点模式匹配算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
点模式匹配是计算机视觉和模式识别领域的一个重要而基础的问题,在图像配准、立体视觉、图像检索、目标识别与跟踪、医学图像分析、景象匹配导航等方面有着广阔的应用背景。由于实际应用中所提取到的点集通常会出现噪声、出格点和缺失点等复杂情况,而且点集之间的几何变换关系既可能是低维的刚体变换,也可能是更复杂的高维非刚体变换,这样就使得有着广泛应用的点模式匹配本身仍然是一个十分具有挑战性的任务。
     针对目前已有的点模式匹配算法所存在的问题,本论文根据待匹配点模式之间所满足的几何变换模型的不同,对刚体变换和非刚体变换下的点模式匹配问题分别展开深入研究,提出了一系列新的适用于不同几何变换模型的鲁棒的点模式匹配算法:
     在相似变换下的点模式匹配方法研究中,论文首先提出了一种新的基于点集的不变特征—相对形状上下文,然后将该不变特征分别与概率松弛标记法和谱匹配方法相结合,提出了基于相对形状上下文与概率松弛标记法的点模式匹配算法和基于相对形状上下文与谱匹配方法的点模式匹配算法。相比于其它经典算法,本文所提的两种新算法均具有较强的针对噪声、出格点的鲁棒性,且都能适用于一定程度的透视变换情况。而在相同的参数设置下,前者具备更强的抗出格点能力,而后者则具备更强的抗噪声能力。
     在仿射变换下的点模式匹配方法研究中,为了解决传统的一致性点漂移算法存在的局部最优性和收敛速度随点集大小增加而下降等问题,论文提出了一种新的基于全局最优的快速一致性点漂移算法。该算法首先将点集进行正交标准形约简,利用约简后点集的重要性质,推导出不完全观测数据的对数似然函数在全局最优解附近凸函数区域的边界值,再以该边界值为基础,采用多重初始化策略来实现全局最优。最后,提出了基于置信域的全局收敛二次平方迭代期望最大化算法,实现了全局优化算法的超线性收敛。通过实验验证了该算法是有效的、快速的以及鲁棒性较强的。
     在非刚体变换下的有标记点模式匹配方法研究中,当归纳分析了经典的非刚体几何变换模型以及经典的基于微分同胚非刚体变换模型所存在的问题后,论文提出了一种新的基于恒定动量矢量的快速大形变微分同胚非刚体变换有标记点模式匹配算法,该方法利用拉格朗日坐标系下的恒定动量矢量以及时间依赖的多尺度再生核来构造速度矢量场,然后采用基于规则化控制参数的确定性退火机制来搜索最优动量矢量,从而得到最优的微分同胚变换形变场。通过比较实验发现,新方法不仅适用于大形变微分同胚非刚体变换的情况,而且与经典的基于微分同胚的方法相比,匹配精度较高,时空复杂度较低,并在匹配精确性与形变光滑性之间达到了较好的平衡兼顾。
     在非刚体变换下的无标记点模式匹配方法研究中,提出了一种新的高斯混合模型与基于恒定动量矢量的大形变微分同胚变换相结合的非刚体点模式匹配算法,该方法将以高斯混合模型为基础的软匹配方法与上述非刚体变换下有标记点模式匹配研究中所提出来的基于恒定动量矢量的快速大形变微分同胚非刚体几何变换模型相结合,利用高斯混合模型概率密度函数的参数估计方法来迭代求解最优的恒定动量矢量参数。新算法在复杂实际应用中不仅能得到满足微分同胚条件的大形变光滑可微形变场,同时还具备较高的匹配精度以及较强的鲁棒性。
Point Pattern Matching (PPM) is one of important and fundamental problems incomputer vision and pattern recognition, which is widely used in many applications,such as imaging registration, stereovision, image retrieval, object recognition andtracking, medical imaging analysis, image matching for navigation, etc. It is still achallenging task due to the existence of the noise, the outliers and the missing points inthe extracted point pattern from the realistic applications; moreover, the geometricdeformation between point pattern can also be from the low-dimensional rigidtransformations to the high-dimensional non-rigid transformations.
     Considering the difficulties of current point pattern mathing methods andaccording to the diversity of geometric distortion, the thesis lucubrates on the rigid andnon-rigid point pattern matching problems respectively, and then develops a series ofnew and robust point pattern matching methods, which can be suitable for differentgeometirc transformations.
     In the research on the problems of PPM which under similarity transformations,the thesis firstly propose a new point-set based invariant feature which name as RelativeShape Context (RSC). After combining the invariant feture with probabilistic relaxationlabelling and spectral matching method, the thesis presents one PPM algorithm whichbased on relative shape context and probabilistic relaxation labelling (RSC-PRL) andthe other PPM algorithm which based on relative shape context and spectral matchingmethod respectively. Compared with the other classical PPM methods under similaritytransformation, the two proposed novel methods all are more robust to noise andoutliers, and even can be applicable to some certain extant of pespective distortion.Under the same parameters setup, the RSC-PRL method is more robust to outliers thanthe RSC-SM method and inversely the RSC-SM method is more robust to noise thanthe RSC-PRL method.
