave flume. The dyeing photography technologyand PIV tracer particle technology are adopted to obtain the wave shape and thetemporal and spatial characteristics of internal wave field. A special force measuringsystem is adopted to obtain the force of a short piece of cylinder in different depth,and on this basis the force distribution along the depth of the long cylinder underinternal solitary wave is analyzed. In addition, the influences of internal solitary waveamplitude, the depth of cylinder located and the diameter of cylinder on the force arediscussed.
     Secondly,the KdV theory or mKdV theory is adopted to obtain the wave profile,the fluid velocity and acceleration induced by internal solitary wave. Then, combined with Morison formula, the internal solitary wave force model for a cylinder isestablished. The simulated results are compared with the measured results. It showsthat the simulation results of wave profile, the velocity direction, the value of velocityin lower layer, and the variation pattern of velocity along the depth coincide with theexperimental data.
     Afterwards, based on D'Alembert principle, the governing equation of the toptensioned riser (TTR) is established. The force of internal solitary wave exerted on theriser is numerically simulated and dynamic responses of the TTR undergoing internalsolitary wave are analyzed in time domain by using Newmark-β method. Acomputation programm for solving the differential equations in time domain iscompiled (TTR_ISW) and numerical results are obtained. The results show thatinternal solitary wave may induce quite large displacements and stresses in TTR. Asthe internal solitary wave crest passes by the centre of the riser, the maximumdisplacement and stress along the riser occur. The riser section located in the vicinityof the interface of two layer fluid may be destroyed by the strong shear current, andthe load of internal solitary wave should be concerned in riser analysis. The influencesof the internal wave amplitude, internal flow, top tension, elastic modulus and wallthickness on the riser extreme response are discussed.
     Further, based on the slender rod theory, the governing equation of steel catenaryriser (SCR) is obtained, and the internal solitary wave force model is used to calculatethe hydrodynamic force induced by internal solitary wave. The static problem issolved iteratively by the Newton-Raphson method, while the dynamic responses aregained by using Adams-Moulton method in time domain. Based on the theorymentioned above, a computer program (SCR_ISW) for static and dynamic analyses ofSCR is developed. The cases for different angles between the propagation direction ofinternal solitary wave and the SCR’s plane are calculated by use the programm. Theresults show that, when the angle equals0degree, the max dynamic effective tensioninduced by internal solitary wave occurs.
     In addition, the combined excitation of internal solitary wave, surface wave andvessel motion is considered for calculating the dynamic response of marine riser. The governing equations for TTR and SCR under combined excitation are establishedrespectively, and the equations are solved by using finite element method (FEM) intime domain. Airy wave theory is chosen to simulate the fluid velocity andacceleration of surface wave, vessel motion is involved by using the method proposedby Sexton, and internal solitary wave is caculated by using the force modelestablished in this thesis. The caculated results show that the action of internal solitarywave on the riser is like a slow powerful impact, and is much larger than that ofsurface wave. When the riser is under combined excitation, it vibrates at frequenciesof both surface wave and vessel motion, while the amplitude of vibration is dominatedby internal solitary wave.
引文
[1]孙巍.深海石油工程装备技术发展现状及展望.中外能源,2012,17(9):9~14
    [2]朱伟林,张功成,钟锴,刘宝明.中国南海油气资源前景.中国工程科学,2010,12(5):46~50
    [3]马眠,吕学谦.深水资源:中国能源可持续发展的重要领域—访中国海洋石油总公司副总工程师曾恒一院士.高科技与产业化,2008,12(12):16~20
    [4] Osborne A R,Burch T L. Internal solitons in the Andaman Sea. Science,1980,208:51~460
    [5]李家春.水面下的波浪——海洋内波.力学与实践,2005,27(2):1~6
    [6] Phillips. O M. The dynamics of the upper ocean. Press Syndicated of the University ofCambridge,(Second edition),1977,309
    [7] Antony K,Liua et a1. Evolution of nonlinear intemal waves in the East and South China Seas.Journal of geophysical research,1998,103(4):7995~8008
    [8]方欣华,杜涛.海洋内波基础和中国海内波.青岛:中国海洋大学出版社,2005.1
    [9] Roberts J. Internal Gravity Waves in the Ocean. New York:Marcel Dekker Inc,1975.2~13
    [10] Osborne A R, Burch T L, Scarlet R I. The influence of internal waves on deep-water drilling.Journal of Petroleum Technology,1978,30(10):1497~1504
    [11]张波,黄长穆.中国南海流花11-1油田的深水开发技术.中国海上油气(工程),1998,10(3)::36~44
    [12]陈景辉.南海流花1l-1深海油田开发工程.中国海洋平台,1996,11(1):43~45
    [13] Bole J B, Ebbesmeyer C C, Romea R D. Soliton currents in the South China Sea:measurements and theoretical modeling. Offshore Technology Conference. Houston, Texas,USA,1994:367~376.
