褐点石斑鱼(Epinephelus fuscoguttatus)三种细胞系的建立、病毒敏感性以及环境污染物对其毒性作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,环境污染的日益加剧和各种病毒性疾病的大规模爆发,给鱼类养殖业造成了巨大的经济损失。为查清鱼类病毒的感染途径和感染机理并从根本上解决鱼类病毒病,鱼类细胞系被广泛应用于病毒的分离繁殖、疫苗研制及病毒与宿主细胞的相互作用机理等研究。另外,对海洋中各种环境污染物的检测缺乏快速灵敏有效的毒性检测体系,利用鱼类细胞系可有效地对环境污染物的毒性作用进行评价,确定环境污染物对海洋鱼类产生影响的最低浓度并筛选出合适的生物检测指标,从而与理化检测手段相结合,最终建立快速灵敏有效的环境污染物毒性检测体系。但目前已建立的鱼类细胞系大多来源于淡水和江海洄游性鱼类,其中多数细胞系对海水鱼类病毒不敏感,而海水鱼类细胞系数量不多,可用于鱼类病毒的分离鉴定及体外繁殖及环境污染物的毒性研究及其检测的海水鱼类细胞系更少,远远不能满足对海水鱼类病毒病诊断防治和海洋中各种环境污染物检测的需求。
     褐点石斑鱼(Epinephelus fuscoguttatus)隶属于硬骨鱼纲、鲈形目、鮨科、石斑鱼属,是我国重要的海水网箱养殖鱼种之一,同样面临环境污染和病毒性疾病的严重影响,但至今仍未有成功建立褐点石斑鱼组织细胞系的相关报道。因此,迫切需要建立褐点石斑鱼细胞系并应用于鱼类病毒疫苗研制和环境污染物毒性作用评价和检测等方面,为鱼类病毒学和环境毒理学等研究奠定坚实的基础。
     为了建立褐点石斑鱼细胞系,本文采用0.5%透明质酸酶和0.2%Ⅱ型胶原酶联合消化法启动了鳍组织的原代培养,采用0.125%胰蛋白酶消化法启动了心脏组织的原代培养,不使用酶消化而仅用组织块培养法启动了鳔组织原代培养。将三种组织培养在24℃,添加有100μg/ mL羧甲基壳寡糖、10ng/mL碱性成纤维样生长因子和40ng/mL I型胰岛素样生长因子的20%胎牛血清(FBS)-DMEM/F-12培养基(pH7.2)中,原代启动7天后分别有细胞迁出,三种细胞均为成纤维样细胞,生长分裂旺盛,22天内三种细胞均长成单层,并能稳定连续传代。细胞生长曲线显示,第60代的褐点石斑鱼鳍、心脏和鳔细胞的群体倍增时间分别为50.6 h,40.3h和43.3h。染色体数目与核型分析显示,第60代褐点石斑鱼三种细胞的特征染色体数目仍为48条,染色体数目和核型特征确定其为褐点石斑鱼细胞。目前,鳍细胞已传至第90代,心脏细胞已传至第70代,鳔细胞已传至第75代,已成功建立褐点石斑鱼鳍、心脏和鳔三种连续性细胞系,将分别利用三种细胞系进行鱼类病毒敏感性和环境污染物毒性作用评价方面的应用研究。
     为了研究褐点石斑鱼心脏细胞系对鱼类病毒的敏感性及其体外繁殖病毒的能力,本文利用实验室先前提取并鉴定的两种海水鱼虹彩病毒:大菱鲆红体病虹彩病毒(TRBIV)和淋巴囊肿病毒(LCDV),分别感染褐点石斑鱼心脏细胞系细胞。两种病毒分别加入心脏细胞中吸附2h后,于24℃,10% FBS-DMEM/F12培养液中培养。2-3天后,心脏细胞均出现明显的细胞病变效应(CPE),TRBIV感染的心脏细胞还出现严重的空泡化和颗粒化现象。利用透射电镜可观察到大量典型的TRBIV或LCDV病毒粒子在心脏细胞质中聚集并增殖,病毒粒子大小和形态结构分别与已有报道一致。CPE大于70%后收获心脏细胞后,采用冻融1次,高速冷冻离心的方法得到利用褐点石斑鱼心脏细胞系繁殖的TRBIV或LCDV病毒液。测得TRBIV和LCDV的病毒液滴度较高,分别为104.5 TCID50 ml?1和104.0 TCID50 ml?1,且可继续感染其他正常心脏细胞系细胞。以上结果说明,褐点石斑鱼心脏细胞系对两种鱼类虹彩病毒TRBIV和LCDV较为敏感,在目前的体外病毒繁殖条件下可繁殖获得滴度较高的两种病毒液,褐点石斑鱼心脏细胞系是TRBIV和LCDV良好的体外繁殖体系。
