杯形薄壁内齿轮旋压成形机理及工艺优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在传统工艺中,杯形薄壁内齿轮采用切削制齿与焊接工艺相结合的方式进行生产。旋压成形技术的出现,有效地弥补了传统工艺复杂、产品质量稳定性差等不足,是齿轮加工领域内的一项技术创新。内齿轮旋压成形过程中,材料流动情况比较复杂,与传统的普通旋压和强力旋压存在着明显的差异。因此,研究杯形薄壁内齿轮的旋压成形机理及工艺方法,不仅对提高内齿轮生产效率和产品质量具有重大意义,而且对发展旋压技术也有着重要的意义。
     本文的研究工作围绕杯形薄壁内齿轮旋压变形机理、工艺参数间的制约关系、成形工艺以及工艺参数的优化展开。论文的研究工作获得了国家自然科学基金项目“杯形薄壁内啮合直齿圆柱齿轮旋压成形机理及应用研究”(50475097)、广东省自然科学基金面上重点项目“杯形薄壁内啮合齿轮旋压成形机理及应用研究”(04105943)及广东省科技计划项目“齿轮制造业以旋压代替切削的关键工艺与装备技术研究及应用”(2006B11901001)的资助。
     在对内齿轮旋压数值模拟建模特点和相关有限元基本理论进行分析的基础上,以MSC.MARC为分析平台,对建模过程中涉及的接触边界条件、摩擦模型、网格划分和收敛准则判断等关键技术进行了探讨;并针对内齿轮旋压数值模拟中存在的计算效率低下、网格畸变问题,提出了有效的解决方案,建立了一个能够兼顾计算精度和计算效率的内齿轮旋压三维弹塑性数值模拟模型;。
     在三维弹塑性数值模拟结果的基础上,对内齿轮旋压变形机理及成形参数对轮齿成形的影响进行了研究。着重研究了内齿轮成形过程中的应力应变分布、材料流动规律,对制件各部位成形精度以及可能出现的成形缺陷做了预测,并就轮齿几何参数、芯模型面和工艺参数对内齿轮成形过程中材料流动的影响进行了分析,为内齿轮旋压的工艺设计提供了理论依据。
     本文对模拟分析的结果进行了试验验证。分析了内齿轮旋件轮齿和齿槽处的成形状况;研究了内齿轮成形中旋轮型面和轮齿类型对内齿轮成形的影响规律;采用试验设计和方差分析相结合的方法就工艺参数对内齿轮旋压成形质量的影响进行了定性和定量的研究,获得了对内齿轮成形质量产生显著影响的因素(或交互因素)。数值模拟的分析结果与试验结果吻合良好,表明本文所建立的数值模拟模型及由此获得的相关结论是合理的。
     模拟和试验结果显示,内齿轮(齿根处)齿厚与齿高比的差异会导致成形过程中的材料流动发生变化,据此可按制件的齿厚与齿高比大小将旋压成形内齿轮分为渐开线内齿轮和直廓内齿轮两类。针对渐开线内齿轮单道次旋压成形中出现的脱模困难问题,提出了两道次成形的工艺方案;针对直廓内齿轮单道次旋压成形过程中存在的旋压力过大和工件外侧表面质量较差问题,提出错距旋压工艺方案。工艺试验表明,上述工艺优化方案是可行的。
     针对目前内齿轮旋压成形中存在的依靠试模和经验进行工艺参数选择的现状,提出引入优化设计技术来进行工艺参数的选择:对于工艺参数的单目标优化问题,可运用近似模型法建立了一个能反映内齿轮制件成形质量与工艺参数关系的数学模型,实现了渐开线内齿轮工艺参数的优化;对于工艺参数选择过程中出现的多目标优化问题,通过灰色关联度分析技术的运用将多目标问题转换为单目标问题,实现了直廓内齿轮错距旋压的工艺参数优化。采用优化后的工艺参数,成功研制出渐开线和直廓内齿轮样件,为本文成果的推广奠定了良好的基础。
In traditional technology, cup-shaped thin-walled inner gear is produced by stamping two pieces of the part separately, and then welding together. Spinning technology changes this status and it overcomes demerits of traditional cutting process, such as complicated process, low precision and high cost. During inner gear spinning, the deformation behavior of metal is very complex due to the partial thickening (in the area of gear-tooth) and thinning (in the area of tooth-groove), which is greatly different from that of the conventional and power spinning technologies. So the research work on inner gear spinning is of significance not only for the manufacturing of inner gear, but also for the development of spinning technology.
     The research mainly focuses upon the deformation mechanism, relationship among forming parameters, and forming process optimization of inner gear spinning. This project was financially supported by National Natural Science Foundation of China“Forming mechanism and application research on cup-shaped thin-walled inner gear by spinning”(50475097), Provincial Natural Science Foundation of Guangdong“Forming mechanism and application research on cup-shaped thin-walled inner gear by spinning”(04105943), and Industrial Science and Technology Development Program Foundation of Guangdong“Research and application on key technology and equipment for spinning instead of cutting in gear manufacturing field”(2006B11901001).