    [14]蔡树群,甘子均.南海北部孤立子内波的研究进展.地球科学进展,2001,16(2):215~219
    [15] Thurman H V. Introductory Oceanography. Fifth Edition, Merrill Publishing Company:Bell&Howell Information Comp,1988.241~242.
    [16]李效民.顶张力立管动力响应数值模拟及其疲劳寿命预测:[博士学位论文].青岛:中国海洋大学,2010
    [17]宋儒鑫.深水开发中的海底管道和海洋立管.中国造船,2002,43(21):238~251
    [18] Kirk C L, Etok E U. Wave induced random oscillations of pipelines during laying. Appl.Ocean Res.1979, I (I):51~60
    [19] Kirk C L. Dynamic response of marine risers by single wave and spectral analysis methods.Applied Ocean Research,1985,7(1):12~13
    [20] Krolikowski L P, Gay T A. An improved linearization technique for frequency domain riseranalysis. Offshore Technology Conference3777,1980, Houston,TX,
    [21] Ahmad S, Datta T K. Dynamic response of marine risers. Engineering Structures,1989,11:179~188
    [22] Morkookaza C K, Coelho F M, Shiguemoto D A. Dynamic behavior of a top tensioned riserin frequency and time domain. Proceedings of the Sixteenth International Offshore and PolarEngineering Conference, ISOPE, San Francisco,2006,2:31~36
    [23]贾星兰,方华灿.海洋钻井隔水管的动力响应.石油机械,1995,23(8):18~28
    [24]石晓兵,郭昭学,聂荣国,周俊昌等.海洋深水钻井隔水管动力分析.天然气工业,2004,23(增刊):81~83
    [25]李军强,刘宏昭,何钦象,方同.波浪力作用下海洋钻井隔水管随机振动研究.机械科学与技术,2004,23(1):7~10
    [26]唐友刚,谷家扬,左建立等.隔水套管波流联合作用下非线性动力响应.应用数学和力学,2005,26(8):956~961
    [27] Burke B G. An analysis of marine risers for deep water. Journal of Petroleum Technology,1974,26(4):455~465.
    [28] Heuze L R, Chaussumier D, Guesnon J, et al. A4,000-foot riser. Journal of PetroleumTechnology,1976(4):489~496.