     In the research on the problems of PPM which under affine transformations, theCoherent Point Drift (CPD) is one of popular point pattern matching algorithms becauseof its robustness. However, The CPD is local optimization and its convergent rate isslower along with the size of point-set become larger. For resolving these problems, thethesis develops a Global Optimal and Fast algorithm which based on CPD (GOF-CPD).The orthogonal normalization first reduce the general affine case to the orthogonal case,and the convex region boundary of the unoberserved data’s logarithmic likelihoodnearby the global optimal solutions are deduced by the properties of normalizedpoint-sets. Then, the Multi-start strategy based on the convex region boundary isintroduced to achieve the global optimization. Finally, a new iterative scheme, calledthe Trust Region based global convergent SQUARed iterative EM (TR-gSQUAREM) is proposed to achieve the superlinear convergence. Experiments show that the proposedalgorithm is efficient, speedy and robust.
     In the research on the problems of non-rigid landmark matching, the thesisproposes a novel methods which name as the Fast Large Deformation DiffeomorphicLandmarks Matching Based on Stationary Momentum (SM-FLDDLM) for the purposeof resolving the limitations of the known classical non-rigid transformation models andthe classical diffeomorphic non-rigid transformation models. The SM-FLDDLMmethod estimates the velocity vector fields by means of the Lagrangian stationarymomentum vector and time-dependent multi-scales reproducing kernels. The optimaldiffeomorphic deformation fields can be gained by the searching of optimal momentumvectors using the determinate simulative anneal based on the regularization controlsparameter. The results of comparative experiments show that the SM-FLDDLM methodis not only suitable for the large deformation diffeomorphic non-rigid transformation,but also has higher matching precision and lesser time and space consumes than thoseclassical diffeomorphic landmark mathing methods. Note that the proposed method canachieve a better balance between the accuracy of matching and the smoothness ofnon-rigid deformation.
     In the research on the problems of non-rigid unlabeled point pattern matching, thethesis develops a new diffeomorphic non-rigid PPM algorithm which combines theGaussian Mixture Model and Large Deformation Diffeomorphism Matching Based onStationary Momentum (GMM-SMLDDM). The GMM-SMLLDM method integratesthe soft matching technique which based on Gaussian Mixture Model with the non-rigidtransformation model which based on the above proposed SM-FLDDLM method. Theoptimal stationary momentum can be finded by the maximum likelihood estimation ofthe parameters Gaussian Mixture Model. The proposed novel method performs well inthe practical applications which under large deformation diffeomorphism and also havehigher matching accuracy and stronger robustness.
引文
[1]孙即祥.图像处理[M].北京:科学出版社,2009.
    [2]孙即祥.现代模式识别(第二版)[M].北京:高等教育出版社,2008.
    [3]谭志国.点模式匹配及应用[D].长沙:国防科学技术大学博士论文,2008.
    [4]张立华.点模式匹配算法[D].北京:清华大学博士论文,2004.
    [5] Veltkamp R, Hagedoorn M. State-of-the-art in shape matching [J]. UtrechtUniversity, Tech. Rep. UU-CS-1999-27,1999.
    [6] Zitova B, Flusser J, Sroubek F. Image registration: a survey and recent advances [C].IEEE International Conference on Image Processing (ICIP),2005.
    [7] Maintz J B A, Viergever M A. A survey of medical image registration [J]. MedicalImage Analysis,1998,2(1):1~36.
    [8] Hill D L G, et al. Medical image registration [J]. Phys. Med. Biol.,2001,46:R1~R45.
    [9] Zitova B, Flusser J. Image registration methods: a survey [J]. Image and VisionComputing2003,21:997~1000.
    [10] Parra N A. Rigid and Non-rigid Point-based Medical Image Registration [D]:Florida International University,2009.
    [11] Jackson B P, Goshtasby A A. Registering Aerial Video Images Using theProjective Constraint [J]. IEEE Transactions on Image Processing,2010,19(3):795~804.
    [12] Yang J, et al. A robust hybrid method for nonrigid image registration [J]. PatternRecognition,2011,44:764~776.
    [13] Pilu M. A direct method for stereo correspondence based on singular valuedecomposition [C]. IEEE Computer Society Conference on Computer Vision andPattern Recognition1997:261~266.
    [14] Brown M Z, Burschka D, Hager G D. Advances in computational stereo [J]. IEEETransactions on Pattern Analysis and Machine Intelligence,2003,25(8):993~1008.
    [15] Tang J, et al. A Laplacian spectral method for stereo correspondence [J]. PatternRecognition Letters,2007,28(12):1391~1399.
    [16] McKeon R T, Flynn P J. Three-Dimensional Facial Imaging Using a Static LightScreen (SLS) and a Dynamic Subject [J]. IEEE Transactions On Instrumentationand Measurement,2010,59(4):774~783.
    [17] Umeyama S. Parameterized Point Pattern-Matching and Its Application toRecognition of Object Families [J]. IEEE Transactions on Pattern Analysis andMachine Intelligence,1993,15(2):136~144.
    [18] Belongie S, Malik J, Puzicha J. Shape context: A new descriptor for shapematching and object recognition [C]. Proceedings of the Neural InformationProcessing Systems,2001:831~837.
