发动机燃油喷射控制系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对能源紧缺、排放控制法规日益苛刻以及对动力性要求不断提高的局面,如何实现高效率、高动态性能的汽车发动机控制是当前亟待解决的问题。由于发动机复杂的工作过程难以精确建模,其工作环境和工况复杂多变,并且这些问题往往具有非线性的特点,因此要求发动机控制系统具有较好的鲁棒性和非线性控制性能。
     本文在讨论发动机电喷控制系统组成的基础上,阐述了电喷系统的控制要求,提出了一种基于发动机测控网络的系统结构。分析了发动机空燃比控制系统中进气子系统和燃油供给子系统的物理过程及其数学模型,针对发动机系统这类非线性、时变、模型非常复杂的被控制对象,讨论了基于模糊滑模控制的空燃比控制方法,并给出了相应的仿真结果。
     在对点火信号和爆震信号进行小波分析的基础上,论述了小波变换在处理点火系统信号方面的优势,在此基础上提出了一种基于小波观测器的爆震控制方法。该方法通过离散小波变换,从爆震信号中抽取出特征点,通过使用模糊推理系统实现点火提前角的自适应控制。同时,采用小波分析实现对闭合率的动态自适应控制以产生平稳的点火能量。试验结果表明了这个方法的可行性。
     由于网络化可以极大地简化电气路线,由此提高车载控制系统的可靠性。但是由于网络传输的延迟,以及控制系统在强干扰状态下所产生的通信错误会造成控制系统的性能下降甚至破坏系统的稳定性,而这些问题都表现出随机性和非线性特点。本文从系统的角度讨论了控制网络同步方法和发动机控制网络模型,提出基于滑模变结构的发动机网络控制方法,分析了该方法的稳定性并给出了仿真结果。
     在上述分析的基础上,本文讨论了控制系统的实现问题,包括发动机电子控制单元,点火控制模块,传感器节点设计以及车载CAN监控网关和远程CAN管理模块的设计。由于发动机控制系统是在强干扰环境中工作,设计时必须保证控制系统具有较强的抗干扰能力,因此本文还讨论了发动机控制系统中干扰源的特性及相应的软硬件抗干扰设计方法。
     本文最后介绍了系统试验环境的构建,分析了系统在相应的模拟测试环境下运行的结果,并在此基础上简要介绍了已经在各种实际系统中得到成功应用的部分实例。
In the face of energy shortage, harsher emission control regulations and ever-increasing demands for power, awaiting urgent solutions is the issue of how to achieve the automotive engine control with hi-efficiency and hi-dynamic-performance. The complicated working process of the engine poses the difficulty in precise modeling, and its working environments and operating conditions are complex and mutable, all of which usually display nonlinear; consequently, the engine control system is required to possess good robustness and nonlinear control performance.
     The thesis, on the basis of discussing the components of the engine electronic fuel injection control system, expatriates the control claims from the electronic fuel injection system, and thereby proposes a systematic structure based on engine testing network. By analyzing the physical process and its mathematic models of the intake and the fuel supply subsystems in the engine air fuel ratio control system, the paper expounds the air fuel ratio controlling methods based on fuzzy sliding mode control and analyzes the corresponding emulation results, in allusion to the nonlinear and time-variant controlled subjects with complex modeling as of the engine system.
     Built on the wavelet analysis of ignition signals and knock signals, the paper addresses the advantages that wavelet switch has in dealing with ignition system signals, and accordingly brings forward the wavelet-observer-based knock control method, which extracts feature points from knock signals by dispersing wavelet switch, fulfills the self adaptive control of the spark advance angle by using the fuzzy inference system, and adopts the wavelet analysis to implement the dynamic self adaptive control of dwell and produce stable ignition energy. The feasibility of this method has been attested by experiments.
     Amount of wiring harness can be reduced by application of networking, so the stability of on-car control system can be raised. But the delay in network transmission and in node response, and the communication error of the control system caused under strong disturbance environments, all may lead to the decline in the performance in the control system, and even disrupt the stability of the system; all of these problems demonstrate certain randomness and nolinear. The paper discusses the control network synchronization methods and the engine control network models from a systematic angle, puts forward the engine network control methods based on the sliding mode variant structure and analyzes the stability of the method and the simulation results.
