深水钻井隔水管设计方法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合国家高技术研究发展(863)计划海洋技术领域重大项目“深水钻完井关键技术”和中国海洋石油总公司综合科研课题“深水钻井隔水管工程方法研究及双梯度钻井跟踪应用研究”,系统开展深水钻井隔水管设计方法及其应用研究,通过理论研究、数值计算和计算机仿真,在(超)深水钻井隔水管系统设计影响因素分析、深水钻井隔水管(准)静态性能综合研究、深水钻井隔水管响应参数敏感性分析及其预测模型研究、深水钻井隔水管随机非线性动力分析、悬挂模式深水钻井隔水管轴向动力分析、深水钻井隔水管波致长期疲劳分析等方面取得较大的研究进展。主要研究成果总结如下:
     1 (超)深水钻井隔水管系统设计影响因素分析
     (超)深水钻井隔水管设计影响因素主要为环境因素与作业因素,前者主要包括水深、波浪、海流,后者主要包括钻井液密度、底部海洋隔水管总成(Lower Marine Riser Package,简称LMRP)与井口防喷器(Blowout Preventer,简称BOP)脱离后钻井隔水管系统悬挂模式、浮力块分布、涡激抑制设备、节流与压井管线的工作压力等。系统辨识了(超)深水钻井隔水管系统设计影响因素,研究了各因素影响隔水管系统设计的机理,分析了各影响因素与隔水管系统设计之间的关系,研究了(超)深水钻井隔水管系统设计方法。研究表明,水深和海流是(超)深水钻井隔水管系统设计最重要的影响因素,隔水管系统设计需要在悬挂模式与连接模式之间循环进行以得到系统最佳配置。
     2深水钻井隔水管(准)静态性能综合研究
     提出隔水管准静态分析的理论、原理和方法,开发深水隔水管准静态性能分析系统。系统以隔水管最大Mises应力作为波浪最大相位角判据,以C++ Builder为开发环境,后台调用ABAQUS求解器进行计算,实现波浪最大相位角的自动搜索和隔水管的准静态分析。比较隔水管静态与准静态分析的主要差异,研究了波浪相位角对隔水管准静态分析的影响。从工程应用角度,展开了隔水管静态性能的综合研究。
     3深水钻井隔水管响应参数敏感性分析及其预测模型研究
     影响隔水管响应的参数主要有隔水管几何参数、海况参数、浮力块参数和作业参数。隔水管几何参数包括隔水管外径和壁厚,海况参数包括波高,波浪周期,流剖面,浮力块参数包括浮力块外径、浮力块长度和安装位置,作业参数包括张力比(Top Tension Ratio,简称TTR),钻井船平均偏移以及钻井液密度等。隔水管响应参数敏感性分析的目的在于揭示这些参数对隔水管响应的影响,为隔水管设计与系统配置提供依据。基于正交试验方法进行隔水管响应参数敏感性分析,将上述影响隔水管响应的11个因素各取5个水平构建L50(511)正交表,采用准静态分析系统进行有限元计算,对正交试验结果进行极差与方差分析,定量和定性研究了不同参数对隔水管响应的影响。
     深水钻井隔水管响应预测模型研究目的在于无需进行复杂的有限元计算即可对正常作业的隔水管响应提供一个满足工程需要的粗估计,为隔水管的初期设计阶段提供一种快速求解方案。研究并提出了基于支持向量机(Support Vector Machine,简称SVM)的隔水管响应预测模型,采用正交试验结果训练SVM,随机产生新的试验数据校核SVM预测精度,比较了SVM预测模型与回归模型之间的精度差异,结果表明基于SVM的隔水管响应预测模型可满足工程应用需要。
     4深水钻井隔水管随机非线性动力分析
     在对隔水管动态响应数学模型与水动力载荷模型进行研究的基础上,研究了隔水管动态响应分析技术。提出了时域内采用ABAQUS/Aqua软件进行随机波浪与钻井船运动作用下深水隔水管动力分析的方法。为实现隔水管时域随机振动分析,首先进行长峰随机波浪的模拟和模拟波浪的谱估计,然后根据钻井船运动解析式、波浪模拟得到的随机波浪序列和钻井船纵荡响应幅值算子(Respose Amplitude Operator,简称RAO),迭代生成钻井船运动边界条件,最后定义波浪序列和边界条件,考虑隔水管其他的结构、功能与环境载荷进行有限元动态分析。
     研究了脱离后悬挂隔水管的响应分析技术,分析了悬挂模式隔水管的轴向动态响应。悬挂隔水管动力分析的第一步是确定钻井船的动态升沉响应,硬悬挂模式计算隔水管柱最大允许海况的准则是隔水管无压缩载荷。采用数值计算方法,根据波浪谱与钻井船的升沉RAO得到钻井船的升沉运动响应,再将钻井船的升沉响应时间历程作为隔水管轴向动态分析的动边界进行悬挂隔水管轴向动态分析,得到隔水管不同位置的轴向应力时间历程。研究方法与结论可为隔水管悬挂模式选择、钻井隔水管系统设计与配置及其优化提供参考。
     5深水钻井隔水管波致长期疲劳分析
     作为动力疲劳敏感结构,深水钻井隔水管的长期疲劳性能是重要的设计考虑。提出一种深水钻井隔水管波致长期疲劳计算方法,用以计算一阶波浪载荷和波频钻井船运动以及二阶低频钻井船运动引起的长期疲劳。根据波浪散布图定义的短期疲劳工况,首先基于双参数Pierson-Moskowitz波浪谱(简称P-M谱)与钻井船RAO模拟随机波浪与随机钻井船运动,然后进行随机波浪载荷与钻井船运动作用下隔水管非线性动力分析。在得到隔水管响应时间历程的基础上,考虑波浪散点图中所有短期工况的概率,采用自行开发的专用程序实现深水钻井隔水管波致长期疲劳损伤计算。算例计算南海海域1,500m钻井隔水管的波致长期疲劳。重点研究了钻井船运动、顶部张紧力和隔水管单根壁厚对隔水管疲劳损伤的影响。