    [19] Berg A C. Shape Matching and Object Recognition [D]: Universtiy of California,2005.
    [20] Chikkerur S, Ratha N. Impact of singular point detection on fingerprint matchingperformance [C]. Fourth IEEE Workshop on Automatic Identification AdvancedTechnologies,2005:207~212.
    [21] Jiang T, Jurie F, Schmid C. Learning Shape Prior Models for Object Matching[C].Proceeding of the IEEE Computer Society Conference on Computer Visionand Pattern Recognition,2009:1~8.
    [22] Xiong Z, Zhang Y. A Novel Interest-Point-Matching Algorithm forHigh-Resolution Satellite Images [J]. IEEE Transactions on Geoscience andRemote Sensing,2009,47(12):4189-4200.
    [23] Ozuysal M, et al. Fast Keypoint Recognition Using Random Ferns [J]. IEEETransactions on Pattern Analysis and Machine Intelligence,2010,32(3):448-461.
    [24] Datta R, et al. Image retrieval:Ideas, influences, and trends of the new age [J].ACM Computing Surveys (CSUR),2008,40(2).
    [25] Jain A K, et al. Content-based image retrieval: An application to tattoo images [C].The16th IEEE International Conference on Image Processing (ICIP). Cairo, Egypt,2009:2745~2748.
    [26] McNeill G, Vijayakumar S.2D Shape Classification and Retrieval [C]. Proceedingsof International Joint Conference on Artificial Intelligence (IJCAI'05). Edinburgh,2005:1110~1116.
    [27] Leordeanu M D. Pairwise Constraints for Matching, Perceptual Grouping andRecognition [D]: Carnegie Mellon University,2008.
    [28] Nasreddine K, Benzinou A, Fablet R. Variational shape matching for shapeclassification and retrieval [J]. Pattern Recognition Letters2010,31:1650~1657.
    [29]侯志强,韩崇照.视觉跟踪技术综述[J].自动化学报,2006,32(4).
    [30] Yilmaz A, Javed O, Shah M. Object Tracking: A Survey [J]. ACM ComputingSurveys,2006,38(4).
    [31] Shi J, Tomasi C. Good features to track [C]. IEEE Computer Society Conferenceon Computer Vision and Pattern Recognition(CVPR'94),1994:593~600.
    [32] Rosten E, Drummond T. Fusing points and lines for high performance tracking [C].Tenth IEEE International Conference on Computer Vision (ICCV2005),2005:1508~1515.
    [33] Brown M, Lowe D G. Automatic Panoramic Image Stitching using InvariantFeatures [J]. International Journal of Computer Vision,2007,74(1):59~73.
    [34] Haieh Y C, Mckeown D M, al e. Performation evalution of scene registration andstero matching for cartographic feature extraction [J]. IEEE Transaction on PatternAnalysis and Machine Intelligence,1992,14(2):214~238.
    [35] Trawny N, et al. Vision-Aided Inertial Navigation for Pin-Point Landing usingObservations of Mapped Landmarks [J]. Journal of Field Robotics,2007,24(5):357~364.
    [36] Edwards B, Archibald J, W. Fife e a. A Vision System for Precision MAVTargeted Landing [C]..International Symposium on Computational Intelligence inRobotics and Automation,2007:125~130.
    [37] egvic S, et al. A mapping and localization framework for scalableappearance-based navigation [J]. Computer Vision and Image Understanding,2009,113:172~187.
    [38] Cesetti A, et al. A Vision-Based Guidance System for UAV Navigation and SafeLanding using Natural Landmarks [J]. J Intell Robot Syst2010,57:233~257.
    [39] Mingtian N. Point Pattern Matching and Its Application in GCXGC [D]. Lincoln:The University of Nebraska,2004.
    [40] Nussinov R, Wolfson H J. Efficient detection of three-dimensional structuralmotifs in biological macromolecules by computer vision techniques [C].Proceedings of the National Academy of Sciences of the United States of America,1991:10495~10499.
    [41] Glaunes J, Joshi S. Template estimation form unlabeled point set data and surfacesfor Computational Anatomy [C]. Mathematical Foundations of ComputationalAnatomy(MICCAI'06). Copenhagen, Denmark,2006:778~799.
    [42] Miller M I, Qiu A. The emerging discipline of Computational Functional Anatomy[J]. NeuroImage2009,45: S16~S39.
    [43] Younes L, Arrate F, Miller M I. Evolutions equations in computational anatomy [J].NeuroImage,2009,45: S40~S50.
    [44] Donoso L F A. Evolution equations on the group of diffeomorphisms, withapplications in computational anatomy [D]. Baltimore, Maryland: The JohnsHopkins University,2010.
    [45] Li B, Meng Q, Holstein H. Point pattern matching and applications-a review [C].IEEE International Conference on Systems, Man and Cybernetics,2003:729~736.
    [46] Myronenko A, Song X. Point Set Registration: Coherent Point Drift [J]. IEEETrans On Pattern Analysis And Machine Intelligence,2010,32(12):2262~2275.
    [47] Goodrich M T, Mitchell J S B, Orletsky M W. Approximate geometric patternmatching under rigid motions [J]. IEEE Transactions on Pattern Analysis andMachine Intelligence,1999,21(4):371~379.