     Based on the above analysis, the paper expounds the realization of control system, including the engine electronic control unit, ignition control module, sensor node design and design of on-car CAN surveillance gateway and remote CAN management module. As the engine control system operates under strong disturbance environments, it is necessary to maintain the strong anti-disturbance capability of the control system in the designing process, and the paper also deals with the characteristics of the disturbance sources in the engine control system and the relevant anti-disturbance design plans both software- and hardware- wise.
     The thesis concludes with the construction of the systematic experimentation environment, and, with the analysis of the results obtained from the system operating under the relevant simulation testing environment, briefly introduces some examples that have been successfully applied in all kinds of practical systems.
引文
[1] Quio J, Dent J C, Garner C P. Diesel Engine Modelling Under Steady State and Transient Conditions Using a Transputer Based Concurrent Computer. SAE 922226.
    [2] Aquino C F. Transient A/F Control Characteristics of the 5 Liter Central Fuel Injection Engine. SAE 810494
    [3] Powell B K, Cook J A. Nonlinear Low Frequency Phenomenological Engine Modeling and Analysis. American Control Conference, 1987, WA10-10:30.
    [4] Moskwa J J, Hedrick J J. Modeling and Validation of Automotive Engines for Control Algorithm Development. ASME, Journal of Dynamic Systems, Measurement, and Control, 1992(114):278285.
    [5] Hendricks E ,Spencer C.Sorenson. Mean Value Modelling of Spark Ignition Engines. SAE 900616.
    [6] Hendricks E. Engine Modelling for Control Applications: A Critical Survey. 1St FISITA Int. Conf on Control and Diagnotics in Automotive Applications, Genova, Italy, 3-4 Oct, 1996, Printed by Meccanica, 1997(32):387396.
    [7] Kim Y W, Rizzoni G, etc. Automotive Engine Diagnosis and Control via Nonlinear Estimation. IEEE Control Systems, 1998: 8499.
    [8] Moyne L , Maroteaux F. Air2fuel flow applied to the reduction of air~fuel ratio excursions during transient s on port injected SI engines. SAE 970513.
    [9] Silverlind D. Mean value engine modeling wit h modelica .Linkoepings Universitet , 2001.
    [10] Muller M. Mean Value Modelling of a Turbocharged SI Engine, SAE 980784.
    [11] Michael Fons. Mean Value Engine Modelling of an SI Engine with EGR. SAE 1999-01-0909.
    [12] Russell J D. On Automotive Engine Intake Mainifold Dynamic Modeling, Estimation, And Control. Doctor Dissertation, Ohio State University, USA, 2000.
    [13] Paljoo Yoon and Myoungho Sunwoo. A nonlinear dynamic modeling of SI engine for controller design. Int.J.of Vehicle Design, 2001, 26(2/3):277297.
    [14] Michele Gambino. Experimental and computational analysis of a dynamic model for control strategy optimization in a spark ignition engine. Proceedings of the American Control Conference, Baltimore, Maryland, June 1994:23742378.
    [15] Yonghong Tan and Mehrdad Saif. Neural-networks-based nonlinear dynamic modeling for automotive engines. Neurocomputing, 2000 (30), 129142.
    [16] G.H.Abd Alla, Computer Simulation of a Four Stroke Spark Ignition Engine. Energy Conversion and Management,2002(43):1043-1061.
    [17] A Balluchi, etc. Hybrid control of force transients for multi-point injection engines. Int. J.Robust Nonlinear Control, 2001(11):515539.
    [18] Uthaichana K,Decarlo R,Corless M,etc. Polytopic controller design and evaluation for a simplified nonlinear engine vehicle dynamical model. 42nd IEEE International Conference on Decision and Control: (Vol.2) 1759-64 Vol.2, 2003.
    [19] Higelin P, Charlet A. A simple method for robust control design, application on a non-linear and delayed system: engine torque control. Control Engineering Practice ,2004,vol.12: 417-29.
