短波突发信号盲接收技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十几年来,随着短波新体制新技术的日益发展,突发通信在短波通信领域,尤其在短波军事通信领域获得了越来越多的应用。然而对于该类信号的盲(非协作)接收技术,特别是短突发信号的盲接收技术的研究相对滞后,另外,计算复杂度低、有利于工程实现的算法较少。本文围绕这一应用背景,结合实验室承担的军队大型重点工程研究项目,针对短波突发信号的盲接收所涉及到的关键技术,从算法研究和工程实现两个方面进行深入地探讨。
     突发信号的存在性检测是短波突发信号盲接收首先要解决的问题。本文从工程实现的角度出发,将信号的存在性检测分为判决统计量的选取、自适应门限的调整和判决算法的确定三个相对独立又相互影响的部分,并指出在实际应用中减小虚警概率和漏警概率更有效的方法是设计合适的自适应门限算法和判决算法。同时针对短波突发信号的特点,分别给出了一种较为实用的自适应门限算法和判决算法。
     符号盲同步是短波突发信号盲接收的关键技术之一。本文总结了目前用于突发信号的非数据辅助前向符号定时估计算法,分析和仿真了各种算法的性能,指出了在实际应用中应注意的问题。在此基础上,提出了一种新的基于每符号两个样点的非数据辅助的前向符号定时估计算法。新算法研究了以两倍符号速率采样的基带信号经过非线性变换后在频域混叠的情况,然后,在非线性变换之前,直接采用抗混叠滤波器,将可能在非线性变换之后出现混叠的那部分信号滤掉。这样,以两倍符号速率采样的基带信号,经过抗混叠滤波后,就可以直接利用传统的平方律非线性算法(当然,也可以采用一次幂非线性法或对数非线性法等)估计定时相位偏差。新算法对于信号及应用环境的适应性更强。
     在短波数字信号盲接收系统中,盲均衡器的设计是至关重要而又相对困难的一个部分。尤其是对于短波突发信号设计盲均衡器,难度还是相当大的。其关键问题在于如何能在几百、甚至几十个符号内使盲均衡算法收敛。本文归纳和总结了目前盲均衡领域的研究现状,从实际应用的角度出发,重点分析了较为实用的Bussgang类盲均衡算法,并指出对于突发信号、尤其是短突发信号的盲均衡,常规Bussgang类盲均衡算法都很难在一个突发内完成收敛。为了解决快速收敛问题,经认真分析将研究重心放在了基于数据重用思想的Bussgang类盲均衡算法上,该领域的研究刚刚起步,成熟的算法相对较少。本文根据数据重用方法的不同,将该类算法分为三种,并重点研究了其中的两种:基于多数据向量的重叠重用和基于多数据向量的循环重用。对于前者,分别给出了基于仿射投影的CMA盲均衡算法和基于集员滤波的CMA盲均衡算法,加快了CMA的收敛速率;而对于后者,其算法结构更利于实时实现,并且本文以大量的仿真实验及分析证实了该类算法的有效性,其在一定的信道条件下完全可以在几十、甚至十几个符号内达到收敛,非常适合短突发信号的盲均衡。
     载波同步在数字信号的相干接收中是不可或缺的技术环节。而对于突发信号的盲接收来讲则必须采用非数据辅助的前向载波同步技术,主要包括频偏估计和相偏估计。另外,考虑到短波数字信号的实际接收条件,还应关注算法的抗噪声能力。本文归纳总结了目前常用的非数据辅助前向频偏和相偏估计算法,分析和仿真了各种算法的性能,在此基础上,提出了一种新的载波频偏估计算法。新算法首先利用相邻码元判决点处的相位差粗略估计载波频偏,从而获得宽的捕获范围;然后,再利用长时延自相关函数精细估计载波频偏,以便获得高的估计精度。新算法以相对较低的计算复杂度在一定程度上解决了相位折叠和低信噪比下的频偏估计问题。同时为了更好地解决相偏估计中由噪声引起的相位跳变问题,针对短波信号分别提出了一种改进算法和一种全新算法,两种算法都可以有效地降低相位跳变的概率,提高算法的抗噪声性能。
     最后,结合实验室承担的科研任务,针对短波窄带信号的实时盲接收,研制了两种基于软件无线电的短波窄带多通道数字信号处理平台,并将本文所研究的盲接收算法应用于这两种数字信号处理平台,实现短波窄带信号的实时盲接收。
In recent years burst communications, due to its obvious advantages, have become more and more popular in modern shortwave communications, especially in military communications. Whereas the corresponding technologies of blind (non-cooperative) receiving for burst signals, especially for very short burst signals, are still not so mature as that for conventional signals. Just on above background, this paper is focusing on a study and implementation of the key technologies of shortwave burst signal blind receiving while laying emphasis on the development of high-efficient algorithms with lower computational complexity. The work finished in this paper is a part of a large scale army project of research undertaken by the lab the author works with.