     Based on the analysis on the difficulties in establishment of numerical simulation model for inner gear spinning and the basic theory of large deformation elasto-plastic finite element, MSC.MARC is chosen as the FEA software. And the key technologies, such as the definition of contact and friction, meshing problem, and convergence criterion have been discussed. To solve the problems of mesh distortion and low computing efficiency in analysis, an effective solution is put forward.
     Based on the 3D elasto-plastic simulation results, the researches of the deformation mechanism and the influence of geometric and processing parameters on gear tooth forming have been carried out. It mainly focus on the metal flow rule during inner gear spinning, and the forming accuracy of spun part and forming defects have also been predicted, which establish a sound foundation for the practical application of the inner gear spinning technology.
     Various experimental verifications have been conducted for the simulation analysis results. These processing experiments mainly focus on the forming characteristics of spun part, and the influence of geometric parameters of roller and gear tooth on inner gear spinning. In addition, the technologies of experiment design and variance analysis are employed to analyze the processing parameters of inner gear spinning and the significant (interaction) factors for inner gear spinning are selected from various parameters. The simulation results conform well to the experimental ones. It shows that the numerical simulation model for inner gear spinning and relevant analysis are reasonable.
     To solve the problems occurring in original forming process, optimized forming processes are put forward. Two-pass spinning is adopted to solve the demoulding problem in involute inner gear spinning and stagger spinning is employed to solve the problems of the overload and poor surface quality in straight profile inner gear spinning. And the feasibility of these optimized forming processes is verified by the processing experiment.
     Optimization technologies are introduced to processing parameters selection. For the single-objective optimization problem of involute inner gear, a mathematical model is established by surrogate models-based methods, which indicates the relationship between forming quality of inner gear and processing parameters. For the multi-objective optimization problem of straight profile inner gear, the optimizated reduction distribution is determined by the gray relational grade obtained from the gray relational analysis. Based on the optimized processing parameters obtained from optimization design, the inner gear spun workpieces are produced successfully. It establishes a sound foundation for the practical application of the inner gear spinning technology.
引文
[1]自动变速器的控制和使用方法[EB/OL]. http://www.che168.com/article/html/200506 /20050606/20050606 _79827_1.html, 2009-6-20.
    [2]液力机械式自动变速箱解析[EB/OL]. http://www.tc.gov.cn/news/newsshow-264 44.html, 2009-3-11.
    [3]适用于轿车用的非对称限滑差速器[EB/OL]. http://www.njtu.edu.cn/depart/xyjxdq/nc /image/35.htm, 2009-5-11.
    [4]田福祥,孙宗强,刘晓玲.新型内齿轮精锻模结构及参数计算.模具工业, 2000,(4):38-41.
    [5] H. N?gele, H. W?rner and M. Hirschvogel. Automotive parts produced by optimizing the process flow forming– machining[J]. Journal of Materials Processing Technology, 2000, 98(2):171-175.
    [6]李五庆,王清涛.大模数内齿圈加工工艺[J].金属加工, 2008(14): 57-58.
    [7]寺田ほか.スピニング加工の絞り成形シミュレーション(第1報)[A].日本機械学会共編.第49回塑性加工連合講演会講演論文集[C].八王子市:日本塑性加工学会, 1998: 395-396.
    [8]寺田ほか.スピニング加工の絞り成形シミュレーション(第2報)[A].日本機械学会共編.平成11年度(第30回)塑性加工春季講演会講演論文集[C].日本工業大学:日本塑性加工学会, 1999: 71-72.
    [9]寺田ほか.スピニング加工の絞り成形シミュレーション(第3報)[A].日本機械学会共編.平成12年度(第31回)塑性加工春季講演会講演論文集[C].东京:日本塑性加工学会, 2000: 473-474.
    [10]汽车齿轮加工的新技术和发展动向[EB/OL]. http://www.chinaegear.com/UploadPic/ 200911310342369.doc, 2009-5-11.
    [11]干式切削及其在齿轮加工中的应用[EB/OL]. http://www.mw1950.com/forum/html /board46/topic8536.htm, 2009-3-11.
    [12]杨叔子,吴波.先进制造技术及其发展趋势[J].机械工程学报, 2003, 9(10): 73-78.
    [13] T. A. Dean. The net-shape forming of gears[J]. Materials & Design, 2000, 21(4): 271-278.
    [14]康凤,曹洋,李祖荣.内花键套复合挤压的数值模拟仿真分析[J].模具工业, 2006, 32 (8): 52-54.
    [15] Maki Toshio, Kuramitsu Masao, Yamanoi Kaoru. Process for forming internal gear profile cup-shaped member and apparatus therefor: US, 473964[P]. 1988-04-26.
    [16]韩豫,陈忠家,王强.直齿内齿轮冷精锻成形工艺研究[J].合肥工业大学学报(自然科学版), 2008, 31(12): 1965-1968.