    [48] Rangarajan A, Chui H, Duncan J S. Rigid Point Feature Registration Using MutualInformation [J]. Medical Image Analysis,1999,4:1~17.
    [49] Hartley R, Zisserman A. A Multiple View Geometry In Computer Vision [M].Cambridge,United Kingdom: Cambridge University Press,2004.
    [50] Besl P J, McKay H D. A method for registration of3-D shapes [J]. IEEETransactions on Pattern Analysis and Machine Intelligence,1992,14(2):239~256.
    [51] Rusinkiewicz S, Levoy M. Efficient variants of the ICP algorithm [C].International Conference on3D Digital Imaging and Modeling (3DIM),2001:145~152.
    [52] Fitzgibbon A W. Robust registration of2D and3D point sets [J]. Image and VisionComputing,2003,21(13):1145~1153.
    [53] Rangarajan A, et al. A Robust Point Matching Algorithm for AutoradiographAlignment [J]. Medical Image Analysis,1999,1(4):379~398.
    [54] Luo B, Hancock E R. Structural graph matching using the EM algorithm andsingular value decomposition [J]. IEEE Transactions on Pattern Analysis andMachine Intelligence,2001,23(10):1120~1136.
    [55] Gold S, et al. New algorithms for2D and3D point matching:Pose estimation andcorrespondence [J]. Pattern Recognition,1996,31(8):1019~1031.
    [56] Chui H, Rangarajan A. A new point matching algorithm for non-rigid registration[J]. Computer Vision and Image Understanding,2003,89:114~141.
    [57] Chui H, Rangarajan A. A feature registration framework using mixture models [C].IEEE Workshop on Mathematical Methods in Biomedical Image Analysis,2000:190~197.
    [58] Joshi A, Lee C-H. On the probl. of cor. in range data and some inelastic uses forEN [J]. TNN,1995,6(3):716~723.
    [59] Wells W M. Statistical Approaches to Feature-Based Object Recognition [J].International Journal of Computer Vision1997,21(1-2):63~98.
    [60] Cross A D J, Hancock E R. Graph matching with a dual-step EM algorithm [J].IEEE Transactions On Pattern Analysis and Machine Intelligence,1998,20(11):1236~1253.
    [61] Luo B, Hancock E R. A Unified Framework For Alignment And Correspondence[J]. Computer Vision and Image Understanding,2003,92:26~55.
    [62] McNeill G, Vijayakumar S. A probabilistic approach to robust shape matching [C].ICIP,2006:937~940.
    [63] Scott G L, Longuett-Higgins H C. An Algorithm for Associating the Features ofTwo Images [C]. Proceedings: Biological Sciences. London: The Royal Society,1991:21~26.
    [64] Shapiro L S, Brady J M. Feature-based correspondence: an eigenvector approach[J]. Image and Vision Computing1992,10(5):283~288.
    [65] Carcassoni M, Hancock E R. Spectral correspondence for point pattern matching[J]. Pattern Recognition2003,36:193~204.
    [66] Carcassoni M, Hancock E R. Correspondence matching with modal clusters [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(12):1609~1615.
    [67] Leordeanu M, Hebert M. A Spectral Technique for Correspondence ProblemsUsing Pairwise Constraints [C]. Proceedings of the Tenth IEEE InternationalConference on Computer Vision Beijing, China,2005:1482~1489.
    [68] Caetano T S, et al. Graphical Models and Point Pattern Matching [J]. IEEETransactions on Pattern Analysis and Machine Intelligence,2006,28(10):1646~1663.
    [69] Voss K, Suesse H. Affine Point Pattern Matching [C]. Pattern Recognition:23rdDAGM Symposium Proceedings. Munich, Germany,2001:155~162.
    [70] Gope C, Kehtarnavaz N. Affine invariant comparison of point-sets using convexhulls and hausdorff distances [J]. Pattern Recognition,2007,40:309~320.
    [71] Zass R, Shashua A. Probabilistic Graph and Hypergraph Matching [C]. IEEEComputer Society Conference on Computer Vision and Pattern Recognition(CVPR),2008:1~8.
    [72] Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shapecontexts [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(24):509~522.
    [73] Zheng Y, Doermann D. Robust Point Matching for Nonrigid Shapes by PreservingLocal Neighborhood Structures [J]. IEEE Transactions on Pattern Analysis andMachine Intelligence,2006,28(4):643~649.
    [74] Lee J-H, Won C-H. Topology Preserving Relaxation Labeling for Nonrigid PointMatching [J]. IEEE Transactions On Pattern Analysis and Machine Intelligence,2011,30(2):427~432.
    [75] Ranade S, Rosenfeld A. Point Pattern Matching by Relaxation [J]. PatternRecognition,1980,12:269~275.
    [76] Sang N, Zhang T. Point pattern relaxation matching: invariant to rotations andscale changes [C]. Visual Information Processing VII,1997:180~187.
    [77] Ahuja N. Dot Pattern Processing Using Voronoi Neighborhoods [J]. IEEE Trans onPattern Analysis and Machine Intelligence,1982,4(3):336~342.