     The existence detection of burst signal, which is the first thing to begin with, can be considered to consist of decision statistic selection, adaptive shrehold setting and decision algorithm development. Two practical algorithms for threshold setting and decision making respectively are proposed which can considerably reduce the false-alarm probability and false-dismissal probability by appropriate design of the threshold and the corresponding decision making mechanism.
     Blind symbol synchronization is one of key technologies of the blind receiving of the shortwave burst signals. Severl important NDA(nondata-aided) feedforward symbol timing estimation algorithms are analyzed and compared with each other in terms of their performances. Based on above discussion a novel NDA feedforward symbol timing estimator employing two samples per symbol is proposed. The new estimator can eliminate the spectrum overlap by the use of anti-aliasing filter, which can make the conventional non-linear algorithms, such as squared processing etc., safely be used in cases of two samples per symbol. Simulations have proved the performance improvement of the proposed estimator over the former one.
     Blind equalization is another one of key technologies of the blind receiving of the shortwave burst signals, and successful design of the blind equalizer is also a challenging issue in the field, especially for very short burst with only several hundreds or even decades of symbols. A variety of typical blind equalization algorithms are discussed and summarized with the emphasis laid on the Bussgang blind equalization algorithms. And then, the Bussgang blind equalization algorithms based on data-reusing are analyzed, which can generally be classified into three categories, and two of them are discussed in depth. A novel CM algorithm based on affine projection and data-reusing is proposed which, compared with CMA without data reusing, can converge much faster, however the steady-state error is increased. To solve this problem another novel CM Algorithm based on set-membership filtering and data-reusing is proposed. Besides, a blind equalization algorithm based on repeated data-reusing is proposed, which is of lower computational complexity. Simulation results have shown that the algorithm can converge even within dozens of symbols, thus very suitable for shortwave burst signals.
     Carrier synchronization is also critical and indispensable for blind receiving. Conventional algorithms for estimations of carrier and phase offset are summarized, simulated and compared to each other. Based on the discussion a new algorithm with wide estimation range, high accuracy and low-complexity for carrier offset estimation is proposed. Firstly, the capturing-range is widened by using the phase difference between consecutive symbols, and then higher estimation accuracy is obtained based on correlation function with longer delay while the phase folding and low SNR problems are overcomed. To solve the equivocal phase problem in phase offset estimation caused by residual frequency offset and noise, a modified and a novel algorithms are proposed, which can greatly reduce the phase hopping probability and improve the anti-noise performance.
     Finally, two blind receiving platforms based on Software Defined Radio (SDR) for shortwave narrowband multi-channel signals are developed. All of the blind receiving algorithms proposed in this dissertation are applied to the two platforms, and test results have proved the validity of the whole systems.
引文
[1]沈淇淇,朱德生.短波通信[M].第1版.西安:西安电子科技大学出版社, 1989.
    [2]胡中豫等.现代短波通信[M].第1版.北京:国防工业出版社, 2003.
    [3]董彬虹,李少谦.短波通信的现状及发展趋势[J].信息与电子工程, 2007, 5(1): 1-5.
    [4] MIL-STD-188-141B APPENDIX C THIRD GENERATION HF LINK AUTOMATION, 1999.
    [5]任国春.第三代短波自适应技术[J].军事通信技术, 2002, 23(2): 23-25.
    [6]冯子龙.第三代短波链路自动建立技术研究[D].西安:西安电子科技大学, 2003.
    [7] Urkowitz H. Energy detection of unknown deterministic signals[J]. Proceedings of the IEEE, 1967, 55(4): 523-531.