    [29] Kirk C L, Etok E U. Dynamic and static analysis of a marine riser. Applied Ocean Research,1979,1(3):125~135
    [30] Atadan A S, Calisal S M, Modi V J, Guo Y. Analytical and numerical analysis of thedynamics of a marine riser connected to a floating platform. Ocean Engineering,1997,24(2):111~131
    [31] Kuiper G L, Brugmans J, Metrikine A V. Destabilization of deep-water risers by a heavingplatform. Journal of Sound and Vibration,2008,310(3):541~557
    [32]朱克强.驳船升沉与横荡运动下的海洋立管动力响应.中外船舶科技,2002,3:1~4
    [33] Chang Y J, Chen G M, Sun Y Y, Xu L B, Peng P. Nonlinear dynamic analysis of deepwaterdrilling risers subjected to random loads. China Ocean Engineering,2008,22(4):683~691
    [34] Wang T, Zhang X Z, Zhu W Q. Vessel Motion Effects on Nonlinear Dynamics of DeepwaterDrilling Riser. Journal of Ship Mechanics,2010,14(6):606~618
    [35] Chaplin J R, Bearman P W, Huera Huarte FJ, Pattenden RJ. Laboratory measurements ofvortex-induced vibrations of a vertical tension riser in a stepped current. Journal of Fluidsand Structures,2005,21(1):3~24
    [36] Vandiver J K, Allen D and Li L. The occurrence of lock-in under highly sheared conditions.Journal of Fluids and Structures,1996,10(5):555~561
    [37] Lie H, and Kaasena K E. Modal analysis of measurements from a large-scale VIV model testof a riser in linearly sheared flow. Journal of Fluids and Structures,2006,22(4):557~575
    [38] Marcolloa H, and Hinwood JB. On shear flow single mode lock-in with both cross-flow andin-line lock-in mechanisms. Journal of Fluids and Structures,2006,22(2):197~211
    [39] Trim A D, Braaten H, Lie H, Tognarelli MA. Experimental investigation of vortex-inducedvibration of long marine risers. Journal of Fluids and Structures,2005,21(3):335~361
    [40]谢彬,段梦兰,秦太验,孙政策,李杰.海洋深水立管的疲劳断裂与可靠性评估研究进展.石油学报,2004,25(3):95~100
    [41] Guo H Y, Lou M, Dong X L. Experimental Study on Vortex-Induced Vibration of RisersTransporting Fluid. Proceedings of the16th International Offshore and Polar EngineeringConference (ISOPE), San Francisco, CA.2006a:820~823
    [42] Guo H Y, Lou M, Dong X L and Qi X L. Numerical and Physical Investigation on theVortex-Induced Vibration of Marine Riser. China Ocean Engineering,2006b,20(3):373~382
    [43] Willden R H J, Graham J M R. Multi-modal vortex-induced vibrations of a vertical riser pipesubject to a uniform current profile. European Journal of Mechanics/B Fluids,2001,23(1):209~218
    [44] Yamamoto C T, Meneghini J R, Saltara F, Fregonesi RA, Ferrari Jr. JA. Numericalsimulations of vortex-induced vibration on flexible cylinders. Journal of Fluids andStructures,2004,19(4):467~489
    [45] Holmes S, Oakley O H and Constantinides Y. Simulation of Riser VIV Using Fully ThreeDimensional CFD Simulations. Proceedings of the25th International Conference onOffshore Mechanics and Arctic Engineering, Hamburg, Germany,2006, OMAE2006-92124
    [46] Placzek A, Sigrist J F, Hamdouni. A Numerical simulation of an oscillating cylinder in across-flow at low Reynolds number: Forced and free oscillations, Computers&Fluids,2009,38(1):80~100
    [47] Evagelinos C, Lucor D, Karnidakis GE. DNS-derived force distribution on flexible cylinderssubjecte to vortex-induced vibration. Journal of Fluids and Structures,2000,14(3):429~440
    [48] Pan Z Y, Cui W C, Miao Q M. Numerical simulation of vortex-induced vibration of a circularcylinder at low mass-damping using RANS code. Journal of Fluids and Structures,2007,23(1):23~37
    [49] Moe G, Chucheepsakul S. The effect of internal flow on marine risers. Proceedings of theSeventh International Offshore Mechanics and Arctic Engineering Conference, Houston,USA,1988,1:375~382
    [50] Wu M C, Lou J Y. Effects of rigidity and internal flow on marine riser dynamics. AppliedOcean Research,1991,13(5):235~244
    [51] Seyed F B, Patel M H. Mathematics of flexible risers including pressure and internal floweffects. Marine Structures.1992,5(2):121~150
    [52] Chucheepsakul S, Monprapussorn T, Huang T. Large strain formulations of extensibleflexible marine pipes transporting fluid. Journal of Fluids and Structures,2003,17(2):185~204
    [53] Kaewunruen S, Chiravatchradej J, Chucheepsakul S. Nonlinear free vibration of marinerisers/pipes transporing fluid. Ocean Engineering,2005,32(3):417~440