     为了利用褐点石斑鱼鳔细胞系研究久效磷对鳔细胞的毒性作用和致毒机理,并对久效磷的毒性作用进行评价以应用于环境中有机磷农药污染检测,本文使用不同浓度久效磷处理褐点石斑鱼鳔细胞系细胞后,发现1μg/mL久效磷即可对鳔细胞产生细胞毒性,且呈浓度依赖性。利用MTT法和细胞蛋白含量测定法所得的久效磷对鳔细胞的48h细胞半数抑制浓度(48h-IC50)分别为30.64和31.44μg/mL。在细胞形态结构方面,久效磷处理鳔细胞72h后,细胞开始出现变圆脱落现象并随后大量死亡。电镜结果显示久效磷主要引起鳔细胞线粒体的严重损伤。随着久效磷浓度的增加,鳔细胞线粒体出现肿胀,内嵴模糊并最终溶解等现象。细胞生物标志酶活性变化结果显示,久效磷可引起鳔细胞乙酰胆碱酯酶(AChE)、超氧化物歧化酶(SOD)和谷胱甘肽-S-转移酶(GST)活性的显著变化。根据细胞病理学及酶学方面的变化,本文推测久效磷的致毒机理是引起细胞内解毒和抗氧化防御系统的损伤,进而影响细胞内线粒体的产能,最终导致细胞死亡。以上结果显示褐点石斑鱼鳔细胞系细胞对久效磷的毒性作用灵敏度高,检测其毒性需要的时间较短,且鳔细胞的AChE、SOD和GST三种酶活性可作为久效磷的生物检测指标,为最终与理化检测手段相结合,建立快速灵敏有效的有机磷污染物生物检测体系奠定基础。
     为了利用褐点石斑鱼鳍细胞系对三丁基氧化锡(TBTO)的毒性作用进行评价,研究TBTO对鳍细胞的毒性作用和致毒机理,本文利用不同浓度的TBTO处理褐点石斑鱼鳍细胞系细胞,通过MTT法和细胞蛋白含量测定法检测了TBTO对鳍细胞的体外细胞毒性。由结果可知,1ng/mL TBTO即可对鳍细胞产生细胞毒性,细胞毒性随着TBTO浓度的增加而增大,表现出明显的浓度依赖性。利用上述两种方法所得的TBTO对鳍细胞的48h-IC50值分别为39.87和41.77ng/mL。光镜下观察发现TBTO处理鳍细胞120h内细胞形态和贴壁能力与对照组相比均没有明显可见的改变。而电镜结果则显示TBTO主要引起鳍细胞线粒体的严重损伤,线粒体出现肿胀,内嵴模糊并最终溶解的现象,并在细胞内出现大量空泡。鳍细胞生物标志酶活性变化结果显示,TBTO可引起鳍细胞SOD和GST活性的显著变化,鳍细胞的SOD和GST酶活性可作为TBTO的生物检测指标,为最终与理化检测手段相结合,建立快速灵敏有效且符合国家标准的有机锡污染物生物检测体系奠定基础。
     本文旨在建立褐点石斑鱼鳍、心脏和鳔细胞系,并将三种细胞系应用到对鱼类病毒敏感性和环境污染物毒性作用评价的研究中,为鱼类病毒学、环境毒理学及建立快速、灵敏、有效的环境污染物生物评价和检测体系奠定基础。
Fish cell lines are valuable tools for studies of fish virology, cytotoxicology, genetics, and carcinogenesis in vitro. Recently, the degradation of marine environment and outbreak of infectious viral diseases have severely affected many marine fishes and caused great economic losses in aquaculture. Brown-marbled grouper, Epinephelus fuscoguttatus (Forssk?l), is one of the most important commercial fish. And iridovirus have been identified as the most important pathogen of brown-marbled grouper aquaculture, associated with high susceptibility and mortality. To control fish viral diseases, an understanding of the viral dynamics in the host fish cells and in viral vectors is needed. Since fish cell lines can be used as ideal tools for in vitro studies of virus isolation, propagation and cell-virus interactions, it is necessary to develop species-specific cell lines for viral disease investigations. On the other hand, in vitro cultured fish cells have also been found to be rapid and effective evaluation and bioassay systems to screen the cytotoxicity of environmental pollutants.