    [78] Ogawa H. Labeled point pattern matching by fuzzy relaxation [J]. PatternRecognition,1984,17(5):569~573.
    [79]朱庆,吴波,赵杰.基于自适应三角形约束的可靠影像匹配方法[J].计算机学报,2005,28(10):1734~1739.
    [80] Zhao X, Wang S, Ding X. A dynamic generating graphical model for point-setsmatching [J]. Applied Mathematics and Computation,2007,185(2):1109~1119.
    [81] Lian W, et al. A Clustering and Quadratic Programming Based POCS Algorithmfor Point Matching [C]. The Sixth World Congress on Intelligent Control andAutomation,2006:9791~9794.
    [82] Lian W, et al. A quadratic programming based cluster correspondence projectionalgorithm for fast point matching [J]. Computer Vision and Image Understanding,2009,14(3):1~12.
    [83] Holden M. A Review of Geometric Transformations for Nonrigid BodyRegistration [J]. IEEE Transactions on Medical Imaging,2008,27(1):111~128.
    [84] Lester H, Arridge S R. A Survey of Hierarchical Non-linear Medical ImageRegistration [J]. Pattern Recognition,1999,32(1):129~149.
    [85] Christensen G E, Rabbit R D, Miller M I.3D Brain Mapping Using A DeformableNeuroanatomy [J]. Physics in Medicine and Biology,1994(39):609~618.
    [86] Christensen G E, Rabbitt R D, Miller M I. Deformable Templates using LargeDeformation Kinematics [J]. IEEE Transactions on Image Processing,1996,5(10):1435~1447.
    [87] Christensen G E, Joshi S C, Miller M I. Volumetric Transformation of BrainAnatomy [J]. IEEE Transactions on Medical Imaging,1997,16(6):864~877.
    [88] Thirion J P. Image Matching as A Diffusion Process: An Analogy with Maxwell'sDemons [J]. Medical Image Analysis,1998,2(3):243~260.
    [89] Woods R P, Graflon S T. Automated Image Registration:Inter-subject Validationof Linear and Nonlinear Models [J]. Journal of Computer Assisted Tomography,1998,22(1):153~165.
    [90] Fornefett M, Rohr K, Stiehl H S. Elastic Registration of Medical Images UsingRadial Basis Functions with Compact Support [C]. IEEE Computer SocietyConference on Computer Vision and Pattern Recognition,1999:402~407.
    [91] Powell M J D. Radial Basis Functions for Multivariate Interpolation: A Review [C].Conf.1st Algorithms For Approximation (Inst. Math. Its Appl. Conf. Series),1987:143~147.
    [92] Bookstein F L. Principal Warps: Thin-Plate Splines and the Decomposition ofDeformations [J]. IEEE Transactions On Pattern Analysis and MachineIntelligence,1989,11(6):567~585.
    [93] Davis M H, et al. A Physics-based Coordinate Transformation for3D ImageMatching [J]. IEEE Transactions On Medical Imaging,1997,16:317~328.
    [94] Lee S, Wolberg K. Image Metamorphosis with Scattered Feature Constraints [J].IEEE Transactions on Visualization and Computer Graphics,1996,2(4):337~354.
    [95] Wu Y T, et al. Discrete Signal Matching using Coarse-to-fine Wavelet BasisFunctions [J]. Pattern Recognition,2003,36(1):171~192.
    [96] Younes L. Shapes and Diffeomorphisms [M]. Applied Mathematical Sciences, ed.S.S. Antman, J.E. Marsden, and L. Sirovich. New York: Springer HeidelbergDordrecht London Vol.171,2011.
    [97] Wahba G. Spline Models for Observational Data [M]. Philadelphia, PA: SIAM,1990.
    [98] Arad N, et al. Warping by Radial Basis Functions—Application to FacialExpressions [C]. CVGIP-Graphical Models Image Process,1994:161~172.
    [99] Fornefett M, Rohr K, Steihl H S. Radial Basis Functions with Compact Support forElastic Registration of Medical Images [J]. Image Vis. Comput.,2001,19(1-2):87~96.
    [100] Rueckert D, et al. Nonrigid Registration Using Free-Form Deformations:Application to Breast MR Images [J]. IEEE Transactions On Medical Imaging,1999,18(8):712~721.
    [101] Joshi S C, Miller M I. Landmark Matching via Large DeformationDiffeomorphisms [J]. IEEE Trans on Image Processing,2000,9(8):1357~1370.
    [102] Beg M F. Variational and computational methods for flows of diffeomorphisms inimage matching and growth on computational anatomy [D]: John Hopkins Univ,2003.
    [103] Beg M F, et al. The Euler-Lagrange Equation for Interpolating Sequence ofLandmark Datasets [C]. MICCAI,2003:918~925.
    [104] Beg M F, et al. Computing Large Deformation Metric Mappings via GeodesicFlows of Diffeomorphisms [J]. International Journal of Computer Vision2005,61(2):139~157.
    [105] Glaunes J, Trouve A, Younes L. Modeling Planar Shape Variation viaHamiltonian Flows of Curves [M]. Statistics and analysis of shapes, ed. H. Krimand A. Yezzi. Boston: Birkhauser,2006.