    [54] Guo H Y, Lou M. Effect of internal flow on vortex-induced vibration of risers. Jouranl ofFluids and Structures,2008,24(4):496~504
    [55] Murai M, Yamamoto M. An experimental analysis of the internal flow effects on marinerisers. The International Conference on Marine Technology.2010, December,11~12, BUET,Dhaka, Bangladesh,159~165
    [56] Li X M, Guo H Y, Meng F S. Effect of internal flow on the dynamic behavior of toptensioned riser. Journal of Ship Mechanics,2010,14(9):1021~1030
    [57] Howells H. A. Advances in Steel Catenary Riser Design. The2nd Annual International Forumon Deepwater Technology, DEEPTEC.1995,95(10):1~5
    [58] Phifer E H, Kopp F, Swanson R C, Allen D W, Langner C G. Design and installation of Augersteel catenary risers. Proceedings-Offshore Technology Conference. Houston, USA, OTC,1994:399~408
    [59] Hays P R. Steel Catenary Risers for Semi-submersible based Floating Production Systems.Proceedings Offshore Technology Conference. Houston, USA, OTC,1996,4:845~859
    [60] Martins C A, Higashi E. A Parametric Analysis of Steel Catenary Risers: Fatigue Behaviornear the Top. Proceedings of the International Offshore and Polar EngineeringConference,2000,2:54~59
    [61] Narakorn S, Marian W, Patrick O B. Reduced-order modelling of vortex-induced vibration ofcatenary riser. Original Research Article Ocean Engineering, Issues17–18, December2009,36:1404~1414
    [62] Mekha B B. On the Wave and VIV Fatigue of Steel Catenary Risers connected to FloatingStructures. Proceedings of the International Conference on Offshore Mechanics and ArcticEngineering. Oslo, Norway, OMAE,2002,1:57~63
    [63] Ana L F, Torres L, Mourelle M M, Renato M C. Fatigue Damage Verification of SteelCatenary Risers. Proceedings of the International Conference on Offshore Mechanics andArctic Engineering,OMAE,2001,1:749~759
    [64] Senra S F, Jacob B P, Ana L F, Torres L, Mourelle M M. Sensitivity Study on FatigueBehavior of Steel Catenary Risers.Proceedings of the International Offshore and PolarEngineering Conference.Kitakyushu,Japan,ISOPE,2002,12:193~198
    [65] Pesce C P, Martins C A. Riser-soil interaction: local dynamics at TDP and a discussion on theeigenvalue problem.Proceedings of the International Conference on Offshore Mechanics andArctic Engineering.Vancouver,Canada,ASME,2004,23(1):583~594
    [66]黄维平,李华军.深水开发的新型立管系统——钢悬链线立管(SCR).中国海洋大学学报,2006,36(5):775~780
    [67]白兴兰,黄维平.深水钢悬链线立管非线性有限元静力分析.工程力学,2011,28(4):208~213
    [68]周力,周巍伟,曹静,高云,宗智.深海悬链线立管涡激疲劳损伤研究.海洋工程.2010,28(1):36~41
    [69]杨和振,李华军.深海钢悬链立管时域疲劳寿命预估研究.振动与冲击,2010,29(3):22~25
    [70] Chen H F, Xu S P, Guo H Y. Nonlinear Analysis of Flexible and Steel Catenary Risers withInternal Flow and Seabed Interaction Effects. Journal of Marine Science and Application,2011,10(2):156~162
    [71] Rao Z B, Fu S X, Yang J M. Vortex-Induced Vibration Analysis of Steel Catenary Riser.Journal of ship mechanics,2011,15(3):246~258
    [72] Perry R B, Schimke G R. Large amplitude internal waves observed off the northwest coast ofSumatra. J. Geophys. Res..1965,70(10):2319~2324
    [73] Ziegenbein J. Short internal waves in the Strait of Gibraltar. Deep Sea Res..1969,16(5):479~487
    [74] Ziegenbein J. Spatial observations of short internal waves in the Strait of Gibraltar. Deep SeaRes..1970,17(5):867~875
    [75] Halpern D. Observations of short period internal waves in Massachusetts Bay. J. Mar. Res.1971,29:116~132
    [76] Hsu M k, Liu A K, Liu C. A study of internal waves in the China seas and Yellow Sea usingSAR Continental Shelf Research,2000,20(4):389~410
    [77] Christopher R J, John R A. The Andaman Sea, An atlas of internal solitary-like waves andtheir properties. May,2002
    [78] Garrett C J R, Munk W H. Internal wave spectra in the presence of finestructure. J. Phys.Oceanogr.,1971,1:196~202
    [79] Garrett C J R, Munk W H. Space-time scales of internal waves. Geophys. Fluid Dyn.,1972,2:225~264
    [80] Garrett C J R, Munk W H. Space-time scales of internal waves: A progress report. J.Geophys. Res.,1975,80:291~297
    [81] Garrett C J R, Munk W H. Internal waves in the ocean. Annu. Rev. Fluid Mech.,1979,11:339~369
    [82] Muller P, Olbers D J, Willbrand J. The IWEX spectrum. J. Geophys. Res.,1978,83:479~500.