    [8] Kostylev V I. Energy detection of a signal with random amplitude[A]. In: Proc. of IEEE ICC’02[C]. New York City, New York, May 2002: 1606-1610.
    [9] Kaiser J F. On a simple algorithm to calculate the energy of a signal[A]. In: Proc.of IEEE ICASSP’90[C]. Albuquerque, USA, Apr. 1990: 381-384.
    [10] Dunn R B, Quatieri T F, and Kaiser J F. Detection of transient signals using the energy operator[A]. In: Proc. of IEEE ICASSP’93[C]. Minneapolis, USA, Apr. 1993: 145-148.
    [11] Digham F F, Alouini M S, and Simon M K. On the energy detection of unknown signals over fading channels[A]. In: Proc. of IEEE ICC’03[C]. Seattle, May 2003: 3575-3579.
    [12] Colonnese S, Sxarano G. Transient signal detection using higher order moments[J]. IEEE Transactions on Signal Processing, 1999, 47(2): 515-520.
    [13] Chichereau C, Lacoume J L, Blanpain R, and Dassot G. Short delay detection of a transient in additive Gaussian noise via higher order statistic test[A]. In: Proc. of IEEE Digital Signal Workshop[C]. New York, USA, 1996: 299-302.
    [14] Nuttall A H. Near-optimum detection of random signals of unknown location, structure, extent, and strength[A]. In: Proc. of OCEANS'95. MTS/IEEE. 'Challenges of Our Changing Global Environment' Conference[C]. San Diego, CA, USA, Oct.1995: 1659-1664.
    [15] Fawcett J A, Maranda B H. The optimal power law for the detection of a Gaussian burst in a background of Gaussian noise[J]. IEEE Transactions on Information Theory, 1991, 37(1): 209-214.
    [16] Kirsteins I, Mehta S K, and Fay J. Power-law processors for detecting unknown signals in colored noise[A]. In Proc. of IEEE ICASSP’97[C]. Munich, Germany, Apr.1997: 483-486.
    [17] Frey M, Andescavage D. An analytic theory for power law detection of bursty targets in multiplicative noise[J]. IEEE Transactions on Signal Processing, 1998, 46(10):2837-2841.
    [18] Wang Z, Willett P K. All-purpose and plug-in power-law detectors for transient signals[J]. IEEE Transactions on Signal Processing, 2001, 49(11): 2454-2466.
    [19] Lehtom?ki J J, Juntti M, and Saarnisaari H. Power-law based intercept receiver with nonorthogonal transforms[A]. In: Proc. of IEEE MILCOM’04[C], Monterey CA, USA, May 2004: 1402-1408.
    [20] Hardwicke K R, Wilson G R, and Baugh K W. Characterization of spectral correlation detector statistics useful in transient detection[J]. Circuits, Systems and Signal Processing, 1994, 13(4): 497-511.
    [21] Baugh K W, Hardwicke K R. On the detection of transient signals using spectral correlation[J]. Circuits, Systems and Signal Processing, 1994, 13(4): 467-479.
    [22] Lee N, Schwartz S C. Robust transient signal detection using the oversampled Gabor representation[J]. IEEE Transactions on Signal Processing, 1995, 43(6): 1498-1502.
    [23] Bovik A C, Maragos P, and Quatieri F. AM-FM energy detection and separation in noise using multiband energy operators[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3245-3265.
    [24] Van Trees H L. Detection, Estimation and Modulation Theory[M]. Part I. New York: Wiley, 2001: 23-46.
    [25] Schonhoff T, Ciordano A A. Detection and Estimation: Theory and Its Applications[M].北京:电子工业出版社, 2007: 86-95.
    [26] CHEN HSIAI-WA,SIM HAK-KEONG,Orthogonal decision feedback detector for asynchronous multiuser CDMA systems[J],IEEE Transactions on Signal Processing,2001,8(42):1961-1972.
    [27]吴玉成,陈宁,高珊,突发通信中的自适应门限信号检测方法[J],电子与信息学报,2007,29(12):2896-2898.
    [28]冯文江,王红霞,侯剑辉,李国权,一种适合突发通信的信号检测改进算法[J],重庆大学学报(自然科学版),2007,30(2):58-60.