The dissertation focuses on design approach and its application for deepwater drilling risers, which is a part of the“863”High Technology Research and Development Program of China (No.2006AA09A106-4) and the project of“Research on Deepwater Riser Engineering Methods and Trace Study of Dual-Gradient Drilling Technology”sponsored by CNOOC. Design approach and its application for deepwater drilling risers is investigated systemically based on theoretical research, numerical calculation and computer simulation, including analysis of influencing factors for design of ultra-deepwater drilling risers system, comprehensive study on (quasi)static performance of drilling risers, parametric sensitivity analysis and research on response prediction model of drilling risers, nonlinear dynamic analysis of risers subjected to random wave loads and vessel motion, axial dynamic behavior of hung-off drilling risers and long-term wave fatigue analysis of deepwater drilling risers, and so on. The main works are summarized as follows:
     1 Analysis of Influencing Factors for Design of (Ultra)Deepwater Drilling Risers System
     Environmental and operational factors are the main factors that affect the design of (ultra)deepwater drilling risers system. The former include water depth, wave, current, and the latter include drilling fluid density, hung-off mode after disconnection of LMRP(Lower Marine Riser Package) with BOP(Blowout Preventer), and vortex-induced-vibration suppression devices, buoyancy modules distribution, service pressure of choke and kill lines, et al. This paper presents a systemic description of the factors affecting the design of (ultra) deepwater drilling risers system, identifies the mechanism of the factors affecting the design of drilling risers system, and analyzes the relationships between the influencing factors and the design of drilling risers system. The research shows that water depth and current are the most significant factors influencing the design of the drilling riser system, and the design of it should be conducted between hung-off and connected mode to obtain the optimal configuration of the drilling riser system.
     2 Comprehensive Study on (quasi)Static Performance of Deepwater Drilling Risers
     Theory, principle and method for quasi-static analysis of deepwater drilling risers are presented in the paper. Quasi-static analysis system for drilling riser by use of ABAQUS in the background is developed in C++ Builder environment. Then, the automatic search for the maximal wave phase as well as the nonlinear quasi-static analysis of the top tensioned drilling riser is implemented. Based on the above research, the results are compared between static and quasi-static analysis, and the effect of wave phase angle on riser quasi-static performance is investigated. In the end, a comprehensive study of riser static performance is made from the viewpoint of engineering application.