    [83] Eriksen C C. Some characteristics of internal gravity waves in the equatorial pacific.Journal of geophysical research. Part C,1985,90(4):7243~7255.
    [84] Schooley A H, Stewart R W. Experiments with a self-propelled body submerged in a fluidwith a vertical density gradient. Journal of Fluid Mechanics,1963,15(1):83~96
    [85] Wu J. Mixed region collapse with internal wave generation in a density-stratified medium. J.Fluid Mech.,1969,35:531~544
    [86] Thorpe,S A, A method of producing a shear flow in a stratified fluid, J.Fluid Mech.,1968,32(4):693~704.
    [87] Davis R E, Acrivos A, The stability of oscillating internal waves, J.Fluid Mech.,1967,30:723~736.
    [88] Martin S,Simmons W,Wunsch C. The excitation of resonant triad by single internal waves.J.Fluid Mech.,1972,53:17~44
    [89] Kao T W, Pao H P. Wake collapse in the thermocline and internal solitary waves. J.FluidMech.,1979,97:115~127.
    [90] Maxworthy T. A note on the internal solitary waves produced by tidal flow over athree-dimensional ridge. J.Geophys.Res.,1979,84:338~346
    [91] Thorpe S A. Internal gravity waves:[Ph. D. Dissertation]. Cambridge: University ofCambridge,1966
    [92] Phillips O M. Wave interactions, Nonlinear Waves, Ed. by Leibovich S and Seebass A R,London: Cornell University Press,1975:186~211
    [93] Muller P, Holloway G, Henyey F, Pomphrey N. Nonlinear inteactions among internalgravity waves. Rev. Geophys.,1986,24(3):493~536
    [94] Hirst E. Internal wave–wave resonance theory: Fundamentals and limitations. Dynamics ofOceanic Internal Gravity Waves. Proceedings ‘Aha Huliko’ a Hawaiian Winter Workshop,Muller P and Henderson D(editors), Univerticy of Hawaii at Manoa, Jan.,15-18,1991:211~226
    [95] Kunze E, Sun H L. The role of vertical divergence in internal wave/wave interactions.Dynamics of Oceanic Internal Gravity Waves,. Proceedings ‘Aha Huliko’ a Hawaiian WinterWorkshop, Muller P and Henderson D(editors), Univerticy of Hawaii at Manoa, Jan.,18-22,1999:223~251
    [96] Baines P G. The generation of internal tides by flat-bump topography. Deep-Sea Research,1973,20:179~205.
    [97] Maze R. Generation and propagation of nonlinear internal waves induced by the tide over acontinental slope. Contin Shelf Res.,1987,7:1079~1105.
    [98] WillmottA J, Edwards P D. A numericalmodel for the generation of tidally forced nonlinearinternalwaves over topography. Contin Shelf Res.,1987,7:457~485
    [99] Hearhershaw A D, et al. Internal tides and sediment transport at the shelf break in the CelticSea. Contin Shelf Res.,1987,7:485~517
    [100]江明顺,方欣华等.陆架陆坡潮成内波的二维三层模式.青岛海洋大学学报(自然科学版),1995,25(3),277~285
    [101] Cai S Q, Long X M, Gan Z J. A numerical study of the generation and propagation ofinternal solitary waves in the Luzon Strait. Oceanologica Acta,2002,25(2):51~60
    [102] Xie J S, Cai S Q, He Y H. A continuously stratified nonlinear model for internal solitarywaves in the northern South China Sea. Chinese Journal of Oceanology and Limnology,201028(5):1040~1048
    [103] Hurley D G. The emission of internal waves by vibrating cylinders. J. Fluid Mech,1969,36:657~672.