    [17] Jongung Choi, Haeyong Cho, Jaechan Choi and Changyong Jo. A study on the forging of gear-like components[J]. Journal of Mechanical Science and Technology, 1998, 12(4): 615-623.
    [18] Mark Robinson, Howard A. Kuhn. A workability analysis of the cold forging of gears with integral teeth[J]. Journal of Mechanical Working Technology, 1978, 1(3): 215-230.
    [19]西山三朗.スピニング加工技術の课题と制品例[J].塑性と加工, 2002(11): 24-28.
    [20] Drawn- and flow-formed parts[EB/OL]. http://www.wf-maschinenbau.com/englisch/ machines_drawn_flow-formed_parts.php, 2008-3-12.
    [21]李哲明,胡志清,蔡中义,等.自由曲面工件的连续高效塑性成形方法[J].吉林大学学报, 2007, 37(3): 489-494.
    [22]宋玉泉.连续局部塑性成形的发展前景[J].机械工程学报, 2000, 11( Z1): 65-67.
    [23]陈适先等.锻压手册[M].北京:机械工业出版社, 2002.
    [24]接近最终成形形状的成形方法[EB/OL]. http://www.mm.vogel.com.cn/ShowArticle.asp?ArticleID =13248, 2009-6-27.
    [25]夏琴香.杯形薄壁内啮合直齿圆柱齿轮旋压成形机理及应用研究[R].国家自然科学基金项目申请书, 2004.
    [26] Innovation in Chipless Forming Technology[EB/OL]. http://210.21.59.154/D/External Resource -Y9905485E9.aspx, 2009-3-11.
    [27] CDC-S60吨立式数控旋压机床主要技术性能参数[EB/OL]. http://www.bjcdc.com/ shebei/cdcs60-zb.htm, 2009-3-12.
    [28]夏琴香,杨明辉,胡昱,等.杯形薄壁矩形内齿旋压成形数值模拟与试验研究[J].机械工程学报, 2006, 42(12): 192-196.
    [29]夏琴香,杨明辉,陈家华等.工艺参数对杯形内啮合齿轮旋压成形影响的数值模拟研究[J].塑性工程学报, 2006, 13 (4): 1-5.
    [30]胡昱.杯形薄壁矩形内齿旋压成形工艺及有限元模拟研究[D].广州:华南理工大学, 2007.
    [31]夏琴香,李小曼,李小龙等.梯形内齿旋压成形过程数值模拟及试验研究[J].锻压技术, 2008, 33(6): 54-59.
    [32]程秀全,尚越,夏琴香等.杯形薄壁梯形内齿旋压成形工艺的试验研究[J].锻压技术, 2009, 34(1): 56-59.
    [33]张利鹏,刘智冲,周宏宇等.带内筋筒形件强力旋压成形试验研究[J].锻压装备与制造技术, 2005(4): 86-88.
    [34]薛克敏,江树勇,康达昌.带纵向内筋薄壁筒形件强旋成形[J].材料科学与工艺, 2002, 10(3): 287-290.
    [35]许春停,薛克敏,李萍.带纵向内筋筒形件滚珠反旋工艺模拟和缺陷分析[J].河南科技大学学报, 2006, 27(4): 9-11,21.
    [36]江树勇.带纵向内筋薄壁筒形件滚珠旋压成形分析与模拟[D].哈尔滨:哈尔滨工业大学, 2005.
    [37] Hung-Hsiou Hsu. A study on precision forging of spur gear forms and spline by the upper bound method[J] . International Journal of Mechanical Sciences , 2002, 4(8): 1543-1558.
    [38]张弛,田平.齿形零件近(净)成形技术[J].现代制造工程, 2005(3): 24-26.
    [39]俞汉青,陈金德.金属塑性成形原理[M].北京:机械工业出版社, 1999.
    [40]谢水生,王祖堂.金属塑性成形工步的数值模拟数值模拟.北京:冶金工业出版社, 1997.
    [41]董湘怀,李志刚.发展中的塑性加工理论和模拟技术[A].中国机械工程学会.第二届全国塑性加工学术年会,全球华人先进塑性加工技术研讨会论文集[C].北京,中国机械工程学会, 2002: 61-66.
    [42] Amir A. Kamouneh, Jun Ni, David Stephenson, et. al. Investigation of work hardening of flat-rolled helical-involute gears through grain-flow analysis, FE-modeling, and strain signature[J]. International Journal of Machine Tools and Manufacture, 2007, 47(7-8): 1285-1291.
    [43] Jung Min Lee, Byung Min Kim, Chung Gil Kang. A study on the cold ironing process for the drum clutch with inner gear shapes[J]. International Journal of Machine Tools and Manufacture, 2006, 46(6): 640-650.
    [44] Soo-Young Kim, Satoshi Kubota, Masahito Yamanaka. Application of CAE in cold forging and heat treatment processes for manufacturing of precision helical gear part[J]. Journal of Materials Processing Technology, 2008, 201(1-3): 25-31.