    [29]隋丹,通信信号盲检测技术研究[D],郑州:解放军信息工程大学,2007
    [30] T.A.Ramstad. Digital methods for conversion between arbitrary sampling frequencies[J]. IEEE transactions on acoustic, speech, and signal processing, 1984, 32(3):577~591.
    [31] Floyd. M. Gardner. Interpolation in Digital Modems-Part I: Fundamentals[J]. IEEE transactions on communication, 1993, 41(3):501~507
    [32] Lars Erup, Floyd. M. Gardner, Robert A. Harris. Interpolation in Digital Modems-Part II: Implementation and Performance[J]. IEEE transactions on communication, 1993, 41(3):998~1008.
    [33] John G. Proakis. Digital Communication (Fourth edition)[M]. Beijing: Publishing House of Electronics Industry, 2001.
    [34] Morelli, M, D’Andrea A N and Mengali U. Feedforward ML-based timing estimation with PSK signal[J]. IEEE Commun. Lett., 1997, 1(3): 80-82.
    [35] Mengali U, Morelli M. Data-aided frequency estimation for burst digital transmission [J]. IEEE Trans. Comm., 1997, 45(1):23–25.
    [36] Panayirci E, Bar-Ness E Y. A new approach for evaluating the performance of a symbol timing recovery system employing a general type of nonlinearity[J]. IEEE Trans.,Com., 1996, 44(1):29-33.
    [37] A.N.D’Andrea,U.Mengali,and M.Moro. Nearly optimum prefiltering in clock recovery. IEEE Trans.,Com.,1986,COM-34(11):1081-1088.
    [38] Oerder M, Meyr H. Digital filter and square timing recovery[J]. IEEE Trans. Comm., 1988, 36(5): 605–611.
    [39]张公礼.全数字接收机理论与技术(第一版)[M].北京:科学出版社,2005:97,110-114.
    [40] R.N.Kumar,J.Kusma,J.H.Grimm and J.V.Krogmeier. Complexity reduction for digital implementation of symbol timing recovery. In proceedings of International Conference on Signal Processing Applications & Technology, 1998:373-377.
    [41] Lee, S J. A new non-data-aided feedforward symbol timing estimator using two samples per symbol[J]. IEEE Commun. Lett., 2002, 6(5): 205–207.
    [42] Wang, Y, Serpedin, E and Ciblat P. An alternative blind feedforward symbol timing estimator using two samples per symbol[J], IEEE Trans. Commun., 2003, 51(9): 1451 -1455.
    [43] Zhu, W-P, Ahmad, M O and Swamy, M N S. A fully digital timing recovery scheme using two samples per symbol[A]. in Proc. IEEE Int. Symp. Circuits and Systems[C], Sydney, Australia, 2001, 2: 421–424.
    [44] Zhu, W-P, Yan, Y and Ahmad, M O, et al. A feedforward timing recovery scheme using two samples per symbol: Algorithm, performance and implementation Issues[A]. in Proc. IEEE ISCAS’03[C], Bangkok, Thailand, 2003, 2: 25–28.
    [45] Zhu, W-P, Yan, Y and Ahmad, M O, et al. Feedforward symbol timing recovery technique using two samples per symbol[J]. IEEE Trans. Circuits and Systems, 2005, 52 (11): 2490-2500.
    [46]张贤达、保铮,通信信号处理,国防工业出版社,北京,2000年12月。
    [47] MIL-STD-188-110B, Interoperability and Performance Standards for Data Modem[S], United States of America: Department of Defense, 2000, 89-114.
    [48]张立毅、张雄、王华奎、沙定国.盲均衡技术及其发展。太原理工大学学报。2002.Vol.33. No.6, p619~623.
    [49]邹谋炎,《反卷积和信号复原》,国防工业出版社,北京,2001。
    [50] Hatzinakos D and Nikias C L. Blind Equalization Using a Tricepstrum Based Algorithm[J]. IEEE Transactions on Communications, 1991, 39(5): 669-682.
    [51] Shalvi O and Weinstein E. Super-exponential Methods for Blind Deconvolution[J]. IEEE Transactions on Information Theory, 1993, 39(2): 504-519.