    [104] Lai R Y, Lee C M. Added mass of a spheroid oscillating in a linearly stratifed fluid. Intl J.Engng Sci.,1981,19:1411~1420.
    [105] Appleby J C, Crighton D G. Internal gravity waves generated by oscillations of a sphere. J.Fluid Mech.,1987,183:439~450.
    [106] Appleby J C, Crighton D G. Non-Boussinesq effects in the diffraction of internal waves froman oscillating cylinder. Q. J. Mech. Appl. Maths,1986,39:209~231.
    [107] Makarov S A, Neklyudov V I, Chashechkin, Y D. Spatial structure of two-dimensionalmonochromatic internal-wave beams in an exponentially stratified liquid. Izv. Atmos. Ocean.Phys.,1990,26:548~554
    [108] Ermanyuk E V, Gavrilov N V. Force on a body in a continuously stratified fluid, Part1,Circular cylinder. J. Fluid Mech.,2002,451:421~443
    [109] Hurley D G. The generation of internal waves by vibrating elliptic cylinders. Part1. Inviscidsolution. J. Fluid Mech.,1997,351,105~118.
    [110] Hurley D G, Keady G. The generation of internal waves by vibrating ellipotic cylinders. Part2. Approximate viscous solution. J. Fluid Mech.,1997,351:119~139.
    [111] Lofquist K B, Purtell L P. Drag on a sphere moving horizontally through a stratified liquid.J.Fluid Mech.,1984,148:271~284
    [112] Arntsen O A. Disturbances, lift and drag forces due to the translation of a horizontal circularcylinder in stratified water. Experiments in Fluids,1996,21:387~400
    [113]周喜武.分层流体中Rankine卵形体生成的内波:[硕士学位论文].青岛:中国海洋大学,2002
    [114] Xu Z T, Zhou X W, Chen X. Drag increment due to internal waves generated by Rankineovoid. Progress in Natural Science,2002,12(11):849~853
    [115]徐肇廷,陈旭,吕红民,沈国光.内波场中水平桩柱波阻的实验研究.中国海洋大学学报.2007,37(1):1~6
    [116] Jeffery A, Ramollo M P. Reflection and transmission of internal solitary waves across abarrier. Wave Motion,1995,22:325~333
    [117] Kistovich Y V, Chashechkin Y D. Mass transport and the force of a beam two-dimensionalperiodic internal waves. J.Appl.Maths Mechs.,2001,65(2):237~242.
    [118]蔡树群,龙小敏,甘子钧.孤立子内波对小直径圆柱形桩柱的作用力初探.水动力学研究与进展,2002,17(4):497~506
    [119] Cheng Y L, Li J C, An L S, Liu Y F. The induced flow field by internal solitary wave and itsaction on cylindrical piles in the stratified ocean. Proceeding of the Fourth InternationalConference on Fluid Mechanics, July20-23,2004,Dalian,China
    [120]叶春生,沈国光.海洋内波对小尺度圆柱体作用的分析与计算.天津大学学报,2005,38(2):102~108.
    [121] Kashiwagi M. Wave-induced motions of a body floating in a2-layer fluid. InternationalJournal of Offshore and Polar Engineering,2005,15(1):175~182
    [122]尤云祥,石强,缪国平.两层流体中大直径圆柱体的水动作用力.上海交通大学学报,2005,39(5):695~700
    [123]尤云祥,徐杰,魏岗,常煜等.线性连续分层流体中水波与截断圆柱浮体的相互作用.船舶力学,2007,11(5):655~663
    [124]魏岗,尤云祥,缪国平等.分层流体中内孤立波在台阶地形上反射和透射的解析解.力学学报,2007,39(1):46~53
    [125] Xie J, Jian Y, Yang L. Strongly nonlinear internal soliton load on a small vertical circularcylinder in two-layer fluids. Applied Mathematical Modelling,2010,34(8):2089~2101.
    [126] Xie J, Xu J, Cai S. A numerical study of the load on cylindrical piles exerted by internalsolitary waves. Journal of Fluids and Structures,2011,27(8):1252~1261.