    [20] Buehler, P.J.; Franchek, M.A.; Makki, I., Mass air flow sensor diagnostics for adaptive fueling control of internal combustion engines, American Control Conference, May 2002:2064一2069
    [21] Mrad, R.B.; Levitt, J.A., Nonlinear process representation using ARMAX models with time dependent coefficients, the 37th IEEE Decision and Control Conference,Dec. 1998, 1:495一500
    [22] Waldemar Minkina, Non-linear models of temperature sensor dynamic, Sensors &Actuators A, 1992,30:209-214
    [23] V.Braun, Golay sequences for identification of linear systems with weak nonlinear distortion, IEEE Proceeding: Science, measurement and Technology, 1998,145:123一128
    [24] M.Weiss, C Evans&D. Rees, Identification of nonlinear cascade system using multisine signals, IEEE Trans. on IM, 1998, 47:332-336
    [25] S.beling, GBlaeser&J.Bock et al, Singal condition for semiconductor gas sensors being used as detectors in gas-chromatographs and similar applications, Sensors&Actuators B,1998,52:15-22
    [26] Antonio Pardo, Santiago Marco, and Josep Samitier, Nonlinear inverse dynamic models of gas sensing system based on chemical senor arrays for quantitative measurements, IEEE Trans. on IM, 1998,47:664-651
    [27] B.O.Moldovanu, C.Moldevanu, and M.Cretu et al, Nonlinear dynamic of the fluxgate circui仰,Sensors&Actuators A,1997,59:300-303
    [28] Hatanaka.T, Uosaki.K, Koga.M, Evolutionary computation approach to Wiener model identification, IEEE Proceedings of the 2002 Congress on Evolutionary Computation, May 2002,1:914一919
    [29] Crama.P, Schoukens.J, Computing an initial estimate of a Wiener-Hammerstein system with a random phase multisine excitation, IEEE Transactions on instrumentation and Measurement, Feb. 2005, 54:117-122
    [30] J.Schoukens, J.Nemeth, P.Crama, Y.Rolain, R.Pintelon, Fast approximate identification of nonlinear systems, http://elecftp.vub.ac.be/Papers/jschoukens.htm, 2005.1
    [31] Haixia Zhang&Hejun Li, Nonhear model of A2PI1 magnetic field sensor, Sensors&Actuators A, 2000.86:206-210
    [32] Huang, Xiang-Hua. Sensor Fault Diagnosis and Reconstruction of Engine Control System Based on Autoassociative Neural Network. Chinese Journal of Aeronautics, v 17, February, 2004:23-27.
    [33]林康红,施惠昌,卢强等.基于神经网络的传感器非线性误差校正.传感器技术,2002年,第21卷,第1期:42-47.
    [34]贾林.传感器动态非线性建模与补偿的研究.硕士学位论文.合肥工业大学, 2003
    [35]王肖芬.涡街流量计数字信号处理和传感器动态非线性建模[硕士学位论文],合肥工业大学,2004
    [36]杨春玲,刘国岁,余英林.非线性系统中多传感器目标跟踪性能分析.电子学报, 2000, 28 (3) : 101-103.
    [37] Onder C, Leering H. Model-Based Multivariable Speed and Air-to-Fuel Ratio Control of an SI Engine. SAE 930859.
    [38] Khalid S, AI-Olimat, etc. Adaptive Air-Fuel Ratio Control of an SI Engine Using Fuzzy Logic Parameters Evaluation. SAE 2000-01?1246.
    [39] Xiaoqiu L, Yurkovich S. IC Engine Air/Fuel Ratio Prediction and Control Using Discrete-Time Nonlinear Adaptive Techniques. Proceedings of the American Control Conference, SanDiego, California, USA, June 1999:212-216.
    [40] Kaidantzis P, Easmussen P, Jensen M.Advanced Nonlinear Observer Control of SI Engines.SAE 93068,1993.
    [41] P Kaidantzis, etc. Robust, Self-Calibrating Lambda Feedback for SI Engines, SAE 930860.
    [42] J K Pieper R Mehrotra. AidFuel Ration Control Using Sliding Mode Methods. Proceedings of the American Control Conference, San Diego, California, 1999: 10271031.
    [43] J M. Pfeit}'er, J.K Hedrick. Noninear Algorithms for Simultaneous Speed Tracking and Air-Fuel Ratio Control in an Automobile Engine. SAE 1999-01-0547.
    [44] A Raftari, L Yiwang, D Orzel. Optimal H-infinity Decoupling of Engine Idle Speed and Emission Subsystems. Proceedings of the 28}' Southeastern Symposium on Systerm Theory,31 March-02 Aprile 1996: 7-10.
    [45] J Per B Jensen, M B Olsen, J Poulsen, etc. A New Family of Nonlinear Observers for SI Engine Air/Fuel Ratio Control. SAE 970615.
    [46] C W Vigild, etc. Towards Robust H-infinity Control of an SI Engine's Air/Fuel Ratio. SAE 1999-01-0854.