     3. Parametric Sensitivity Analysis and Response Prediction Model of Deepwater Drilling Risers
     Geometry parameters, seastate parameters, buoyancy modules parameters and operation parameters are the main factors affecting the response of deepwater drilling risers. Geometry parameters include outside diameter and wall thickness of the drilling risers, seastate parameters include wave height, wave period and current profile, buoyancy modules parameters include outside diameter, length and configuration position, and operational parameters include TTR(Top Tension Ratio), drilling fluid density and mean offset of the drilling vessel. The purpose of parametric sensitivity analysis is to disclose the effect of those parameters on drilling riser response, and to provide reference for the design and configuration of drilling riser system. Sensitivity analysis of parameters affecting the response of the riser is conducted based on orthogonal test approach in this paper. L50(511) orthogonal table is built after 11 factors noted previously being considered in orthogonal test with 5 levels adopted in each factor. Finite element calculation is carried out by use of quasi-static analysis system, and range and variance analysis of test results is made. As a consequence, the effect of parameters on riser response is analyzed qualitatively and quantitatively.
     Research on response prediction model for deepwater drilling risers is to provide a rough estimation on riser response which meets the need of engineering application without complicated finite element calculation, and to provide a simple and applicable solution at the stage of preliminary design of the drilling risers. Response prediction model based on support vector machine(SVM) is investigated and proposed in this paper. SVM is trained by orthogonal test results, and its predication accuracy is checked by randomly generated new test data. The difference in accuracy between SVM and regression predication model is compared, and the result indicates that predication model based on SVM meets the need of engineering application.
     4 Nonlinear Dynamic Analyses of Deepwater Drilling Risers Subjected to Random Wave Loads and Vessel Motion
     Based on the theoretical research on mathematical model and hydrodynamic loads model for riser dynamic analysis, analysis techniques of dynamic response for deepwater drilling risers are discussed thoroughly. An approach is proposed for calculating the nonlinear dynamic response of deepwater drilling risers subjected to random wave and vessel motion with finite element solver ABAQUS/Aqua in time domain. Firstly, wave trains and the associated sea surface elevation time history based on the simulation of the long-crested random wave should be determined, then dynamic vessel motion based on the wave train and the specified Response Amplitude Operator(RAO) of the drilling vessel should be determined, and finally finite element dynamic analysis can be performed after definition of wave series, boundary condition, structural and environmental loads is completed.
     Response analysis technique of the hung-off riser after disconnection is studied, and axial dynamic behavior of it is analyzed. The first step in dynamic analysis of the hung-off riser is to determine the vessel heave motion. The calculation of the maximum permissible sea state for a drilling riser string in a hard hang-off configuration is generally based on a criterion of no compressive loading. By use of numerical calculation method, heave motion of the drilling vessel is determined according to wave spectrum and heave RAO, which is the dynamic boundary condition of the hung-off riser. Then the axial stress time history in the riser at different position is obtained. The related conclusions can provide reference for selection of hung-off mode, drilling riser system configuration and its optimization.
     5 Long-term Wave Fatigue Analysis of Deepwater Drilling Riser
     As a dynamic, fatigue sensitive structure, long-term fatigue performance of the deepwater drilling risers is an important design consideration. An approach of long term wave fatigue analysis for deepwater drilling riser is presented, which can be used to calculate the long term fatigue of drilling risers subjected to 1st order wave force, wave frequency vessel motion and 2nd order low frequency vessel motion. By use of the proposed method, according to the short term fatigue case defined by the wave scatter diagram, random wave and random vessel motion require to be determined based on the dual parameters of wave spectrum and the RAO of the drilling vessel. Then, nonlinear dynamic analysis of the drilling riser under random wave loads and vessel motion boundary condition can be performed. Based on the response time history obtained by random nonlinear dynamic analysis, considering the probabilities of short term cases in the wave scatter diagram, a self-developed special program is employed to calculate the long term wave fatigue. As an example, long term wave fatigue of the 1,500m deepwater drilling riser in South China sea is calculated. The effect of drilling vessel motion, top tension and wall thickness of the riser joint on fatigue damage of drilling riser is mainly investigated.
引文
1殷志明.新型深水双梯度钻井系统原理、方法及应用研究[博士学位论文].中国石油大学(华东),东营: 2007
    2 A.S. Johnson , G.D. Smith. The Technology of Drilling in 7,500 Ft of Water[C]. Society of Petroleum Engineers, paper 12793. Dallas, Texas, 1984. 589-591.