    [127]石强,尤云祥,魏岗,等.两层流体中水波与水面漂浮矩形箱的相互作用.自然科学进展,2006,16(8):992~1001
    [128]姚金伟,蔡泽伟,祝会兵.分层海模式中内波对潜体的作用力.中国水运,2007,7(8):71~73
    [129]宋志军,勾莹,滕斌,时忠民等.内孤立波作用下Spar平台的运动响应.海洋学报,2010,32(2):12~19
    [130]尤云祥,李巍,时忠民,等.海洋内孤立波中张力腿平台的水动力特性.上海交通大学学报,2010,44(1):56~61
    [131]袁玉堂,牟永春,李冰.半潜式海洋平台的周期内波载荷分析.船海工程,2012,41(4):142~146
    [132]蒋武杰,林忠义,尤云祥等.内孤立波与非均匀海流共同作用下顶张立管动力特性.水动力学研究与进展,2012,27(4):424~435.
    [133]尤云祥,胡天群,徐昊等.分层流体中内波与半潜平台相互作用的模型试验.力学学报,2010,42(3):400~406
    [134]徐小辉,胡天群,魏岗等.周期性内波与潜体相互作用的试验研究.水动力学研究与进展.2011,A辑26(2):186~193
    [135] Lamb K G. A numerical investigation of solitary internal waves with trapped cores byshoaling. Journal of Fluid Mechanics,2002,451:109~144
    [136]付东明,尤云祥,李巍.两层流体中内孤立波与潜体相互作用数值模拟.海洋工程.2009,27(3):38~44
    [137]陈杰,尤云祥,刘晓东,吴乘胜.内孤立波与有航速潜体相互作用数值模拟.水动力学研究与进展A辑,2010,25(3):344~351
    [138]关晖,魏岗,杜辉.内孤立波与潜艇相互作用的水动力学特性.解放军理工大学学报,2012,13(5):577~582
    [139]刘碧涛,李巍,尤云祥等.内孤立波与深海立管相互作用数值模拟.海洋工程,2011,29(4):1~8
    [140]陈旭.分层流体中内波对物体的作用力:[博士毕业论文].青岛:中国海洋大学,2006
    [141]徐肇廷,王景明.小型内波实验水槽及其供水、造波与量测系统.青岛海洋大学学报,1988,18(1):95~102
    [142] Oster G. Density gradients. Sci. Amer.1965,213:70~76
    [143] Mowbray D, Rarity B S H. A theoretical and experimental investigation of the phaseconfiguration of internal waves of small amplitude in a density stratified fluid. J. FluidMech.,1967,28:1~16
    [144] Lewis J E, Lake B M, Ko R S. On the interaction of internal waves and surface gravitywaves. J. Fluid Mech.,1974,63(4):773~800
    [145] D J Korteweg and G. deVries. On the change of form of long waves advancing in arectangular canal and on a new type of long stationary waves,Phil. Mag.,1895,39:422~443
    [146] Gardner C S, Greene J M, Kruskal M D, Miura R M. Method for solving the KdV equation.Physical Review Letters,19,1095~1097
    [147] Gardner C S.Korteweg‐d e Vries Equation and Generalizations. IV. Korteweg-deVriesEquation and Generalizations. VI. Methods for Exact Solution. Communications on pure andapplied mathmatics,1974,97-133
    [148] Benjamin T B. Internal waves of finite amplitude and permanent form. J. Fluid Mech.,1966,25:241~270
    [149] Benney D J. Long non-linear waves in fluid flows. J. Math Phys.,1966,45:52~63
    [150] Benjamin T B. Internal waves of permanent form in fluids of great depth. J. Fluid Mech.,1967,29:559~592
    [151] Ono H. Wave propagation in an inhomogeneous an harmonic lattice. J. Phys. Soc. Japan,1972,32:332~336
    [152] Joseph R I. Solitary waves in a finite depth fluid. J. Phys. A: Math Gen,1977,10:225~227
    [153] Kadomtsev B B, Petviashvili V I. On the stability of solitary waves in weakly dispersingmedia. Soviet Physics Doklady,1970,15(6):539~541
    [154] Zhang, Z., Fringer, O., Ramp, S.. Three-dimensional, nonhydrostatic numerical simulationof nonlinear internal wave generation and propagation in the South China Sea. J.Geophys.Res.2011,116, C05022.