    [45] Yaozong Zhang, Jianbo Huang, Xue Lin, et al. Numerical simulation analysis on cold closed-die forging of differential satellite gear in car[A]. International Conference on Physical and Numerical Simulation of Materials Processing[C]. Zhengzhou: Zhengzhou University, 2007: 1023-1027.
    [46] J. C. Choia, Y. Choib. Precision forging of spur gears with inside relief[J]. International Journal of Machine Tools and Manufacture. 1999, 39(10): 1575-1588.
    [47]胡成亮,刘全坤,王强等.直齿轮刚性平移两步成形工艺仿真与试验[J].农业机械学报, 2008, 39(1): 161-164.
    [48]刘红.齿轮冷精锻虚拟CAE的研究[D].长春:长春理工大学, 2007.
    [49]许源泉,林万益,陈建利.两道式正齿轮分流冷锻数值模拟素模拟分析[J].国立虎尾科技大学学报, 2007, 26(2): 19-26.
    [50] Karen Lewis: Optimization of the Ring Gear Forging Process[EB/OL]. http:// www. forging.org/FIERF/pdf/OptimizationoftheRingGearForgingProcess.pdf,2009-3-12.
    [51]曾攀.数值模拟分析及应用[M].北京:清华大学出版社, 2004.
    [52]应富强.三维数值模拟技术在金属塑性成形中的应用[J].锻压装备与制造技术, 2003(5): 10-13.
    [53]吕炎.精密塑性体积成形技术[M].北京:国防工业出版社, 2003.
    [54]寇淑清,杨慎华,金文明.三维复杂成形数值模拟边界界面约束处理技术研究[J].中国机械工程, 2002, 13(2): 124-127.
    [55]程培元,陈由红,周鹏,等.直齿锥齿轮毛坯形状摆辗成形三维数值模拟[J].锻压技术, 2008, 33(4): 129-132.
    [56]张瑞,郝新.数值模拟在齿轮轴毛坯锻模设计中的应用[J].热加工工艺, 2003, 28(2): 71-72.
    [57]程羽,郭成,李刚,等.齿轮冷精锻成形工艺的研究[J].锻压技术, 2008, 33(4): 15-17.
    [58]李明亮,杨永顺,钱宗仁.直齿圆柱齿轮减径挤压成形的数值模拟及分析[J].锻压装备与制造技术, 2006(6): 54-56.
    [59] Yohng J. Kima, Naunit R. Chitkara. Determination of preform shape to improve dimensional accuracy of the forged crown gear form in a closed-die forging process[J]. International Journal of Mechanical Sciences,2001,43(3):853-870.
    [60]刘全坤,胡成亮,王强,等.齿轮闭式锻造新工艺方案的数值模拟研究[J].合肥工业大学学报(自然科学版), 2005, 28(9): 1035-1038.
    [61]张清萍,尚勇,赵国群等.直齿圆柱齿轮精锻成形过程数值模拟及参数分析[J].中国机械工程, 2004, 15(17): 1546-1548.
    [62]周琨,陈国学.伞齿轮精密成形模具变形的数值模拟分析[J].塑性工程学报, 2002, 9(1): 74-78.
    [63]刘华,席庆坡,霍艳军,等.圆柱齿轮冷精锻数值模拟及其轮齿修形规律[J].西安交通大学学报, 2004, 38(11):1186-1190.
    [64] Taylan Altan. Numerical Process Simulation for Tool and Process Design in Bulk Metal Forming[J]. CIRP Annals - Manufacturing Technology, 1996, 45(2): 599-615.
    [65]张艳娥.直齿锥齿轮精密锻造工艺与模具设计方法研究[D].济南:山东大学, 2007.
    [66]王清瑞.模具结构对高凸台直齿轮精锻成形影响研究[D].合肥:合肥工业大学, 2007.
    [67]陈学文,王进,陈军,等.基于最小损伤值的齿轮毛坯锻造成形过程工艺参数优化设计[J].上海交通大学学报, 2005, 39(7): 1070-1072.
    [68]钱荣芳.冷挤压技术在精密齿轮成形中的应用[J].农业机械学报, 2005, 6(36): 131-134.
    [69]王华君,夏巨谌,程培元等.从动螺旋伞齿轮精密锻造数值仿真[J].华中科技大学学报(自然科学版), 2005, 33(9): 94-96.
    [70]寇淑清,傅沛福,杨慎华,等.齿轮精锻成形三维弹塑性数值模拟数值模拟[J].哈尔滨工业大学学报, 2000, 32(4): 68-71.
    [71]彭颖红,周飞,阮雪榆.齿轮坯模锻成形表面缺陷分析[J].上海交通大学学报, 1998, 32(5): 1-5.
    [72]薛勇,张治民,王科.圆柱齿轮镦挤成形约束分流的数值模拟[J].锻压技术, 2007, 3(23): 115-119.