    3 Paul Stanton. Overview of Deepwater Drilling and Production Risers. February 14, 2006.
    4 Yong Bai , Qiang Bai. Subsea Pipelines and Risers[M]. Elsevier Science Ltd, 2005.
    5 Howard Cook. Risers:A Key Challenge for Deepwater Developments. SPE DISTINGUISHED LECTURER SERIES, 2004.
    6 Lee Fowler. Marine Riser Regulatory Overview. AADE DEEPWATER INTEREST GROUP, 2004.
    7 Michael E. Montgomery. Choke and Kill Lines-Safety and Downtime[C]. Houston IADC Deepwater Conference. Brookshire, Texas, 1998.
    8 James N.Brekke. Key Elements in Ultra-Deep Water Drilling Riser Management[C]. Society of Petroleum Engineering, paper 67812. Amsterdam, The Netherlands, 2001. 1-8.
    9 www.stena-drilling.com.
    10 www.atwd.com.
    11 www.ocean-rig.com.
    12 www.globalsantafe.com.
    13 www.saipem.eni.it.
    14 www.deepwater.com.
    15深水钻井隔水管系统工程实例设计.中国石油大学(华东)海洋石油工程研究室科研报告[R](技术研究报告: ZHKY2006-001-03). 2007.
    16 Discharge of Synthetic Based Drilling Mud During abandonment of the Crimson F-81 Exploration Well by Marathon Canada Petroleum ULC. INVESTIGATION REPORT. September 1, 2005.
    17 Bill D. Ambrose , Frank Grealish, Kevin Whooley. Soft Hangoff Method for Drilling Risers in Ultra Deepwater[C]. Offshore Technology Conference. paper 13186. Houston, Texas, 2001. 1-9.
    18 W.F.Andersen , O.Burgdorf, T.F.Sweeney. Comparative Analysis of 12,500 ft Water Depth Steel and Advanced Composite Drilling Risers[C]. Offshore Technology Conference. paper 8732. Houston, Texas, 1998. 189-200.
    19 P.J.O'Brien , E.J.O'Sullivan. The Role of Buoyancy in Deepwater Riser Design[C]. Offshore Technology Conference. paper 10929. Houston, Texas, 1999. 1-8.
    20 Mark Childers. "Surface BOP, Slim Riser or Conventional 21-inch Riser"-What is the Best Concept to Use[C]. Society of Petroleum Engineering, paper 92762. Amsterdam, Neitherlands, 2005. 1-14.
    21 Mark Childers , Alan Quintero. Slim Riser-A Cost-Effective Tool for Ultra Deepwater Drilling[C]. Society of Petroleum Engineering, paper 87982. Kuala Lumpur, Malaysia, 2004. 1-20.
    22 James N.Brekke , Julian Soles, Momen A.Wishahy, et al. Drilling Riser Management For a DP Drillship In Large, Rapidly-Developing Seastates in Deepwater[C]. Society of Petroleum Engineering,paper 87123. Dallas,Texas, 2004. 1-9.
    23 Tim Farrant , Khalid Javed. Minimising the Effect of Deepwater Currents on Drilling Riser Operations.
    2H Offshore Engineering Limited. Deepwater Drilling Technologies, Aberdeen Marriot, Aberdeen, January 2001.
    24 Andrew Lennon , Stewart Maxwell, Jonathan Rawles. Analysis for Running and Installation of Marine Risers with End-Assemblies[C]. International Conference on Computational Methods in Marine Engineering. Oslo, Norway, 2005. 1-9.
    25 Mike Campbell. The complexities of fatigue analysis for deepwater risers[C]. Deepwater Pipeline Technology Conference. New Orleans, 1999.
    26俞聿修.随机海浪及其工程应用[M].大连理工大学出版社, 2000. 2.
    27孙友义.海洋钻井隔水管系统涡激振动安全评估研究[硕士学位论文].中国石油大学(华东),东营: 2007. 4-5.
    28 Bj?rn Inge Bakken. Risk Associated with Drive-Off/Drift-Off when Drilling on DP. Dynamic Positioning Conference. September 18-19, 2001.
    29 Olsen. Safe Disconnect during Drive-off/Drift-off when Drilling on DP. IADC Drilling Northern Deepwater 2001. Stavanger, Norway.
    30 Earl Robinson. Drilling Fundamentals-DP Operations-Drilling with Riser. Marine Technology Society Dynamic Positioning Conference. Houston. 1997.