    [52] Huet C and Roux J L.Blind system identification using fourth order spectral analysis ofcomplex signals[A]. In: Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics[C], Banff, Canada, 1997: 189-193.
    [53] Tong L, Xu G and Kailath T. Blind Identification and Equalization Based on Second-order Statistics:A Time Domain Approach[J]. IEEE Transaction on Information Theory, 1994, 40(2): 340-349.
    [54] Xu G, Liu H and Kailath T. A Least-squares Approach to Blind Channel Identification[J]. IEEE Transactions on Signal Processing, 1995, 43(12): 2982-2993.
    [55] Moulines E, Cardoso J F and Mayrargue S. Subspace Methods for Blind Identification of Multichannel FIR Filters[J]. IEEE Transactions on Signal Processing, 1995, 43(2): 516-525.
    [56] Slock D T M and Papadias C B.Further Results on Blind Identification and Equalization in Multiple FIR channels[A]. In: Proceedings of International Conference on Acoustics,Speed and Signal Processing[C], Detroit, MI, USA, 1995: 1964-1967.
    [57] Meriam K A, Duhamel P, Cardoso J F, et al. Prediction Error Methods for Time Domain Blind Identification of Multichannel FIR Filters[A]. In: Proceedings of International Conference on Acoustics, Speed and Signal Processing[C], Detroit, MI, USA, 1995: 1968-1971.
    [58] Ding Z, Collings I B and Liu R W. New Blind Zeroforcing Equalizer for Multichannel Systems[A]. In: Proceedings of International Conference on Acoustics, Speed and Signal Processing[C], Seattle, WA, USA, 1998: 3177-3180.
    [59] Mo S and Shafai B. Blind Equalization Using Higher Order Cumulants and Neural Network[J]. IEEE Transactions On Signal Processing, 1994, 42(11): 3209-3217.
    [60]梁启联,周正.基于多层神经网络的盲均衡算法[J].北京邮电大学学报,1996,19(3): 27-32.
    [61] Kechriotis G and Zervas E. Using Recurrent Neuralnet Work for Adaptive Communication Channel Equalization[J]. IEEE Transactions On Neural Network, 1994, 5(2): 267-278.
    [62]赵建业,余道衡.用细胞神经网络实现盲均衡的一种新方法[J].电子科学学刊,Vol.22(3),2000: 423-428.
    [63] Sato Y. A Method of Self-recovering Equalization for Multilevel Amplitude-modulation Systems[J]. IEEE Transactions on Communications, 1975, 23(6): 679-682.
    [64] Benveniste A and Goursat M. Blind Equalizers[J]. IEEE Transaction on Communications, 1984, 32(8): 871-883.
    [65] Weerackody V, Kassam S A and Laker K R. Convergence Analysis of an Algorithm for Blind Equalization[J]. IEEE Transactions on Communications, 1991, 29(6): 856-865.
    [66] Ding Z, Kennedy R A and Brian D O.Local Convergence of the Sato Blind Equalizer and Generalizations under Practical Constraints[J]. IEEE Transactions on Information Theory, 1993, 39(1): 129-144.
    [67] Godard D N. Self-recovering Equalization and Carrier Tracking in Two-dimensional Data Communication Systems[J]. IEEE Transaction on Communications,1980, 28(11):1867-1875.
    [68] Oh K N and Chin Y O. Modified Constant Modulus Algorithm: Blind Equalization and Carrier Phase Recovery Algorithm[A]. In: Proceedings of the IEEE International Conference on Communications[C], Seattle, WA, USA, 1995: 498-502.
    [69] Ready M J and Gooch R P. Blind Equalization Based on Radius Directed Adaptation[A]. In: Proceedings of International Conference on Acoustics, Speed and Signal Processing[C], Albuquerque, NM, USA, 1990: 1699-1702.
    [70] Shahmohammadi M and Kahaei M H. A New Dual-mode Approach to Blind Equalization of QAM Signals[A]. In: Proceedings of 8th IEEE International Symposium on Computers and Communication[C], Antalya, turkey, 2003: 277-281.
    [71] Yang J, Werner J J and Dumont G A. The Multimodulus Blind Equalization and its Generalized Algorithms[J]. IEEE Journal on Selected Areas in Communications, 2002, 20(5): 997-1015.