     Many fish cell lines have been established and consist primarily of freshwater and anadromous species. By now, only several cell lines have been established from commercial marine fishes. Unfortunately, no cell line has been established from E. fuscoguttatus. This study was conducted to establish three novel cell lines from E. fuscoguttatus and to characterize their application in the studies of fish viruses and environmental pollutants monitoring.
     To establish fin, heart and swim bladder cell lines from E. fuscoguttatus, fin tissues, which were digested with 0.5% hyaluronidase and 0.2% collagenase II; heart tissues, which were digested with 0.125% trypsin; and swim bladder tissues, which were digested without any enzyme, were used respectively to initiate the primary culture in Dulbecco’s Modified Eagle Mediμm: Ham’s Nutrient F-12 (1:1) (DMEM/F12) medium supplemented with fetal bovine serum (FBS), basic fibroblast growth factor, insulin-like growth factor-I and carboxymethyl-chitooligosaccharide at 24 oC. The fin, heart and swim bladder cells in primary culture were all in fibroblastic morphology and proliferated to confluence within 22 days. They grew at a steady rate during subsequent subcultures. Growth property studies indicated that the fin, heart and swim bladder cells had population doubling times of 50.6 h, 40.3h and 43.3h at passage 60, respectively. Karyotype analysis showed that the fin, heart and swim bladder cells all exhibited chromosomal aneuploidy with a modal chromosome nμmber of 48. These implied that the fin, heart and swim bladder cells were indeed brown-marble grouper cells. To date, fin cells have been subcultured up to passage 90, heart cells have been subcultured up to passage 70 and swim bladder cells have been subcultured up to passage 75. They still grow in a good proliferating status. Three continuous brown-marbled grouper fin, heart and swim bladder cell lines which named bmGF-1, bmGH and bmGSB, respectively, have been successfully established.
     To evaluate the viral susceptibilities of bmGH cells to two iridoviruses, turbot reddish body iridovirus (TRBIV) and lymphocystis disease virus (LCDV), and in vitro propagation abilities of TRBIV and LCDV utilizing bmGH cells, the bmGH cells at passage 61 were inoculated with TRBIV or LCDV for 2h. Then, viruses were removed and the bmGH cells were cultured in 10% FBS-DMEM/F12 medium at 24 oC. The results of viral susceptibility characterization revealed that typical cytopathic effects (CPE) of bmGH cells emerged after infected by two iridoviruses within 2-3 days. And a large number of TRBIV and LCDV particles were also found in the infected bmGH cells, respectively. The in vitro propagated TRBIV and LCDV had higher infective abilities to reinfect with other normal bmGH cells, when the viruses were harvested after 5-6 days and freeze-thawed for 1 time. The viral titers of TRBIV and LCDV in bmGH cells reached 104.5 TCID50 mL?1 and 104.0 TCID50 mL?1, respectively. All these indicate that bmGH cell line established here may serve as a useful tool for studies of fish virus isolation, propagation and vaccine development.
     To establish a rapid and effective bioassay system to detect the organophosphorus insecticide and study their cytotoxic effects and possible toxic mechanisms, bmGSB cells were used to evaluate the acute cytotoxic effects of monocrotophos by MTT assay and cell protein assay. The result showed that monocrotophos was toxic to bmGSB cells at all tested concentrations in concentration-dependent manner. The 48h-IC50 values of monocrotophos to bmGSB cells were 30.64 and 31.44 ug/mL, respectively. After treated by monocrotophos, bmGSB cells became round and lysed at 72h, and began to detach and finally died within 120h. The ultrastructure showed that mitochondria were the most prominent site of monocrotophos cytotoxicity. With increasing monocrotophos concentration, the damage of cell structures was more serious and the mitochondria cristae were totally disrupted and lysed. In the monocrotophos-treated bmGSB cells, the activities of acetylcholinesterase (AChE), superoxide dismutase (SOD) and glutathione S-transferase (GST) changed significantly (P<0.05). It suggested that monocrotophos could affect these enzyme activities with marked changes. The AChE, SOD and GST activities of bmGSB cells could be suitable biomarker for the detection of monocrotophos. All these indicated that bmGSB cell line could be used as a useful cytotoxic evaluation system.