    31 C.J.Hock , R.D.Young. A Deepwater Riser Emergency Disconnect Antirecoil System[C]. Society of Petroleum Engineering, paper 23858. New Orleans, 1992. 744-751.
    32 William F. Puccio , Reid V. Nuttall. Riser Recoil During Unscheduled Lower Marine Riser Package Disconnects[C]. Society of Ptroleum Engineering, paper 39296. Dallas, Texas, 1998. 33-52.
    33 www.stress.com.
    34 Enda O’Sullivan , Julian Soles. Fully Coupled EDS/Drift-off Analysis for a Harsh Environment, Deepwater Site[C]. The 23rd International Conference on Offshore Mechanics and Arctic Engineering. Vancouver, Canada, 2004. 1-10.
    35 www.mcs.com.
    36 J.D.Peter , R.Robinson, T.J.Metcalfe et al. Fatigue Evaluation of Drilling Risers for Harsh Environments and Ultra Deepwater Developments to Allow Optimised Riser Life and Inspection Plans[C]. Society of Petroleum Engineering, paper 92696. Amsterdam, The Netherlands, 2005. 1-6.
    37 B. G. Burke. An Analysis of Marine Risers For Deep Water[C]. Society of Petroleum and Engineering, paper 4443. 1974. 455-465.
    38 William Fischer , Milton Ludwig. Design of Floating Vessel Drilling Riser[C]. Society of Petroleum and Engineering, Paper 1220. 1966. 271-280.
    39 J.J.Azar , Roald E.Soltveeit. A Comprehensive Study of Marine Driling Risers[C]. Society of Petroleum Engineering, paper 7200. Houston, Texas, 1978. 1-50.
    40 Won Ki Kim. Quasi-Static Analysis of Risers, Department of Mechanical Engineering,Texas A&M University:
    41 Lawrence P. K rolikowski , Tom A. Gay. An Improved Linearization Technique for Frequency Domain Riser Analysis[C]. Offsore Technology Conference, Paper 3777. Houston, Texas, 1980. 341-353.
    42畅元江,陈国明,许亮斌.深水顶部张紧钻井隔水管的非线性静力分析[J].中国海上油气, 2007, 19 (3): 203-206.
    43贾星兰,方华灿.海洋钻井隔水管的动力响应[J].石油机械, 1995, 23 (8): 18-22, 28.
    44李军强,刘宏昭,何钦象.波浪力作用下海洋钻井隔水管随机振动研究[J].机械科技与技术, 2004, 23 (1): 7-10.
    45周俊昌.深水钻井隔水管系统分析[博士学位论文].西南石油学院,南充: 2001. 122.
    46吴天云.海洋钻井隔水管三维非线性动力分析[硕士学位论文].石油大学(华东),东营: 1989. 132-136.
    47李华桂.海洋钻井隔水管的动力分析[J].石油学报,1997, 17 (1): 122-126.
    48 Robert M. Sexton , L. K. Agbezuge. Random wave and vessel motion effects on drilling riser dynamics[C]. Offsore Technology Conference, paper 2650. Dallas, Texas, 1976. 391-404.
    49 A. S. Atadan , S. M. Calisal, V. J. Modi et al. Analysis and Numerical Analysis of the Dynamics of a Marine Riser Connected to a Floating Platform[J]. Ocean Engineering, 24 (2): 111-131.
    50 Rizwan .A. Khan , Suhail Ahmad. Nonlinear Dynamic Analysis of Deep Water Marine Risers[C]. 2nd International Congress on Computational Mechanics and Simulation. Indian Institute of Technology Guwahati, India, 2006.
    51 Lju?tina. Static and Dynamic Analysis of Marine Risers.[C]. Proceedings of the 16th Symposium "Theory and Practice of Shipbuilding". Zagreb, 2004.
    52仇伟德,吕英民,蔡强康.海洋钻井隔水管的动力分析[J].海洋学报, 1988, 10 (2): 240-252.
    53蔡强康,吕英民,李力.钻井隔水管顶部张力的动力优化问题[J].振动与冲击, (3): 62-66, 78.
    54仇伟德,吕英民,蔡强康.隔水管非线性振动的线性化分析[J].华东石油学院学报, 1987, (3): 37-45.