    [72]徐金标,王育民.用于多电平QAM调制的新型的自恢复均衡技术的研究[J].电学学报,1997,24(7): 38-42.
    [73]樊龙飞,查光明.一种混合型盲均衡算法[J].信号处理,1998,14(1): 71-75.
    [74] He L, Amin M G, JR C R,etal. A Hybrid Adaptive Blind Equalization Algorithm for QAM Signals in Wireless Communications[J]. IEEE Transaction on signal processing, 2004, 52(7): 2058-2069.
    [75] Banovic K, Raheem E A and Khalid A S. Hybrid Methods for Blind Adaptive Equalization: New Results and Comparisons[A]. In: Proceedings of the IEEE 10th Symposium on Computers and Communication[C], Cartagena, Colombia, 2005: 275 - 280.
    [76] Picchi G and Prati G. Blind equalization and carrier recovery using a“stop-and-go”decision-directed algorithm[J]. IEEE Transaction on Communications, 1987, 35(9): 877-887.
    [77]徐金标,葛建华.一种新的盲均衡算法[J].通信学报,1995,16(3): 78-81.
    [78]徐金标,葛建华.基于CMA的双模式盲均衡算法[J].通信学报,1997,18(2): 65-69.
    [79]欧阳喜,葛临东.一种新的基于数据可靠性判决引导的CMA盲均衡算法[J].通信学报,2001,22(5): 125-128.
    [80] Weerackody V and Kassam S A. Dual-mode type algorithms for blind equalization[J]. IEEE Transactions on Communications, 1994, 42(1): 22-28.
    [81] Kwon S L, Moon T H, Lee G H, et al. A bind equalization with the variable decision region[A]. In: Proceedings of the 1997 International Symposium on Personal,Indoor and Mobile Radio Communications[C], Helsinki, Finland, 1997: 322-326.
    [82] Litwin L.R, Zoltowstki M D and Endres T J. Blended CMA: smooth, adaptive transfer from CMA to DD LMS[A]. IEEE Conference on Wireless Communications and Networking[C], Piscataway, NJ, USA, 1999: 797-800.
    [83]王峰,赵俊渭,李桂娟等.一种常数模与判决导引相结合的盲均衡算法研究[J].通信学报,2002,23(6): 105-109.
    [84] Axford R A, Milstein L B and Zeidler J R. A dual-mode algorithm for blind equalization of QAM signals: CADAMA[A]. In: Conference Record of the Asilomar Conference on signals, systems and computers[C], Pacific Grove, CA, USA, 1996: 172-176.
    [85]孙丽君,孙超.基于修正超指数迭代算法的双模式盲均衡算法仿真研究[J].系统仿真学报,2005,17(11): 2604-2606.
    [86] He L and amin M. A dual-mode technique for improved blind equalization for QAM signals[J]. IEEE Signal Processing Letters, 2003, 10(2): 29-31.
    [87] Guo Y C, Han Y G and Zhou Q X. Decision Circle Based Dual-Mode Constant Modulus Blind Equalization Algorithm[A]. In: Proccdings of 8th International Conference on Signal Processing[C], Guilin, China, 2006: 1265-1269.
    [88] Weerackody V and Kassam S A. Variable step-size blind adaptive equalization algorithms[A]. In: Proceedings of IEEE International Symposium on Circuits and Systems[C], Singapore, 1991: 718-721.
    [89] Ross F J and Taylor D P. An enhancement to blind equalization algorithms[J]. IEEE Transactions on Communications, 1991, 39(5): 636-639.
    [90]黄蕾,杨绿溪.一种新的基于统计测度的变步长CMA盲均衡算法[J].数据采集与处理,2003,18(1): 62-65.
    [91] Zhang X and Li L S. A New Adaptive Step-Size Blind Equalization Algorithm Based on Autocorrelation of Error Signal[A]. In: Proceedings of International Conference on Signal Processing[C], Peking, China, 2004: 1719-1722.
    [92] Zhang X and Zhuo D F. A modified blind equalization algorithm based on kurtosis of output signal[A]. In: Proceedings of IEEE Conference on Radio Science[C], Qingdao, China, 2004: 228-231.
    [93] Li Y and Ding Z. Convergence analysis of finite length blind adaptive equalizers[J]. IEEE Transactions on Signal Processing, 1995, 43(9): 2120-2129.