     To evaluate and detect the tributyltin oxide (TBTO) and their cytotoxic effects and possible toxic mechanisms, the acute cytotoxic effects of TBTO to bmGF-1 cells were determined by MTT assay and cell protein assay, which indicated the cytotoxicity of TBTO to bmGF-1 cells initiate at 1ng/mL. The 48h-IC50 values of TBTO to bmGF-1 cells were 39.87 and 41.77ng/mL. After treated by TBTO, the bmGF-1 cells exhibit no significant morphological changes as control, but their ultrastructures showed the damage by TBTO. Mitochondria were the most prominent site of TBTO cytotoxicity. With the increase of TBTO concentration, the damage of cell structures became more serious and the mitochondria cristae were totally disrupted and lysed. The result of enzyme activities showed that the activities of SOD and GST in TBTO-treated bmGF-1 cells changed significantly (P<0.05). It suggested that the SOD and GST activities of bmGF-1 cells could be suitable biomarker for the detection of TBTO. All these indicated that bmGF-1 cell line could be used as used a useful cytotoxic evaluation system to detect the TBTO.
     This study was conducted to establish three novel cell lines from fin, heart and swim bladder tissues of brown-marbled grouper, and to utilize these cell lines in the study of viral susceptibility evaluation and cytotoxicity detection. These three cell lines can be used as useful tools for studies of fish virology and cytotoxicology, and has potential applications in fish virus isolation, propagation, vaccine development and environmental pollutants monitoring.
引文
毕建国,段志霞.我国海洋渔业生态环境污染及治理对策.中国渔业经济, 2008, 3(26): 16-21.
    陈松林.鱼类胚胎干细胞研究进展.中国水产科学. 2001,7(4):95-98
    陈信忠,龚艳清.鱼类病毒性神经坏死病研究进展.生物技术通报,2006,增刊:141-146.
    杜永兵,李远友,禹龙香,等.三丁基锡对蓝子鱼的激素和酶指标及组织显微结构的影响.环境科学学报, 2007,27(5): 796-802.
    樊廷俊,王丽燕,耿晓芬,等.大菱鲆红体病虹彩病毒体外繁殖条件的研究,中国海洋大学学报,2006, 36(5): 767-774.
    樊廷俊,耿晓芬,丛日山,等.大菱鲆鳍细胞系的建立.中国海洋大学学报.2007, 37(5):759-766.
    樊廷俊姜国建于苗苗,等.大菱鲆红体病虹彩病毒灭活疫苗的生产工艺.中国专利,申请号:200810157499.1,2008.10.15.
    樊廷俊,钱冠兰,杜玉堂,等.姬松茸提取物的体外抗病毒感染活性研究.中国海洋大学学报,2009,39.
    房燕,汝少国,邴欣,等.久效磷对金鱼精巢超显微结构和特征性酶活性的影响.水产学报. 2007, 31(5): 568-574.
    江桂斌,徐福正,何滨,等.有机锡化合物测定方法研究进展.海洋环境科学, 1999,18(3): 61-68.
    雷霁霖海水养殖新品种介绍―大菱鲆.中国水产, 2000, 4: 38-38.
    李怡,张令强,贺福初.病毒入胞机制及其作为抗病毒药物靶点的研究进展.国际病毒学杂志,2006, 13(1): 19-22.
    廖经球,尹绍武,陈国华,等.褐点石斑鱼的核型研究.水产科学, 2006, 11(23):567-569.
    林浩然.海洋鱼类资源的可持续利用和海洋鱼类科学技术的研究方向.中国工程科学, 2003, 5(3): 27-30.
    林志芬,王连生,钟萍,等.海洋中有毒有机污染物的监测方法研究进展.海洋环境科学. 2006, 25(1): 88-93.
    刘稷燕,徐明德.南极长城湾附近和台湾以南部分海域水样中丁基锡化合物分析.环境科学学报, 2002, 22(2): 267-269.
    任国诚,陈松林,沙珍霞.漠斑牙鲆胚胎细胞系的建立与鉴定.中国水产科学,2007,14(4): 579-583.
    孙修勤,黄捷,刘允坤,等.牙鲆淋巴囊肿病的诊断技术研究.高技术通讯, 2003, 1: 89-94.
    孙修勤,洪旭光,张进兴,等.牙鲆淋巴囊肿病毒在牙鲆鳃细胞系FG-9307中的增殖.高技术通讯,2002,12:94-96.