    55 Lt. Cmdr. T. C. Turker , J. P. Murtha. Nondeterministic Analysis of a Marine Riser[C]. Offsore Technology Conference, paper 1770. Houston, Texas, 1973. 439-448.
    56石晓兵,郭昭学,聂荣国.海洋深水钻井隔水管动力分析[J].天然气工业, 2003, 23 (增刊): 81-83.
    57 T.N.Gardner , M.A.Kotch. Dynamic Analysis of Risers and Caissons by the Element Method[C]. Offshore Technology Conference. paper 2651. Houston, Texas, 1976. 405-422.
    58 API RP 16Q. Recommended Practice for Design Selection Operation And Maintenance of Marine Drilling Riser System[S]. 1993.
    59 Det Norske Veritas. Dynamic Risers[S]. Offshore Standard. DNV-OS-F201, 2001.
    60 J. Guesnon , Ch. Gaillard, F.Richard. Ultra Deep Water Drilling Riser Design and Relative Technology[J]. Oil &Gas Science and Technology, 57 (1): 39-57
    61 www.globalmaritime.com.
    62 www.bpp-tech.com.
    63方华灿,董守平,金凡等.隔水管阻力系数的试验与研究[J].石油矿场机械, 1986, 15 (2): 1-6.
    64 J.R.Labbe , K.G.Nikkel, Eade Wang. Sensitivity of Marine Riser Response to the Choice of Hydrodynamic Coefficient[C]. Offshore Technology Conference. paper 4592. Houston, Texas, 1983. 103-112.
    65 Mateusz Podskarbi , Ricky Thethi, Hugh Howells. Fatigue monitoring of deepwater drilling risers[C]. IADC Conference, 2H Offshore Engineering Limited. Woking, Surrey, UK, 2005. 1-18.
    66 H. Howells , A. Sworn. BP - West of Shetlands Drilling Operations -Validating VIV Fatigue Predictions. SUT, 2003.
    67 http://web.mit.edu/shear7/.
    68 J.K. Vandiver. Shear7 V4.3 Program Theoretical Manual. Massachusetts Institute of Technology, 2003.
    69 W.K. Armagost J.M. Shaughnessy, R.P. Herrmann, et al. Problems of Ultra-Deepwater Drilling[C]. Society of Petroleum Engineering, paper 52782. Amsterdam, Holland, 1999.
    70 Y. Poirette , J. Guesnon, D. Dupuis. First Hyperstatic Riser Joint Field Tested for Deep Offshore Drilling[C]. Society of Petroleum Engineering, paper 99005. Miami, Florida, 2006.
    71 Hugh Mccrae. Marine Riser Systems and Subsea Blowout Preventers[M]. University of Texas Press, 2003.
    72 Madhu Hariharan , Ricky Thethi. Drilling Riser Management in Deepwater Environments. 2H Offshore Inc, Houston, TX, USA. 2007.
    73 www.c-a-m.com.
    74 www.vetcogrey.com.
    75 www.dril-quip.com.
    76 www.ifp.fr.
    77 Howard Day , Charles Springett. Addressing and Meeting the Deepwater Design Challenge[C]. Deepwater Offshore Technology Conference. Rio de Janeiro, 2001.
    78 P.R. Erb , Tien-Chi Ma, M.P. Stockinger. Riser Collapse-A Unique Problem in Deep-Water Drilling[C]. Society of Petroleum Engineering,paper 11394. Dallas, Texas, 1983. 307-312.
    79 E. D. Valenzuela , W. F. Anderson, C. S. Mickelson. Comparative Performance of a Composite Drilling riser in deep water[C]. Offsore Technology Conference, Paper 7263. Houston, Texas, 1993.
    80 Joost Brugmans. Parametric instability of deep-water risers[D]: Delft University of Technology, Delft, the Netherlands: 2005
    81 Stephen Hatton. The Effect of Deepwater Currents on Drilling Riser Operations. 2H Offshore Engineering Limited.
    82 Hugh Howells. Guidellines for Drilling Riser Joint Integrity. 2H Offshore Inc. Presented at the Deepwater Riser System Management Forum, Pennwell, League City, Texas, June 2000.