    [94] Schniter P and Johnson C R. Sufficient conditions for the local convergence of constant modulus algorithms[J]. IEEE Transactions on Signal Processing, 2000, 48(10): 2785-2796.
    [95] Sharma V and Raj V N. Convergence and Performance Analysis Godard Family and Multimodulus Algorithms for Blind Equalization[J]. IEEE transactions on signal processing, 2005, 53(4): 1520-1533.
    [96] Paulo S.R.Diniz and Stefan Werner,Set-Membership Binormalized Data-Reusing LMS Algorithms[J],IEEE Trans.Signal Processing,2003,51(1):124-134.
    [97] Hyun-Chool Shin,Woo-Jin Song and Ali H.Sayed,Mean-Square Performance of Data-Reusing Adaptive Algorithms[J], IEEE Trans.Signal Processing,2005,12(12):851-854.
    [98] Werner S and Diniz S R. Set-membership affine projection algorithm[J]. IEEE Signal Processing Letters, 2001, 8(8): 231-235.
    [99] Kim B J and Cox D C. Blind equalization for short burst wireless communications[J]. IEEE Transactions on Vehicular Technology, 2000, 49(4): 1235-1247.
    [100] Sumit R and John J S. Analysis of the data-reusing LMS algorithm[A]. In: Proceedings of the 32nd Midwest Symposium on Circuits and Systems[C], Philadelphia, PA, USA, 1990: 1127-1130.
    [101] Haykin S. Adaptive Filter Theory[M]. Englewood Cliffs: Prentice-Hall, 2002: 251-267.
    [102] Schnauger B and JenkinsW K. New data-reusing LMS algorithms for improved convergence[A]. In: Conference Record of The Twenty-Seventh Asilomar Conference on Signals, Systems and Computers[C], Pacific Grove, California, USA, 1993: 1584-1588.
    [103] Soni R A, Gallivan K A and Jenkins W K. Low-complexity data reusing methods in adaptive filtering[J]. IEEE Transactions on Signal processing, 2004, 52(2): 394-405.
    [104] Aplinarion J, Campos M and Diniz P. Convergence analysis of the binormalized data-reusing LMS algorithm[J]. IEEE Transactions on Signal Processing, 2000, 48(11): 3235-3242.
    [105] Gollamudi S, Nagaraj S and Kapoor S. Set-membership Filtering And A Set-membership Normalized LMS Algorithm With An Adaptive Step Size[J]. IEEE Signal Processing Letters, 1998, 5(5): 111-114.
    [106] ITU, HF Ionospheric Channel Simulators[R], Report 549-2, Recommendations and Reports of the CCIR, Geneva ,Vol. III: 59-67.
    [107] ITU, Recommendation 520-1 Use of High Frequency Ionospheric Channel Simulators[R], Recommendations and Reports of the CCIR, Geneva, Vol. III:57-58.
    [108] Xu H and Zheng H. A New Constant Modulus Blind Channel Equalization Algorithm[A]. In: Proceedings of IEEE Wireless Communications Networking and Mobile Communications[C], WuHan, China, 2005: 537-540.
    [109] Guo L and Huang Y F. Set-membership adaptive filtering with parameter-defendent error bound tuning[A]. In: Proceedings of International Conference on Acoustics, Speed and Signal Processing[C], Philadelphia, PA, USA, 2005: 369-372.
    [110] Xu H and Zheng H. A Constant Modulus Blind Channel Equalization Algorithm with Accelerating Convergence[A]. In: Proccdings of 8th International Conference on Signal Processing[C], Guilin, China, 2006: 712-715
    [111] Gini F, Giannakis G B. Frequency offset and symbol timing recovery in flat-fading channels: a cyclostationary approach[J]. IEEE Trans. Comm., 1998, 46(3):400-411.
    [112] Ghogho M, Swami A and Durrani T. On blind carrier recovery in time-selective fading channels[], 1999, 243-247.
    [113]唐金花,李式巨,陈偕雄.频率选择性衰落信道中的频偏盲估计[J].浙江大学学报(理学版),2005,32(2):186-188.
    [114]许华.短时突发信号的盲处理技术研究[D]:信息工程大学博士论文.郑州:信息工程大学,2005.