    [73] N.R. Chitkara, M.A. Bhutta. Computer simulation to predict stresses, working pressures and deformation modes in incremental forging of spur gear forms[J]. International Journal of Mechanical Sciences, 1996, 38(8-9): 871-889.
    [74]材料热加工拟实制造成形[EB/OL]. http://www.cncproduct.com/info/detail/496.html, 2007-10-10.
    [75]刘建生,张巧丽,陈慧琴.塑性变形与传热耦合分析技术的研究[J].太原重型机械学院学报, 1997, 18(3): 226-231.
    [76]李长生,熊尚武, J.Rodrigues,等.金属塑性加工过程无网格数值模拟方法[M].沈阳:东北大学出版社, 2004,.
    [77]刘玉红,李付国,吴诗惇.体积成形数值模拟技术的研究现状及发展趋势[J].航空材料学报, 2002, 23(6): 547-550.
    [78]张志豪,刘新华,谢建新. Zr基非晶合金精密直齿轮超塑性成形试验研究[J].机械工程学报, 2005, 41(3): 151-154.
    [79]刘玉红,李付国,吴诗惇.基于特征的锻件分类及特征数值模拟法[J].航空材料学报, 2002, 22(2): 17-20.
    [80] A.B. Abdullah, Z. Samad. Cold Forging Die Design: Recent Advanced and Future Trends[J]. Journal of Applied Sciences, 2007, 7(6): 868-876.
    [81]王广春,赵国群,夏世先.直齿轮精锻成形新工艺及试验研究[J].机械工程学报: 2005, 42(2): 123-126.
    [82]李洪波,吕玫,张玉华,等.直齿内齿轮精锻成形新工艺的三维数值模拟[J].燕山大学学报, 2005, 29(6): 480-484.
    [83]张清萍.齿轮精锻过程三维数值模拟及关键工艺技术研究[D].济南:山东大学, 2004.
    [84]冯再新,周贤宾,张治民,等.齿轮精密成形精整毛坯设计[J].塑性工程学报, 2006, 13(1): 67-70.
    [85]胡亚民,夏华,张钰成.摩托车带爪齿轮坯的精锻成形数值模拟与工艺研究[J].塑性工程学报, 2006, 13(2): 48-50.
    [86]胡成亮,刘全坤.采用波形端面凸模的齿轮精锻工艺优化[J].中国机械工程: 2007, 18(9): 1117-1120.
    [87]陈学文,陈军,左四雨,等.基于有限元分析的锻造工艺优化技术研究现状与趋势[J].锻压技术及装备, 2004(5): 14-18.
    [88]赵海新,李剑峰,黄晓慧等.控制锻件变形均匀性和变形力的锻造预成形多目标优化设计[J].机械工程学报, 2009, 45(5): 193-197.
    [89] Gao Zhenyan. Microstructure optimization in design of forging processes[J]. International Journal of Machine Tools and Manufacture, 2000, 40(5): 691-711.
    [90]程羽,杨程,臧顺来等.齿轮精密成形技术的研究[J].塑性工程学报, 2004, 11(6):62-64.
    [91]夏欣,卫原平,李发致,等.板料冲压成形工艺参数的计算机优化[J].上海交通大学学报, 1999, 33(2): 178-180.
    [92] Browne M. T., Hillery M. T.. Optimizing the variables when deep-drawing C.R.1 cups[J]. Journal of Materials Processing Technology, 2003, 136(1-3): 64-71.
    [93]饶进军,包忠诩,黄菊花等.人工神经网络技术及其在板料成形智能化中的应用[J].塑性工程学报, 2002, 9(2): 17-21.
    [94] J S Chung, S M Hwang, Application of a genetic algrotithm to the optimal design of the die shape in extrution[J]. Jounal of Marterials Processing Technology, 1997, 72(1): 69-77.
    [95] K Manabe, M Yang, S Yoshihara. Aritificial intellegence identification of process parameters and adaptive control system for system for deep-drawing process[J]. Jounal of Marterials Processing Technology, 1998(80-81): 421-426.
    [96]李玉强,崔振山,张冬娟等.板料成形优化技术进展与质量工程研究[J].塑性工程学报, 2005, 12(2): 11-16.
    [97]谢延敏,于沪平,陈军等.基于代理模型的板料成形优化技术进展[J].塑性工程学报, 2006, 13(2): 20-24.
    [98] T Ohata, Y Nakamura, T Katayama,et al. Development of optimum process design system for sheet fabrication using response surface method[J]. Journal of Materials Processing Technology, 2003(143-144): 667-672
    [99]陈立周.工程稳健设计的发展现状与趋势[J].中国机械工程, 1998, 9(6): 59-62.
    [100] Du X P, Chen W. Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design[J]. Journal of Mechanical Design, 2000, 122(4): 385-394.
    [101] Liou J H, Jang D Y. Forging parameter optimization considering stress distribution inproducts through analysis and robust design methodology[J]. International Journal of Machine Tools and Manufacture, 1997, 37 (6): 775-782.