    83 Neil Willis. Drilling Riser Monitoring Programme. 2H Offshore Engineering Ltd. DEA(E) Vienna 2000.
    84 Billy D. Ambrose , Matthew S. Childs, Steven A. Leppard et al. Application of a Deepwater Riser Risk Analysis to Drilling Operations and Riser Design[C]. Offshore Technology Conference, paper12954. Houston, Texas, 2001.
    85 Riddle Steddum. The Management of Long, Suspended Strings of Tubulars from Floating Drilling Vessels[C]. Offshore Technology Conference. paper 15235. Houston, Texas, 2003.
    86 Steve W. Bernard , Robert H. Taylor, Thomas A. Fraser. New Generation Deepwater Risers A Design Methodology. DP MTS SYMPOSIUM. Houston, 2004.
    87许亮斌,蒋士全,畅元江等.浮力块对深水钻井隔水管主要性能的影响[J].中国海上油气, 2007, 19 (5): 338-342.
    88 Hugh Howells. Deep Water Drilling Riser Technology, VIV & Fatigue Management. 2H Offshore Engineering Limited. Drilling Engineering Association (Europe), 4th Quarter Meeting, Paris 1998.
    89 Hugh Howells. Jonathan Bowman. Drilling Riser/Well System Innteraction in Deep Water, Harsh Environment. 2H Offshore Engineering Limited. Presented at Advances in Subsea Technology Marriot Hotel, Aberdeen, January 1997.
    90 Hugh Howells. Drilling Riser Optimisation for Deep Water. Advances in Riser Technologies. 2H Offshore Engineering Limited. IBC, Airport Skean Dhu Hotel, Aberdeen, June 1997.
    91 Jim Brekke. High Current Drilling Experiences/Solutions.
    92 J. Kim Vandiver , W. Wesley Peoples. The Effect of Staggered Buoyancy Modules on Flow-Induced Vibration of Marine Risers[C]. Offshore Technology Conference. paper 15284. Houston, Texas, 2003.
    93许亮斌.深水钻井隔水管设计与应用技术研究[博士后论文]. 2006.北京.中国海洋石油有限公司(北京)研究中心.
    94 Mark A. Childers , Dale Hazlewood, W. T. Ilfrey. An Effective Tool for Monitoring Marine Risers[C]. Society of Petroleum Engineering, paper 3394. Houston, Texas, 1972. 337-346.
    95 G. L. Marsh , E. B. Denison and S. J. Pekera. Marine Riser System for 7,500-Ft Water Depth[C]. Offshore Technology Conference. paper 4750. Houston, Texas, 1984. 337-345.
    96竺艳蓉编著.海洋工程波浪力学[M].天津大学出版社. 1991, 12.
    97 ABAQUS inc. ABAQUS Analysis User's Manual. 2004.
    98 ABAQUS inc. ABAQUS Example Problems Manual. 2004.
    99弓大为.海洋钻井隔水管的受力分析[J].中国造船(增刊),2003, 44: 317-323.
    100畅元江,陈国明,许亮斌.海洋钻井隔水管固有频率的简化计算[J].中国海上油气, 2005, 17 (5): 352-355.
    101 Jack R. Maison , James F. Lea. Sensitivity Analysis of Parameters Affecting Riser Performance[C]. Offshore Technology Cobference, paper 2918. Houston, Texas, 1977.
    102畅元江,陈国明,孙友义,许亮斌.深水钻井隔水管的准静态非线性分析[J].中国石油大学学报(自然科学版), 2008, 32 (3): 114-118.
    103郭玲,杨合,邱晞.基于Python的ABAQUS后处理研究开发及其在薄壁管数控弯曲中的应用[J].塑性工程学报, 2007,14 (5): 32-37
    104 VIVANA Theory Manual. Norwegian Marine Technology Research Institute. 2000, 02.
    105石晓兵,聂荣国,郭昭学.环境因素对深水隔水管底部球接头的影响分析[J].石油机械,2004, 32 (5): 24-26.
    106茆诗松,周纪芗,陈颖.试验设计[M].北京:中国统计出版社, 2004.
    107王延江,杨培杰,史清江.一种基于支撑向量机学习预测井眼轨迹的新方法[J].石油学报,2005, 26 (5): 98-101.
    108 J.T. Connolly , P.G. Wybro. Riser Analysis Methods: Comparison with Measured Field Data. [C]. Offshore Technology Conference, paper 4735. 1984. Houston, Texas., 1984. 217-225.