    [47] E Hendricks, etc. Nonlinear Closed Loop, SI Engine Control Observers. SAE 920237.
    [48] A Chevalier. Predicting the Port Air Mass Flow of SI Engines in Air/Fuel Ratio Control Applications. SAE 2000-01-0260.
    [49] E Hendricks. Isothermal VS. Adiabatic Mean Value SI Engine Models. 3`d IFAC Workshop,Advances in Automotive Control, Karlsruhe, Germany, 2830 March 2001.
    [50] E Hendricks, J B Luther. Model and Observer Based Control of Internal Combustion Engines. Workshop on Modelling, Emission and Control of Automotive Engines, Salerno, Italy, 9-10 Sept 2001:1-23
    [51] E Hendricks. Nonlinear Observer Control of NAC02 Workshop in Automotive Control, Lund,Internal Sweden,Combustion Engines with EGR.18-19 May 2001:1?17.
    [52]孟嗣宗,郭少平,张文海.发动机精确空燃比控制方法的研究.内燃机工程. 1999, 20(2): 70-75.
    [53] C F Chang, N P Fekete, A Amstutz, etc. Air-Fuel Ratio Control in Sprk-Ignition Engines Using Estimation Theory. IEEE Transactions on Control Systems Technology, 1995, 3(I):22}31.
    [54] J D Powell, N.PFekete and C F Chang, etc. Observer-Based Air-Fuel Ratio Control. IEEE Control Systems, 1998:72--83.
    [55] Choi Y, Chen JY. Fast prediction of start-of-cornbustion in HCCI with combined artificial neural networks and ignition delay model. Proceedings of The Cobmbution Institute 30 Part 2, 2005: 2711-2718.
    [56] Beham M, Yu DL. Modelling a variable valve timing spark ignition engine using different neural networks. Proceedings of The Institutution of Mechanical Engineers Part D-Journal of Automobile Engineering 218 (D10) OCT 2004: 1159-1171.
    [57] C.F. Aquino. Transient A/F Control Characteristics of the 5 Liter Central Fuel Injection Engine. SAE 810494
    [58] B.K. Powell, J.A. Cook. Nonlinear Low Frequency Phenomenological Engine Modeling and Analysis. American Control Conference, 1987, WA10-10:30.
    [59] J.J. Moskwa, J.K.Hedrick. Modeling and Validation of Automotive Engines for Control Algorithm Development. ASME, Journal of Dynamic Systems, Measurement, and Control,1992(114):278285.
    [60] JB Heywood. lntemal Combustion Engine Fundamentals. McGraw-Hill Inc, 1988.
    [61] A Lichtarowicz, R K Duggins, etc. Discharge Coefficients for Incompressible Non-Cavitating Flow Through Long Orifices. J Mechanical Science, 1965, 7(2):210219.
    [62] H Rong-wen. A Transient SI Engine Model for Vehicle Dynamic Simulation.dissertation, University of California, USA, 1994.PHD
    [63] Chen Gang. Unsteady Multiphase Intake Flow. 960074. in a Part-injection Gasoline Engine. SAE
    [64] LArsie, C Pianese, G Rico, etc. An adaptive estimator of fuel film dynamics in the intake port of a spark ignition engine. Control Engineering Practice, 2003(1 I): 303309.
    [65] Jan Guerquin. The Development of an IC Engine Model-Based Fuel Injection Controller with Fuel Film Compensation. Master dissertation, University of Toronto, Canada, 2003.
    [66] J E Hendricks, T Vesterholm. The Analysis of Mean Value SI Engine Models. SAE 920682.
    [67] Powell B K. A Dynamic Model For Automotive Engine Control Analysis. Proceedings of 18th IEEE Conference, Decision and Control 1979:120126.
    [68] E.Hendricks, T.Vesterholm and P.Kaidanms. Nonlinear Tiansient Fuel Film Campensamon(NTFC). SAE 930767.
    [69] L.Kjergaard, S.Nielsen, T.Vesterholm, et al. Advance nonlinear engine idle speed control system. SAE Technical Paper, 1994, 940974
    [70] T.Vesterholm, E.Hendricks. Advance nonlinear engine speed control systems. Proc. of the American Control Conference, 1994, 1579一1580.