    [102] Costanzo P., Pao1o L., Elisabetta A.. Application of robust design techniques to sheet metal forming process[A]. Proceedings of NUMISHEET’96[C]. Dearborn: Ohio State University, 1996: 165-172.
    [103] M T Browne, M T Hillery. Optimising the variables when deep-drawing C.R.1 cups[J]. Journal of Materials Processing Technology, 2003, 136(1~3): 64-71.
    [104]林忠钦,艾健,张卫刚等.冲压稳健设计方法及应用[J].塑性工程学报, 2004, 11(4): 56- 60.
    [105] Jin R, Chen W, Simpson T W. Comparative studies of metamodelling techniques under multiple modeling criteria[J]. Structural Multidisciplinary Optimization, 2001, 23(1): 1-13.
    [106] Padmanabhan D, Batill S M. An iterative concurrent subspace robust design framework[A]. Proceedings of 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization[C], California, 2000.
    [107]潘尔顺,徐小芸.基于数值模拟法与田口法的V形件冲压仿真参数稳健设计[J].上海交通大学学报, 2005, 39 (7) : 1077 -1081.
    [108]张峻,柯映林.基于动态序列响应面方法的钣金成形过程参数优化[J].中国机械工程, 2005, 16(4): 307 - 310.
    [109] Li Yuqiang, Cui Zhenshan, Zhang Dongjuan, et al. Six sigma optimization in sheet metal forming based on dual response surface model[J]. Chinese Journal of Mechanical Engineering( English Edition), 2006, 19(2): 251 - 255.
    [110] Li Y Q , Cui Z S , Ruan X Y, et al. CAE-based six sigma robust optimization for deep-drawing sheet metal process[J]. International Journal of Advanced Manufacturing Technology, 2006, 30(7-8): 631 - 637.
    [111]谢延敏,于沪平,陈军等.基于灰色系统理论的冲压成形稳健设计[J].上海交通大学学报, 2007, 41 (4) :596 -599.
    [112] Singh Prem Pal, Talib Faisal , Muzammil Mohd. Optimization of gear blank casting process by using Taguchi’s robust design technique[J]. Quality Engineering, 2003, 15(3):351 -359.
    [113] Wu Der Ho, Chang Mao Sheng. Use of Taguchi method to develop a robust design for magnesium die casting process[J]. Materials Science and Engineering. A, Structural Materials, 2004, 379(1-2): 366-371.
    [114] Repalle Jalaja, Grandhi Ramana. Design of forging process variables under uncertainties[J]. Journal of Materials Engineering and Performance, 2005, 14(1): 123 - 131.
    [115]李吉泉,杨丁,黄志高,等.材料成形稳健设计方法研究概况[J].电加工与模具, 2008 (1): 50-53.
    [116]杨明辉.杯形薄壁矩形内齿旋压成形规律的研究[D].广州:华南理工大学, 2006.
    [117]李小曼.杯形薄壁梯形内齿轮旋压数值模拟及质量研究[D].广州:华南理工大学, 2007.
    [118]尚越.杯形薄壁梯形内齿旋压成形方法及试验研究[D].广州:华南理工大学, 2008.
    [1]俞汉青,陈金德.金属塑性成形原理[M].北京:机械工业出版社, 1999.
    [2]王成和,刘克璋.旋压技术[M].北京:机械工业出版社, 1986.
    [3]田辉,黄海青,陈国清,等.强旋工艺参数对TC4钛合金筒形件旋压成形的影响[J].航天制造技术, 2009, 10(5): 14-17.
    [4]徐银丽,詹梅,杨合,等.锥形件变薄旋压回弹的三维有限元分析[J].材料科学与工艺, 2008, 16(2): 167-171.
    [5]张庆玲.铝合金轮毂强力旋压数值模拟技术研究[J].农业装备与车辆工程, 2008 (8): 31-33.
    [6]周强,詹梅,杨合.带横向内筋锥形件旋压应力应变场的有限元分析[J].塑性工程学报, 2007, 14(3): 49-53.
    [7]王淼,王忠堂,王本贤,等.轴向进给比对薄壁管滚珠旋压影响的有限元分析[J].沈阳理工大学学报, 2007, 26(2): 30-33.
    [8]梅瑛,李瑞琴,张晨爱,等.筒形件强力反旋的数值模拟及旋压力分析[J].机械设计与研究, 2007, 23(4): 65-68.
    [9]胡昱.杯形薄壁矩形内齿旋压成形工艺及有限元模拟研究[D].广州:华南理工大学, 2007.
    [10] Ted Belytschko, Wing Kam, Liu Brian Moran. Nonlinear Finite Element for Continua and Structures[M]. NewYork: John Wiley & Sons Ltd., 2001.
    [11]刘长虹,礼辉,刘新田等.一种简易模拟旋压的数值仿真方法[J].上海工程技术大学学报, 2007, 21(2): 97-99.
    [12]应富强,张更超,潘孝勇.三维数值模拟技术在金属塑性成形中的应用[J].锻压装备与制造技术, 2003(38): 10-13.