    [155] Liu A K, Chang Y S, Hsu M K, et al. Evolution of nonlinear internal waves in the East andSouth China Seas. Journal of Geophysical Research,1998,103(C4):7995~8008.
    [156] Michallet H, Barthelemy E. Experimental study of interfacial solitary waves. Journal ofFluid Mechanics,1998,366:159~177
    [157] Djordjevic, V D, Redekopp L G, The fission and disintegration of internal solitary wavesmoving over two-dimensional topography, J. Phys. Oceanogr.,1978,8(6),1016~1024.
    [158]竺艳蓉.海洋工程波浪力学.天津:天津大学出版社,1991.69~71
    [159]郭海燕,吴世明,孟凡顺等.竖向地震荷载下输液管道弯曲振动的有限元分析.振动工程学报,1995,8(4):384~388.
    [160]朱伯芳.有限单元法原理与应用.北京:中国水利水电出版社,1998.8~11
    [161] R克拉夫,J彭津.结构动力学(第二版).北京:高等教育出版社,2006.89~90
    [162]蔡树群,甘子钧,龙小敏.南海北部孤立子内波的一些特征和演变.科学通报,2001,46(15):1245~1250.
    [163] Xu Z H, Yin B S, Yang H W,Qi JF. Depression and elevation internal solitary waves in atwo layer fluid and their forces on cylindrical piles. Chinese Journal of Oceanology andLimnology,2012,30(4):703~712
    [164] Ghadimi, R. A simple and efficient algorithm for the static and dynamic analysis of flexiblemarine risers, Computers and Structures.1988,29(4):541~544
    [165] Orcina Ltd. Orcaflex Manual,2005
    [166] Raman-Nair, W. and Baddour, R. E. Three-dimensional dynamics of a flexible marine riserundergoing large elastic deformations, Multibody System Dynamics,2003,10(3):393~423
    [167] Low Y.M. and Langley R.S.(2006). Dynamic analysis of a flexible riser in the time andfrequency domain, Proceedings of the International Conference on Offshore Mechanics andArctic Engineering, Hamburg, Germany,1:161~170
    [168] Jain, A.K. Review of flexible risers and articulated storage systems. Ocean Engineering,1994,21:733~750
    [169] Sophia, T. S. Analysis of the elastica with applications to vibration isolation:[Ph. D.dissertation]. Durham: Duke University,2007
    [170] Chatjigeorgiou, I.K. A finite differences formulation for the linear and nonlinear dynamicsof2D catenary risers. Ocean Engineering,2008,35:616~636
    [171] Berzeri, M, Shabana, A A. Development of simple models for the elastic forces in theabsolute nodal co-ordinate formulation, Journal of Sound and vibration,2000,235(4):539~565
    [172] Nordgren R P. On computation of the motion of elastic rods. J Appl Mech1974,41:777~80
    [173] Garrett D L. Dynamic analysis of slender rods. Journal of Energy Resources Technology,1982,104:302~306
    [174]Paulling, J R., Webster, W C. A consistent large amplitude analysis of the coupled responseof a TLP and Tendon System, Proceedings of the5th OMAE Symposium,1986,3:126~133
    [175] Ran, Z. Coupled Dynamic Analysis of Floating Structures in Wave and Current:[Ph. D.Dissertation]. Texas: Texas A&M University,2000
    [176] Garrett D L. Coupled analysis of floating production system. Ocean Engineering,2005,32:802~816
    [177] Kim W J, Newlin J A, Haws J H. Experimental and analytical investigation of soil/SCRinteraction under VIV. International offshore and polar engineering conference,2006:68~75
    [178] Arcandra. Hull/mooring/riser coupled dynamic analysis of a deepwater floating platformwith polyester lines:[Ph. D. Dissertation]. Texas: Texas A&M University,2001
    [179]孙意卿.海洋工程环境条件及其荷载.上海:上海交通大学出版社,1989.51~52