    [115] Baronkin V M, Zakharov Y V and Tozer T C. Maximum likelihood single tone frequency estimation in a multipath channel[J]. IEE Proc-Comm., 2001, 148(6):400-404.
    [116] Ciblat P, Loubaton P and Serpedin E, et al. Performance of non-data aided carrier offsetestimation for non-circular transmissions through frequency-selective channels. IEEE, 2000, 2525-2528. Ghogho M, Swami A and Durrani T. Blind estimation of frequency offset in the presence of unknown multipath. IE
    [117] EE ICPWC’, 2000, 104-108.
    [118] Aboutanios E, Mulgrew B. Iterative frequency estimation by interpolation on Fourier coefficients[J]. IEEE Trans. Signal Processing, 2005, 53(4):1237-1241.
    [119] Luise M, Reggiannini R. Carrier frequency recovery in all-digital modems for burst-mode transmissions[J]. IEEE Trans. Comm., 1995, 43(2/3/4):1169–1178.
    [120] Fitz M P. Further results in the fast frequency estimation of a single frequency[J]. IEEE Trans. Comm., 1994, 42(2/3/4):862–864.
    [121] Kay, S. A fast and accurate single frequency estimator[J]. IEEE Trans. Acoust., Speech, Signal Processing,1989, 37(12): 1987-1990.
    [122]彭华.软件无线电中的盲接收技术研究[D]:信息工程大学博士论文.郑州:信息工程大学,2002.
    [123] Zakharov, Y V and Tozer, T C. Frequency estimator with dichotomous search of periodgram peak[J]. Electron. Lett., 1999, 35(19): 1608–1609.
    [124] Aboutanios, E. A modified dichotomous search frequency estimator[J]. IEEE Signal Process.Lett.,2004,11(2): 186–188.
    [125] Hong, D K, Kim, D J and Lee, Y J, et al. A simple interpolation technique for the DFT for joint system parameters estimation in burst MPSK transmission[J]. IEEE Trans. Commun., 2003, 51(7): 1051-1056.
    [126] Aboutanios, E and Mulgrew, B. Iterative frequency estimation by interpolation on Fourier coefficients[J]. IEEE Trans. Signal Process., 2005, 53(4): 1237-1241.
    [127]彭华.李静.葛临东一种非判决辅助前向结构载波频差估计方法[J]电子学报2001.7:984-986.
    [128]李静.彭华.葛临东一种宽范围的最大似然载波频率同步算法[J]系统工程与电子技术2006.3:369-371.
    [129] Rife, D C and Boorstyn, R R. Single-tone parameter estimation from discrete-time observations[J]. IEEE Trans. Information Theory, 1974, IT-20(5): 571-578.
    [130] Viterbi, A J and Viterbi, A M. Nonlinear estimation of PSK-modulated carrier phase with applications to burst digtital transmission[J]. IEEE Trans. Inform. Theory, 1983, IT-29(4): 543-551.
    [131] Paden, B E. A matched nonlinearity for phase estimation of a PSK-modulated carrier[J]. IEEE Trans. Information Theory, 1986, IT-32(3): 419-422.
    [132] Fitz M P. Equivocation in nonlinear digital carrier synchronizers. IEEE Trans. On Communications, 1991, 39(11):1672-1682.
    [133]郑大春,项海格,彻底消除相位检测中的±π弧度跳变问题,电子测量技术,1996,(4):1-5.
    [134] DSP56F801/803/805/807 16-bit Digital Signal Processor User’s Manual [M]. Motorola INC, 2001.
    [135] Cyclone II Device Handbook, Volume 1[Z], Altera Corporation, 2005,7.
    [136] PCI Compiler User Guide, pci_t32 MegaCore Function Version: 4.0.0[Z], Altera Corporation, 2005,4.
    [137] 16-Bit, 500 kSPS PulSAR? Dual, 2-Channel, Simultaneous Sampling ADC AD7654[Z]. Analog Devices, 2005.
    [138] TMS320C6711D FLOATING-POINT DIGITAL SIGNAL PROCESSOR[Z]. Texas Instruments, 2006.
    [139] Winradio-G303 Shortwave Receiver User’s Guide [Z]. Winradio Communications, Melbourne, 2002.