    [13]赵腾伦. ABAQUS 6.6在机械工程中的应用[M].北京:中国水利水电出版社, 2007.
    [14]吕炎.精密塑性体积成形技术[M].北京:国防工业出版社, 2003.
    [15] Marcal P V, King I D. Elastic-plastic analysis of two-dimensional stress systems by the finite element method[J]. International Journal of Mechanical Science, 1967, 9: 143-147.
    [16] YAMADA Y, YOSHIMURA N, SAKURAI T. Plastic stress-strain matrix and its application for the solution of elastic-plastic problems by the finite-element method[J]. Int. J. Mech. Sci., 1968, 10: 343-354.
    [17]曾攀.数值模拟分析及应用[M].北京:清华大学出版社, 2004.
    [18]陈火红. Marc数值模拟实例分析教程[M].北京:机械工业出版社, 2002.
    [19]张宝生.高度非线性数值模拟分析软件Marc及在接触分析中的应用[J].应用科技, 2001(12):36-39
    [20]郑岩,顾松东,吴斌. Marc 2001从入门到精通[M].北京:中国水利水电出版社,2003.
    [21] E. Quigley, J. Monaghan. Enhanced finite element models of metal spinning[J]. Journal of Materials Processing Technology, 2002, 121 (1): 43-49.
    [22]格鲁捷夫,吉利贝格,季里克.金属压力加工中的摩擦和润滑手册[M].北京:航空工业出版社, 1990.
    [23]李洪波,吕玫,张玉华等.直齿内齿轮精锻成形新工艺的三维数值模拟[J].燕山大学学报, 2005,29(6):480-484.
    [1]杨明辉.杯形薄壁矩形内齿旋压成形规律的研究[D].广州:华南理工大学, 2006.
    [2]邹慧君,傅祥志,张春林等.机械原理[M].北京:高等教育出版社,2003.
    [3]张利鹏,刘智冲,周宏宇等.带内筋筒形件强力旋压成形试验研究[J].锻压装备与制造技术, 2005(4): 86-88.
    [4]俞汉青,陈金德.金属塑性成形原理[M].北京:机械工业出版社, 1999.
    [5]吕炎.精密塑性体积成形技术[M].北京:国防工业出版社, 2003.
    [6]夏琴香,杨明辉,陈家华等.工艺参数对杯形薄壁内啮合齿轮旋压成形影响的数值模拟研究[J].塑性工程学报, 2006, 13(4): 1-5.
    [7]夏琴香,杨明辉,胡昱等.杯形薄壁矩形内齿旋压成形数值模拟及试验研究[J].机械工程学报, 2006, 42 (12): 192-196.
    [8]程秀全,尚越,夏琴香等.杯形薄壁梯形内齿旋压成形工艺的试验研究[J].锻压技术, 2009, 34(1): 56-59.
    [9]薛卫东,郑银玲.变位内齿轮齿形系数的研究[J].机械科学与技术, 1997, 16(2): 205-208.
    [10]陈适先,贾文铎,曹庚顺等.强力旋压工艺与设备[M].北京:国防工业出版社, 1986.
    [11]徐洪烈.强力旋压技术[M].北京:国防工业出版社, 1984.
    [12]王成和,刘克璋.旋压技术[M].北京:机械工业出版社, 1986.
    [13]胡昱.杯形薄壁矩形内齿旋压成形工艺及有限元模拟研究[D].广州:华南理工大学, 2007.
    [14]李小曼.杯形薄壁梯形内齿轮旋压数值模拟及质量研究[D].广州:华南理工大学, 2007.
    [15]尚越.杯形薄壁梯形内齿旋压成形方法及试验研究[D].广州:华南理工大学, 2008.
    [1]宋玉泉.连续局部塑性成形的发展前景[J].机械工程学报, 2000, 11( Z1): 65-67.
    [2]杨明辉.杯形薄壁矩形内齿旋压成形规律的研究[D].广州:华南理工大学, 2006.
    [3]尚越.杯形薄壁梯形内齿旋压成形方法及试验研究[D].广州:华南理工大学, 2008.
    [4]李小曼.杯形薄壁梯形内齿轮旋压数值模拟及质量研究[D].广州:华南理工大学, 2007.
    [5]胡昱.杯形薄壁矩形内齿旋压成形工艺及有限元模拟研究[D].广州:华南理工大学, 2007.
    [6]程秀全,王玉辉,夏琴香. ARM嵌入式数控旋压机床控制系统应用软件开发[J].锻压装备与制造技术, 2008(3): 90-93.
    [7]程秀全,许业华,夏琴香.框架式三旋轮错距旋压成形装置[J].锻压装备与制造技术, 2005(6): 31-35.
    [8]夏琴香,阮锋,岛进,等.杯形件的单道次拉深旋压成形工艺研究[J].锻压技术, 2002(6): 42-45.
    [9]王成和,刘克璋.旋压技术[M].北京:机械工业出版社, 1986.