    魏渲辉,汝少国,姜明,等.有机磷农药对鱼类的毒性效应及内分泌扰乱作用.海洋科学,2002,26(9):27-31.
    汪岷,马广勇.鱼淋巴囊肿病毒研究进展.中国海洋大学学报, 2006, 36(5): 693-698.
    王广军.虹彩病毒生物学研究现状及展望.湛江海洋大学学报, 2004, 24(3):74-78.
    王亮,孙修勤,张进兴,等.胶原酶消化法纯化牙鲆淋巴囊肿病毒.高技术通讯,2004,4:31-34.
    王淼,胡本强.我国海洋环境污染的现状、成因和治理.中国海洋大学学报, 2006, 5: 1-6.
    王燕,陈永刚,葛郑增. TBT对大鼠肝脏ROS、抗氧化酶和解毒系统酶的影响.中国环境科学, 2005, 25(4): 428-431.
    吴峰,邓南圣,程雅芳.环境中内分泌干扰物质的研究概述.环境污染与防治,2002,24(3):176-179.
    薛庆善.体外培养的原理与技术(第一版).北京:科学出版社,1999.
    杨纪明.关于我国第4次海水养殖浪潮的初思.海洋科学, 2001, 25(1):47-50
    杨先乐.有机磷农药对水生生物毒性影响的研究进展.上海水产大学学报,2002,11 (4) :378-382.
    闫建国,汝少国,邴欣,等.久效磷对黄鳝过氧化氢酶和Na+, K+-ATP酶活性的影响.环境科学研究, 2006, 19(3): 96-100.
    闫建国,汝少国,王蔚.久效磷对黄鳝乙酰胆碱酯酶、羧酸酯酶和磷酸酶活性的影响.安全与环境学报,2006,6(3):61-63.
    于淼,管华诗,郭华荣,等.鱼类细胞培养及其应用.海洋科学,2003, 27(3): 4-8.
    于强,李亚明,张华,等.利用GC/MS测定海洋中贻贝、牡蛎体内的多环芳烃.质谱学报, 2000, 21(4): 97-98.
    张福绥.近现代中国水产养殖业发展回顾与展望.世界科技研究与发展, 2003, 25(3): 6-13.
    张奇亚,李正秋,桂建芳.草鱼椎骨间质细胞系对水生动物病毒敏感性的测定.自然科学进展,2002,12(10):1037-1141.
    张奇亚.我国水生动物病毒病研究进展.水生生物学报,2002,26(1):89-102.
    张元兴,马悦,孙修勤.海洋鱼病疫苗开发与生物反应器大规模生产.高技术通讯, 2000, 1-5
    朱丽岩.几种环境内分泌干扰物对青岛近海常见海洋动物的毒性效应: [博士学位论文].青岛:中国海洋大学水产养殖系,2005.
    左文功.淡水鱼类细胞培养方法.淡水渔业,1991 ,2: 38-40.
    Abrahamson A, Andersson C, J?nsson ME, et al. Gill EROD in monitoring of CYP1A inducers infish-A study in rainbow trout (Oncorhynchus mykiss) caged in Stockholm and Uppsala waters. Aquatic Toxicology. 2007, 15:1–8.
    Balint T, Szegletes T, Szegletes ZS, et al. Biochemical and subcellular changes in carp exposed to the organophosphorus methidathion and the pyrethroid deltamethrin. Aquatic Toxicology, 1995, 33:279-295
    Bearzotti M, Delmas B, Lamoureux A, et al. Fish rhabdovirus cell entry is mediated by fibronectin. Journal of Virology. 1999, 73(9):7703-7709.
    Beat J,Bruschweiler, Friedrich E, et al. Cytotoxicity in vitro of organotin compounds to fish hepatoma cells PLHC-l(Poeciliopsis lucida). Aquatic Toxicology, 1995, 32: 143-160.
    Benya TJ. Bis(tributyltin) oxide toxicology. Drug Metabolism Reviews. 1997 29(4):1189-1284.
    Bhattacharya S. Target and non-target effects of anticholinesterase pesticides in fish. The Science of the Total Environment, 1993, Sup: 859-866.
    Biebestein A., Moraes CT. Titrating the effects of mitochondrial complex I impairment in the cell physiology. Journal of Biology and Chemistry. 1998, 274: 16188–16197.
    Boonstra J, Rijken P, Humbel B, et al. The epidermal growth factor. Cell Biology International, 1995, 19(5): 413-430.