    109 Morten H?klie , Nils Albert Jenssen, Per Osen et al. High Tech Session:Using the Drilling Riser as Position Reference. Dynamic Positioning Conference. September 18-19, 2001.
    110 ANSYS inc. ANSYS Documentation 7.0. ANSYS Element Reference.
    111 John J. Filson , Leonardo Perez y Perez. Application of Spectral Methods to Non-Linear Dynamic Systems[C]. Offshore Technology Conference. paper 2263. Houston, Texas, 1975. 209-222.
    112 Enzo Gnone , Piercarlo Signorelli, Vincenzo Giuliano, et al. Three-Dimensional Static and Dynamic Analysis of Deepwater Sealines and Risers[C]. Offsore Technology Conference. paper 2326. Houston, Texas, 1975. 799-812.
    113 Adrian Connaire , Kieran Kavanagh, R. V. Ahilan et al. Integrated Mooring & Riser Design: Analysis Methodology[C]. Offsore Technology Conference. paper 10810. Houston, Texas, 1999. 1-14.
    114苎艳蓉.海洋工程波浪力学[M].天津大学出版社. 1991, 12.
    115马杰,田金文,彭复员.海浪的数值模拟与仿真[J].华中科技大学学报, 2000, 28 (4): 63-65.
    116李晖,郭晨,李晓方.基于MATLAB的不规则海浪三维仿真[J].系统仿真学报,2003, 15 (7): 5-8.
    117李维嘉,陈浩牧,解贵新.基于波谱密度特性的海浪仿真研究[J].海洋工程,2004, 22 (4): 115-118.
    118邱宏安.随机海浪模型的建立及仿真分析[J].系统仿真学报,2000, 12 (3): 226-228.
    119白连平,苏彦民,陈秀真.三维随机海浪的数值模拟[J].中国海上油气,2000, 12 (2): 26-28.
    120邱大洪.波浪理论及其在工程上的应用[M].北京:高等教育出版社, 1985.
    121陈虹丽.基于π型舵船舶纵向多变量随机控制方法研究[博士学位论文].哈尔滨工程大学,哈尔滨: 2004. 29-33.
    122黄志宇,刘保华,陈高平等.随机信号的功率谱估计及Matlab的实现[J].现代电子技术,2001, (3): 21-23.
    123王丹丹.水下立管载荷与运动计算分析[硕士学位论文].大连理工大学,大连: 2006. 77-79.
    124王立军,陈锋,丁福光等.船舶动力定位海浪环境的实时仿真与海浪谱分析[J].华东船舶工业学院学报(自然科学版), 2001, 15 (1): 48-51.
    125 Ben G. Burke. The Analysis of Motions of Semi submersible Drilling Vessels in Waves[C]. Offsore Technology Conference. paper 1024. Houston, Texas, 1969. 235-244.
    126 Ben G. Burke. The Analysis of Drilling Vessel Motions in a Random Sea. Riser[C]. Offsore Technology Conference. paper 1219. Houston, Texas, 1970. 701-715.
    127 Wang Li-hua. DeepC Application on Analysis of Dynamic Risers. Sesam User Annual Meeting. Houston. 2005.
    128 J. A. Pinkster. Low Frequency Phenemena Associated With Vessels at Sea[C]. Society of PetroleumEngineering, paper 4837. Amsterdam, The Netherlands, 1974. 487-494.
    129 C-T. Kwan , T.L. Marion, T.N. Gardner. Storm Disconnect of Deepwater Drilling Risers[C]. Offshore Technology Conference. paper 3586. Houston, Texas, 1979. 2001-2010.
    130 Katsuji Tanizawa , Makiko Minami, Taiji Imoto. On the drift speed of floating bodies in wave[C]. 12th International Offshore and Polar Engineering Conference. Kitakyushu, Japan, 2002. 1-2.
    131陈国明.冰区海洋石油平台疲劳断裂评估与可靠性分析[博士学位论文].石油大学(华东),东营: 1999. 8-14
    132 Howells H , Hatton S. Drilling Riser Fatigue and Wear in Deepwater Environment[C].2H Offshore Engineering Ltd, Presented at IIR Deeptec 2000. Aberdeen, 2000.
    133王一飞,潘志远,黄小平等.深海立管涡激振动疲劳损伤影响因素分析[J].船舶力学, 2006,10 (5): 76-83