    [106] Glaunes J, et al. Large Deformation Diffeomorphic Metric Curve Mapping [J]. Int.J. Comput. Vis.,2008.
    [107] Vaillant M, Glaunes J. Surface Matching via Currents [C]. Proceedings ofInformation Processing in Medical Imaging (IPMI2005): Springer,2005.
    [108] Vaillant M, et al. Statistics on diffeomorphisms via tangent space representations[J]. NeuroImage,2004,23: S161~S169.
    [109] Miller M I, Trouvé A, Younes L. Geodesic Shooting for Computational Anatomy[J]. Journal of Mathematical Imaging and Vision,2006,240(2):209~228.
    [110] Vaillant M. Diffeomorphic Surface Matching and Currents and Tangent SpaceRepresentations For Statistics On Diffeomorphisms [D]. Maryland: the JohnsHopkins University,2008.
    [111] Jian B, Vemuri B. Robust Point Set Registration Using Gaussian Mixture Models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(8):1633~1645.
    [112] Chui H, Rangarajan A. A new point matching algorithm for non-rigid registration
    [C]. IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head,SC, USA,2000:44~51.
    [113] Tsin Y, Kanade T. A Correlation-Based Approach to Robust Point SetRegistration [C]. ECCV,2004:558~569.
    [114] Jian B, Vemuri B C. A robust algorithm for point set registration using mixture ofGaussians [C]. IEEE International Conference on Computer Vision(ICCV),2005:1246~1251.
    [115] Myronenko A, Song X, Carreira-Perpinan M A. Non-rigid point set registration:Coherent Point Drift [C]. NIPS,2006:1009~1016.
    [116] Glaunes J, Trouve A, Younes L. Diffeomorphic matching of distributions: A newapproach for unlabelled point-sets and sub-manifolds matching [C]. IEEEComputer Society Conference on Computer Vision and Pattern Recognition(CVPR),2004:712~718.
    [117] Guo H, Rangarajan A. Diffeomorphic point matching with applications inbiomedical image registration [J]. International Journal of Tomography andStatistics,2010,15(F10):42~57.
    [118] Caetano T S, et al. Learning Graph Matching [J]. IEEE Transactions on PatternAnalysis and Machine Intelligence,2009,31(6):1048~1058.
    [119] Wang H, Hancock E R. Probabilistic relaxation labelling using the Fokker-Planckequation [J]. Pattern Recognition,2008,41:3393~3411.
    [120] Christmas W J, Kittler J, Petrou M. Structural matching in computer vision usingprobabilistic relaxation [J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,1995,17:749~764.
    [121] Hansen M W, Higgins W E. Relaxation methods for supervised imagesegmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19:949~962.
    [122] Pelillo M, Refice M. Learning Compatibility Coefficients for Relaxation LabelingProcesses [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16(9):933~945.
    [123] Zhang X D. Matrix Analysis and Applications [M]. Beijing: Tsinghua UniversityPress,2004:528~530.
    [124] Mikolajczyk K, Schmid C. A Performance Evaluation of Local Descriptors [J].Pattern Analysis and Machine Intelligence, IEEE Transactions on,2005,27(10):1615~1630.
    [125] Matas J, et al. Robust wide-baseline stereo from maximally stable extremalregions [J]. Image and Vision Computing,2004,22(10):761~767.
    [126]孙即祥.模式识别中的特征提取与计算机视觉不变量[M].北京:国防工业出版社,2001.
    [127] Heikkil J. Pattern matching with affine moment descriptors [J]. PatternRecognition,2004,37(9):1825~1834.
    [128] Caetano T S, et al. Learning Graph Matching [C]. IEEE11th InternationalConference on Computer Vision,2007:122~130.
    [129] Yuille A L, Grzywacz N M. A Mathematical Analysis of the Motion CoherenceTheory [J]. International Journal of Computer Vision,1989,3:155~175.
    [130] Jain A K, Duin R P W, Mao J C. Statistical pattern recognition:A review [J].IEEE Trans On Pattern Analysis And Machine Intelligence,2000,22(1):4~37.
    [131] Ari C, Aksoy S. Maximum Likelihood Estimation of Gaussian Mixture ModelsUsing Particle Swarm Optimization [C]. IEEE Conference on Pattern Recognition(ICPR),2010:746-749.
    [132] Wu C F J. On the Convergence Properties of the EM Algorithm [J]. The Annalsof Statistics,1983,11(1):95~103.
    [133] Biernacki C, Celeux G, Govaert G. Choosing Starting Values for the EMAlgorithm for Getting the Highest Likelihood in Multivariate Gaussian MixtureModels [J]. Computational Statistics and Data Analysis,2003,41:561~575.
    [134] Pernkopf F, Bouchaffra D. Genetic-Based EM Algorithm for Learning GaussianMixture Models [J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,2005,27(8):1344~1348.
    [135] Kroese D P, Rubinstein R Y, Taimre T. Application of the Cross-Entropy Methodto Clustering and Vector Quantization [J]. Journal of Global Optimization,2007,37:137~157.
    [136] Heath J W, Fu M C, Jank W. New Global Optimization Algorithms forModel-Based Clustering [J]. Computational Statistics&Data Analysis,2009,53(12):3999~4017.