    Borenfreund E, Babich H, Martin-Alguacil N. Effect of methylazoxymethanol acetate on bluegillsunfish cell cultures in vitro. Ecotoxicology and Environmental Safety,1989, 17: 297-307.
    Brüschweiler BJ, Würgler FE, Fent K. Inhibitory effects of heavy metals on cytochrome P4501A induction in permanent fish hepatoma cells. Archives of Environmental Contamination and Toxicology. 1996 31(4):475-82.
    Casta?o A, Bols N, Braunbeck T. The use of fish cells in ecotoxicology. The report and recommendations of ECVAM Workshop 47. Alternatives to Laboratory Animals. 2003, 31(3):317-351.
    Chambers JE. Bioactivation of organophosphorus insecticides in mammalian target and non target tissue. In : Hodgson E , et al ,Pesticides and future: toxicological studies of risks and benefits. Review in Pesticide Toxicology I. NC: North Carolina State University , 1991 , 83-90.
    Chang SF, Ngoh G.H., Kueh LFS, et al. Development of a tropical marine fish cell line from Asian seabass (Lates calcarifer) for virus isolation. Aquaculture, 2001(192): 133-143.
    Chen SL, Sha ZX,Ye HQ, et al. Establishment of a pluripotent embryonic cell line from sea perch (Lateolabrax japonicus) blastula embryo. Aquaculture, 2003, 218: 141-151.
    Chen S.L., Ren G.C., Sha Z.X., et al. Establishment of a continuous embryonic cell line from Japanese flounder Paralichthys olivaceus for virus isolation. Diseases of Aquatic Organisms, 2004, 60: 241-246.
    Chen SL, Ren GC, Sha ZX,et al. Development and characterization of a continuous embryonic cell line from turbot (Scophthalmus maximus). Aquaculture, 2005, 249:63-68.
    Chen SL, Sha ZX, Ye HQ, et al. Pluripotency and Chimera Competence of an Embryonic Stem Cell Line from the Sea Perch (Lateolabrax japonicus). Marine Biotechnology, 2006,1: 1-10.
    Chew-Lim M, Ngoh G, Ng MK, et al. Grouper cell line for propagating grouper viruses. Singapore Journal of Primatology, 1994, 22: 113–116.
    Chi SC, Hu WW, Lo BJ. Establishment and characterization of a continuous cell line (GF-1) derived from grouper, Epinephelus coioides: a cell line susceptible to grouper nervous necrosis virus (GNNV). Journal of Fish Diseases, 1999, 22: 173-182.
    Chinchar VG, Essbauer S, He JG, et al. Iridoviridae.“Virus TaxonomyⅧReport of the International Committee on the Taxonomy of Viruses”. London: Elsevier, 2005: 163-175.
    Couve E, Kiss J,Kuznar J. Infectious pancreatic necrosis virus internalization and endocytic organelles in CHSE-214 cells. Cell Biology International Reports,1992,16:899-906.
    Dutta HM, Adhikari Singh NKS, Roy PK, et al. Histopathological changes induced by malathion in the liver of a freshwater catfish , Heteropneustes fossilis (Bloch) , Bulletin of Environmental Contamination and Toxicology , 1993, 51:895-900
    Evans CJ, Karpel S. Organotin compounds in morden technology. Amsterdam: Elsevier, 1985. 1-279.
    Fan T.J., Wang X.F. In vitro culture of embryonic cells from shrimp Penaeus chinensis. Journal of Experimental Marine Biology and Ecology, 2002, 267: 175-184.
    Fernandez-Puentes C, Novoa B, Figueras A. A new fish cell line derived from turbot (Scophthalmus maximus L.) TV-1. Bulletin of the European Association of Fish Pathologists,1993, 13:94-96.
    Frerichs GN, Morgan D, Hart D, et al. Spontaneously productive Ctyperetrovirus infection of fish cell lines. Journal of General Virology, 1991,72: 2537-2539.
    Fryer JL, Yusha A, Pilcher KS. The in vitro cultivation of tissue and cells of Pacific salmon and steelhead trout. Annals of the New York Academy of Sciences,1965, 126(1): 566–586.
    Fryer JL, Lannan CN. Three decades of fish cell culture: A current listing of cell lines derived from fishes. Journal of Tissue Culture Methods, 1994, 16(2): 87-94.
    Galgani F, Bocquene G. In vitro inhibition of acetylcholinesterase from four marine species by organophosphates and carbamates. Bulletin of Environmental Contamination and Toxicology, 1990, 45: 243-249.