    [71] Byeong-Jo Lee, Y. W. KaD. Engine throttle control Using Anticipatory Band in the Sliding Phase Plane. IEEE Transactions on Control Systems Technology, 1993, I(4):80-284
    [72] M. K. Liubakka, D. S. R.,J. R. Winkelman, et al. Adaptive Automotive Speed control. IEEE Transactions on Automatic Control,1993, 38 (7): 1011一1020.
    [73] Kjergard, L.,IYielsen,S.,Vesterholm, et al, engine idle speed control systems. SAE technical paper, 1994; 940974
    [74]邵千钧,何文华,熊树生.基于CMAC的点火提前角控制怠速稳定性的研究.内燃机学报,2005,23(4): 376-379
    [75] Vance JB, He P, Kaul B, Jagannathan S.Neural network-based output feedback controller for lean operation of spark ignition engines. In: 2006 AMERICAN CONTROL CONFERENCE.NEW YORK, USA:IEEE,2006.1898-1905
    [76] Wang L X. Fuzzy systems are universal approximators.Proc[J]. IEEE Int. Conf. on Fuzzy Systems, San Diego, 1992, I 163- I 170.
    [77] Takagi T, Sugeno M. Fuzzy identification of system and its application to modeling and control[J]. IEEE Trans on System Man Cybernet, 1985, I S( I ): 16-32.
    [78]曾凡锋,蔡自兴,马润津.基于模糊似然函数的模糊辨识方法.控制与决策.1998, 13(5):581-584.
    [79]罗厄光,刘丁,万白五.自适应模糊辨识及其在人系统中的应用.控制理论与应用.1998, 15(3):352-356.
    [80]马广富,王宏伟,王司.基于模糊神经网络的系统建模方法.哈尔滨工业大学学报.1999,31(5):79-82.
    [81]陈建勤,席裕庚,张钟俊.用模糊模型在线辨识非线性系统.自动化学报. 1998,24(1):90-93.
    [82] Xiaoqiu Li, Stephen Yurkovich. Sliding Mode Control of Delayed Systems With Application to Engine Idle Speed Control. Center for Automotive Research, The Ohio State University, 2015 Neil Avenue, Columbus, OH 43210, 2001
    [83]樊卫华,蔡烨,周川.MIMO网络控制系统的建模与分析.控制理论与应用. 2005,22(3):487-490.
    [84]彭晨,岳东.网络控制系统中基于时延辨识的模糊控制器研究.信息与控制. 2004,33(5):584-589.
    [85]熊远生,俞立,余世明.网络控制系统的滑膜多步预估控制.控制理论与应用. 2005,22(2):301~306.
    [86] Zadeh L A. Fuzzy sets Information and Control, 1965, 8: 338~353
    [87] Zadeh L A. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans Systems and Cybernet,1973,1:28-44
    [88] Mamdani E H. Twenty years of fuzzy control: Experiences gained and lessons learnt. IEEE Technology Update Series Fuzzy Technology and Applications, 1994: 19~24
    [89]胡昌华,张军波,夏军等.基于MATLAB的系统分析与设计(小波分析).第一版.西安:西安电子科技大学出版社,1999年.13-17.
    [90]陈永义.特征统计推理.模糊系统与数学,1987, 1: 13~20
    [91]陈永义.小波分析与模糊系统分析的联系.模糊系统与数学,2002,3:38-43
    [92] G. Rizzoni and X. C. Chen, "Detection of internal combustion engine knock using time-frequency distributions’in Proc. IEEE 36th Midwest Symposium on Circuits and Systems, vol. 1, 16-18, Aug. 1993, pp. 360-363.
    [93] B. Samimy and G. Rizzoni, "Mechanical signature analysis using time-frequency signal processing: Application to internal combustion engine knock detection, Proc. IEEE, vol. 84, no. 9, pp. 1330-1343, September 1996
    [94] Ray A, Halevi Y. An observer-based 26 (5) :903908 for distributed delays. Automatic 1990,
    [95]李佳,朱元,田光宇.CAN与TTCAN通信延迟时间的分析.清华大学学报,2006,46(2):261-265.
    [96]张向文,许学雷,吴林瑞. CAN总线系统信号传输延时分析.导弹与航天运载技术,2006,3:48-51.
    [97]何华.电控柴油机ECU系统选型与设计论证及系统开发研究.柴油机设计与制造.2000年, 90(1):27-31.
    [98]夏胜枝.新型脉动式电控燃油喷射系统喷射定时优化.内燃机工程.2003,24(1):65-70.