    [137] Chowdhury P R, Singh Y P, Chansarkar R A. Hybridization of gradient descentalgorithms with dynamic tunneling methods for global optimization [J]. IEEETransactions on Systems, Man and Cybernetics, Part A: Systems and Humans,2000,30(3):384~390.
    [138] Wright K, Kennedy W J. An Interval Analysis Approach to the EM Algorithm [J].Journal of Computational and Graphical Statistics,2000,9(2):303~318.
    [139] Ma J, Xu L, Jordan M I. Asymptotic Convergence Rate of the EM Algorithm forGaussian Mixtures [J]. Neural Computation,2000,12:2881~2907.
    [140] Meng X L, Dyk D v. The EM Algorithm-An Old Folk-Song Sung to a Fast NewTune [J]. Journal of the Royal Statistical Society. Series B (Methodological),1997,59(3):569~587.
    [141] Liu C, B.Rubin D, Wu Y N. Parameter Expansion to Accelerate EM:The PX-EMAlgorithm [J]. Biometrika,1998,85:755~770.
    [142] Meng X L, Rubin D B. A maximum likelihood estimation via the EM algorithm:a general framework [J]. Biometrika,1993,80:267~278.
    [143] Liu C, B.Rubin D. The ECME algorithm: a simple extension of EM and ECMwith faster monotone convergence [J]. Biometrika,1994,81:633~648.
    [144] Louis T A. Finding the observed information matrix when using the EMalgorithm [J]. Journal of the Royal Statistical Society. Series B (Methodological),1982,44:226~233.
    [145] Jamshidian M, Jennrich R I. Acceleration of the EM Algorithm by usingQuasi-Newton Methods [J]. Journal of the Royal Statistical Society. Series B(Methodological),1997,59(3):569~587.
    [146] Jamshidian M, Jennrich R I. Conjugate Gradient Acceleration of the EMAlgorithm [J]. Journal of the American Statistical Association,1993,88(421):221~228.
    [147] Wang M, et al. Acceleration of the EM algorithm using the vector epsilonalgorithm [J]. Computational Statistics,2008,23:469~486.
    [148] Varadhan R, Roland C. Simple and Globally Convergent Methods forAccelerating the Convergence of Any EM Algorithm [J]. Scandinavian Journal ofStatistics,2008,35:335~353.
    [149] Rahtu E, Salo M, Heikkila J. Affine invariant pattern recognition using multiscaleautoconvolution [J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,2005,27(6):908~918.
    [150] Harris C, Stephens M. A Combined Corner and Edge Detector [C]. Proc of the4thAlvey Vision Conference. Manchester,UK,1988:147~151.
    [151] Luo B, Cross A D J, Hancock E R. Corner detection via topographic analysis ofvector-potential [J]. Pattern Recognition Letters,1999,20(6):635~650.
    [152] Mikolajczyk K, et al. A Comparison of affine region detectors [J]. InternationalJournal of Computer Vision,2005,65(1-2):43~72.
    [153] Modersitzki J. Numerical Methods for Image Registration (NumericalMathematics and Scientific Computation)[M]. New York: Oxford Univ. Press,2004.
    [154] Bajcsy R, Lieberson R, Reivich M. A Computerized System for The ElasticMatching of Deformed Radiographic Images to Idealized Atlas Images [J]. J.Comput. Assist. Tomogr.,1983,7(4):618~625.
    [155] Gee J C, et al. Finite Element Approach to Warping of Brain Images [J]. SPIEMed. Imag.,1994:327~337.
    [156] Bro-Nielsen M, Gramkow C. Fast Fluid Registration of Medical Images [C]. Proc.Visualization in Biomedical Computing. Berlin, Germany: Springer Verlag,1996:267~276.
    [157] Freeborough P A, Fox N C. Modeling Brain Deformations in Alzheimer's Diseaseby Fluid Registration of Serial3D MR Images [J]. J.Comput. Assist. Tomogr.,1998,22(5):838~843.
    [158]吴月娥.强鲁棒的非刚性点配准方法及其应用研究[D].合肥:中国科学技术大学博士论文,2005.
    [159] Meijering E. A Chronology of Interpolation: From Ancient Astronomy to ModernSignal and Image Processing [C]. Proc. IEEE,2002:319~342.
    [160] Powell M J D. Approximation Theory and Methods [M]. Cambridge, U.K:Cambridge Univ. Press,1981.
    [161] Collins D L, Evans A C. Animal: Validation and Applications of NonlinearRegistration-based Segmentation [J]. Int. J. Pattern Recogn. Artif. Intell.,1997,11(8):1271~1294.
    [162] Wendland H. Piecewise Polynomial, Positive Definite and Compactly SupportedRadial Basis Functions of Minimal Degree [J]. Adv. Comput. Math.,1995,4:389~396.
    [163] Detlef R, Heinrich M. Free Form Deformation with Scattered Data InterpolationMethods, in Geometric modelling (computing suppl.), G. Farin, H. Hagen, and H.Noltemeier (eds). New York. Springer Verlag,1993:267~281.
    [164] Zagorchev L, Goshtasby A. A Comparative Study of Transformation Functionsfor Nonrigid Image Registration [J]. IEEE Trans On Image Processing,2006,15(3):529~538.