    Galgani F, Bocquene G, Truquet P, et al. Monitoring of pollutant biochemical effects in marine organisms of the French coasts. Acta Oceanologica Sinica , 1992, 15: 355-364.
    Ganassin RC, Sanders SM, Kennedy CJ, et al. Development of a cell line from Pacific herring,Clupea harengus pallasi, sensitive to both naphthalene cytotoxicity and infection by viral hemorrhagic septicemia virus. Cell Biology and Toxicology, 1999, 15: 299-309.
    Geraghty RJ, Krummenacher C, Cohen GH, et al. Entry of alpha herpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science, 1998, 280:1618-1620.
    Gibon-Kueh S, Ngoh-Lim GH, Netto P, et al. A systemic iridoviral disease in mullet, Mugil cephalus L., and tiger grouper, Epinephelus fuscoguttatus Forsskal: a first report and study. Journal of Fish Disease, 2004, 27: 693-699.
    Gravell M, Malsberger RG.A permanent cell line from the fathead minnow (Pimephales promelas). Annals of the New York Academy of Sciences 1965,126: 555-565.
    Grinwis GC, Boonstra A, van den Brandhof EJ, et al. Short-term toxicity of bis(tri-n-butyltin) oxide in flounder (Platichthys flesus): pathology and immune function. Aquatic Toxicology, 1998, 42: 15-36.
    Grinwis GC, Besselink HT, van den Brandhof EJ, et al. Toxicity of TCDD in European flounder (Platichthys flesus) with emphasis on histopathology and cytochrome P450 1A induction in several organ systems. Aquatic Toxicology, 2000 50(4):387-401.
    Gülden M, Seibert H. Impact of bioavailability on the correlation between in vitro cytotoxic and in vivo acute fish toxic concentrations of chemicals. Aquatic Toxicology, 2005 72, 327–337.
    Heemstra, P.C., Randall J.E. An annotated and illustrated catalogue of the grouper, rockcod, hind, coral grouper and lyretail species known to date. FAO Fisheries Synopsis, 1993, 125, 382p.
    Hightower LE, Renfro JL. Recent applications of fish cell culture to biomedical research. The Journal of Experimental Zoology ,1998, 248:290–302
    Hrzenjak M., Shain S.A. Protein kinase C-dependent and -independent pathways of signal transduction in prostate cancer cells: fibroblast growth factor utilization of a protein kinase C-independent pathway. Cell Growth and Differentiation. 1995, 6: 1129-1142.
    Imajoh M, Yagyu K, Oshima S. Early interactions of marine birnavirus infection in several fish cell lines. Journal of General Virology, 2003, 84: 1809-1816.
    Imajoh M, Goto T, Oshima S. Characterization of cleavage sites and protease activity in the polyprotein precursor of Japanese marine aquabirnavirus and expression analysis of generated proteins by a VP4 protease activity in four distinct cell lines. Archives of Virology, 2007, 152: 1103-1114.
    Imajoh M, Ikawa T, Oshima S. Characterization of a new fibroblast cell line from a tail fin of red sea bream, Pagrus major, and phylogenetic relationships of a recent RSIV isolate in Japan. Virus Research, 2007, 126(1-2): 45-52.
    Jin L.M., Wei C.Z., Tian W.J., et al. Chitooligosaccharide and its derivatives promote the proliferation of osteoblasts in vitro. Journal of Clinical Rehabilitative Tissue EngineeringResearch 2008, 12: 3637-3640
    Kang MS, Oh MJ, Kim YJ, et al. Establishment and characterization of two new cell lines derived from flounder, Paralichthys olivaceus (Temminck & Schlegel). Journal of Fish Diseases,2003,26(11-12):657-665
    Kim GB, Haruhiko Nakata, Shinsuke Tanabe. In vitro inhibition of hepatic cytochrome P450 and enzyme activity by butyltin compounds in marine mammals. Environmental Pollution, 1998, 99:255-261.
    Kocan RM, Landolt ML, Sabo KM. In vitro toxicity of eight mutagens/carcinogens for three fish cell lines. Bulletin of Environmental Contamination and Toxicology.1979, 23:269-274.
    Lai YS, Murali S, Ju HY, et al. Two iridovirus-susceptible cell lines established from kidney and liver of grouper, Epinephelus awoara (Temminck & Schlegel), and partial characterization of grouper iridovirus. Journal of Fish Diseases, 2000, 23:379-388.