    [10]黄自兴.稳健性设计——(III)稳健性实验的设计[J].化学工业与工程技术, 1996, 17( 2): 19-25.
    [11]徐洪烈.强力旋压技术[M].北京:国防工业出版社, 1984.
    [12]陈希孺.概率论与数理统计[M].安徽:科学出版社, 2003.
    [13]张志莲,江波.注射成型工艺参数间的交互作用[J].化工学报, 2006, 57(2): 448-452.
    [14]日本塑性加工学会.旋压成形技术[M].陈敬之.北京:机械工业出版社, 1984.
    [1]日本塑性加工学会.旋压成形技术[M].陈敬之.北京:机械工业出版社, 1984.
    [2]李恩颖,李光耀.基于智能布点技术的近似模型优化研究及其在冲压成形中的应用[J].系统仿真学报, 2009, 45(8): 3824-3829.
    [3]胡龙飞,刘全坤,王成勇,等.基于响应面模型的铝合金壁板挤压成形优化设计[J].中国机械工程, 2008, 19(13): 1630-1633.
    [4] Wang Hu, Li Guang Yao, Zhong Zhi Hua. Optimization of sheet metal forming processes by adaptive response surface based on intelligent sampling method[J]. Journal of Materials Processing Technology, 2008, 197(1-3): 77-88.
    [5]王刚,王进,陈军,等.基于稳健设计的钛合金波纹管超塑成形工艺[J].中国有色金属学报, 2006, 16(2): 247-252.
    [6]杨艳慧,刘东,贺子延,等.基于响应面法(RSM)的锻造预成形多目标优化设计[J].稀有金属材料与工程, 2009, 38(6): 1019-1024.
    [7]李玉强,崔振山,陈军,等.基于双响应面模型的6σ稳健设计[J].机械强度, 2006, 28(5): 690-694.
    [8] Wang Hu, Li Guang Yao, Zhong Zhi Hua. Optimization of sheet metal forming processes by adaptive response surface based on intelligent sampling method[J]. Journal ofMaterials Processing Technology, 2008, 197(1-3):77-88.
    [9] Box G. E. P., Hunter J. S.. Multifactor Experimental Designs for Exploring Response Surfaces[J]. The Annals of Mathematical Statistics, 1957, 28: 195-241.
    [10]吕昕宇,侯红亮,张士宏,等.基于正交优化的TC4合金剪切旋压数值模拟与实验验证[A].中国机械工程学会.第九届全国塑性工程学术年会第二届全球华人先进塑性加工技术研讨会论文集[C].太原,中国机械工程学会, 2005: 185-188.
    [11]韩志仁,陶华.筒形件强力内旋压工艺的正交试验研究[J].锻压技术, 2005, 30(2): 29-31.
    [12] Q.X. Xia, W.L. Feng, Y. Hu, F. Ruan: Orthogonal Analysis of Offset Tube Neck-Spinning Based on Numerical Simulation[C]. The 3rd Chin-Japan Conference on Mechatronics, Sep.11, 2006, Fuzhou, FUJIAN SCIENCE & TCHNOLOGY PUBLISHING HOUSE: 330~333.
    [13] Morris M D, Mitchell T J. Exploratory Designs for Computational Experiments[J]. Journal of Statistical Planning and Inference, 1995, 43 (3) :381-402.
    [14]张志红,何桢,郭伟,等.在响应曲面方法中三类中心复合设计的比较研究[J].沈阳航空工业学院学报, 2007, 24(1): 87-91.
    [15] Raymond H., Myers Douglas, C. Montgomery. Response Surface Methodology: Process and Produce Optimization Using Designed Experiments[M]. New York: John Wiley & Sons, 1995.
    [1]杨明辉.杯形薄壁矩形内齿旋压成形规律的研究[D].广州:华南理工大学, 2006.
    [2]李小曼.杯形薄壁梯形内齿轮旋压数值模拟及质量研究[D].广州:华南理工大学, 2007.
    [3]王成和,刘克璋.旋压技术[M].北京:机械工业出版社.1986.
    [4]赵云豪,李彦利.旋压技术与应用[M].北京:机械工业出版社, 2008.
    [5] C. C. Wong, T. A. Dean and J. Lin. A review of spinning, shear forming and flow forming processes[J]. International Journal of Machine Tools and Manufacture, 2003, 43(14): 1419-1435.
    [6]翟福宝.筒形件错距旋压三维数值模拟及工艺参数优化研究[D].上海:上海交通大学, 2001.
    [7] Tosun N. Determination of optimum parameters for multi-performance characteristics in drilling by using grey relational analysis[J]. International Journal of Advanced manufacturing Technology, 2006, 28(5-6): 450-455.
    [8] Chiang k.T., Chang F. P. . Application of grey-fuzzy logic on the optimal process design of all injection—molded part with a thin shell feature[J]. International Communications in Heat and Mass. 2006, 33(1): 94-101.
    [9]刘思峰,郭天榜,党耀国.灰色系统理论及其应用[M].北京:科学出版社, 2004.