    [165]陈国琳.非刚性医学图像配准方法的研究与实现[D].南京:南京理工大学硕士论文,2009.
    [166] Rohr K, et al. Landmark-Based Elastic Registration Using ApproximatingThin-Plate Splines [J]. IEEE Transactions On Medical Imaging,2001,20(8):526~534.
    [167] Kohlrausch J, Rohr K, Stiehl H S. A New Class of Elastic Body Splines forNonrigid Registration of Medical Images [J]. Journal of Mathematical Imaging andVision,2005,23:253~280.
    [168] Lee S, Wolberg G, Shin S Y. Scattered Data Interpolation with MultilevelB-splines [J]. IEEE Trans. Visualization Comput. Graph.,1997,3:228~244.
    [169] Johnson H J, Christensen G E. Consistent Landmark and Intensity-Based ImageRegistration [J]. IEEE Transactions On Medical Imaging,2002,21(5):450~461.
    [170] Musse O, Heitz F, Armspach J P. Topology Preserving Deformable ImageMatching Using Constrained Hierarchical Parametric Models [J]. IEEE Trans.Image Process.,2001,10(7):1081~1093.
    [171] Miller M I. Computational anatomy: shape, growth, and atrophy comparison viadiffeomorphisms [J]. NeuroImage,2004,23:19~33.
    [172] Dupuis P, Grenander U, Miller M I. Variational Problems on Flows ofDiffeomorphisms for Image Matching [J]. Quarterly of Applied Mathematics,1998,56:587~600.
    [173] Trouvé A. Diffeomorphisms Groups and Pattern Matching in Image Analysis [J].International Journal of Computer Vision,1998,28(3):213~221.
    [174] Trouvé A. Infinite Dimensional Group Action and Pattern Recognition [J].DMI,Ecole Nationale Superieure,Paris, France,1995.
    [175]张建新.再生核与算子样条函数的构造及最佳逼近理论[D].长沙:国防科学技术大学博士论文,2006.
    [176] Younes L. Deformation analysis for shape and image processing [M]. Lecturenotes: Johns Hopkins University,2007.
    [177] Bajcsy R, Kovacic S. Multiresolution elastic matching [J]. Comp. Vision,Graphics, and Image Proc.,1989,46:1~21.
    [178] Risser L, et al. Simultaneous Multiscale Registration using Large DeformationDiffeomorphic Metric Mapping [J]. IEEE Transactions on Medical Imaging,2011(99):1~9.
    [179] Cao Y, et al. Large Deformation Diffeomorphic Metric Mapping of Vector Fields[J]. IEEE Transactions On Medical Imaging,2005,24(9):1~9.
    [180] Qiu A, Younes L, Miller M I. Principal Component Based Diffeomorphic SurfaceMapping [J]. IEEE Transactions on Medical Imaging,2011(99):1~9.
    [181]陈宝林.最优化理论与算法(第2版)[M].北京:清华大学出版社,2005.
    [182] Vercauteren T, et al. Diffeomorphic demons: Efficient non-parametric imageregistration [J]. NeuroImage,2009,45(1): S61~S72.
    [183] Marsland S, Twining C. Constructing Diffeomorphic Representations for theGroupwise Analysis of Non-Rigid Registrations of Medical Images [J]. IEEETransactions on Medical Imaging,2004,23(8):1006~1020.
    [184] Rangarajan A, Coughlan J, Yuille A L. A Bayesian Network Framework forRelational Shape Matching [C]. International Conference on Computer Vision(ICCV),2003:671~678.
    [185] Sebastian T B, Klein P N, Kimia B B. Recognition of shapes by editing theirshock graphs [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence2004,26(5):550~571.
    [186] Sclaroff S, Pentland A P. Modal matching for correspondence and recognition [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(6):545~561.
    [187] Browne R P, McNicholas P D, Sparling M D. Model-Based Learning Using aMixture of Mixtures of Gaussian and Uniform Distributions [J]. IEEE TransactionsOn Pattern Analysis And Machine Intelligence,2012,34(4):814~817.
    [188] Dempster A P, Laird N M, Rubin D B. Maximum Likelihood from IncompleteData via the EM Algorithm [J]. Journal of the Royal Statistical Society. Series B(Methodological),1977,39(1):1~38.
    [189] Chui H. Non-Rigid Point Matching: Algorithms, Extensions and Applications [D]:Yale University,2001.
    [190] Belongie S, Malik J, Puzicha J. Matching Shapes [C]. IEEE InternationalConference on Computer Vision,2001:454~461.
    [191] Lecun Y, et al. Gradient-based learning applied to document recognition [C].Proceedings of the IEEE,1998:2278~2324.
    [192] The corpus callosum datasets. Available from: http://www.sci.utah.edu/~fletcher/CS7960/cc-images.zip.
    [193] Bao P, Zhang L, Wu X. Canny edge detection enhancement by scalemultiplication [J]. IEEE. Trans. on Pattern Analysis and Machine Intelligence,2005,27:1485~1490.
    [194]雷琳,蔡红苹,唐涛,粟毅.基于MSA特征的遥感图像多目标关联算法[J].遥感学报,2008,12(4):586~592.