    Lai YS, Chiu HC, Chiu HC. Propagation of yellow grouper nervous necrosis virus (YGNNV) in a new nodavirus-susceptible cell line from yellow grouper, Epinephelus awoara (Temminck & Schlegell), brain tissue. Journal of Fish Diseases, 2001, 24(1):299-309.
    Lai YS, John JA, Lin CH, et al. Establishment of cell lines from a tropical grouper, Epinephelus awoara (Temminck & Schlegel), and their susceptibility to grouper irido- and nodaviruses. Journal of Fish Diseases, 2003, 26(1):31-42.
    Lai YS, Chiou PP, Chen WJ, et al. Characterization of apoptosis induced by grouper iridovirus in two newly established cell lines from barramundi, Lates calcarifer (Bloch). Journal of Fish Diseases, 2008, 31(11): 825-834
    Levan A. Nomenclature for centrometic position on chromosomes. Hereditas, 1964, 52(2): 201-220.
    Li HY, Zhang SC. In vitro cytotoxicity of the organophosphorus pesticide parathion to FG-9307 cells. Toxicology in vitro, 2000, 15: 643-647.
    Li HY, Zhang SC, Jiang M, et al. In vitro study on cytotoxic effects of the organophosphorus pesticide profenofos on the gill cell line, FG-9307 of flounder (Paralichthys olivaceus). Chinese Journal of Oceanology and Limnology, 2001, 19(1): 57-62.
    Li HY, Zhang SC. In vitro cytotoxicity of the organophosphorus insecticide methylparathion to FG-9307, the gill cell line of flounder (Paralichthys olivaceus). Cell Biology and Toxicology, 2002,18:235-241.
    McAllister BG, Kime, DE. Early life exposure to environmental levels of the aromatase inhibitor tributyltin causes masculinisation and irreversible sperm damage in zebrafish (Danio rerio). Aquatic Toxicology, 2003, 65: 309-316.
    Morgan MJ, Fancey LL, Kiceniuk JW. Response and Recovery of Brain AcetylcholinesteraseActivity in Atlantic Salmon (Salno salar) Exposed to Fenitronthion. Canadian Journal of Fisheries and Aquatic Sciences., 1990, 47: 1652-1654.
    Na N, Guo HR, Zhang SC, et al. In vitro and in vivo acute toxicity of fenpyroximate to flounder Paralichthys olivaceus and its gill cell line FG. Aquatic Toxicology. 2009, Epub of print Okada Y, Oyama Y, Chikahisa L, et al. Tri-n-butyltin-induced change in cellular level of glutathione in rat thymocytes: a flow cytometric study. Toxicology Letters, 2000, 117:123-128.
    Ono S, Wakabayashi K, Nagai A. Isolation of the virus causing viral endothelial cell necrosis of eel from cultured Japanese eel Anguilla japonica. Fish Pathology.2007, 42(4): 191-200
    ?rpetveit I, Gj?en T, Sindre H, et al. Binding of infectious pancreatic necrosis virus (IPNV) to membrane proteins from different fish cell lines. Archives of Virology, 2008, 153:485-493.
    Ozcan ME, Gulec M, Ozerol E et al. Antioxidant enzyme activities and oxidative stress in affective disorders. International Clinical Psychopharmacology. 2004, 19(2):89-95.
    Parameswaran V, Shukla R, Bhonde R, et al. Establishment of embryonic cell line from sea bass (Lates calcarifer) for virus isolation. Journal of Virological Methods, 2006, 137(2): 309-316.
    Parameswaran V, Ishaq Ahmed VP, Shukla R, et al. Development and characterization of two new cell lines from milkfish (Chanos chanos) and grouper (Epinephelus coioides) for virus isolation. Marine Biotechnology (NY), 2007, 9(2): 281-291.
    Paynej F, Fancey A, Rahimtula D, et al. Review and perspective on the use of mixed function oxygenase enzymes in biological monitoring. Comparative Biochemistry and Physiology, 1987,86: 233-245.
    Qin QW, Shi C, Gin KY, et al. Antigenic characterization of a marine fish iridovirus from grouper, Epinephelus spp. Journal of Virological Methods, 2002, 106: 89-96.
    Qin QW, Wu TH, Jia TL, et al. Development and characterization of a new tropical marine fish cell line from grouper, Epinephelus coioides susceptible to iridovirus and nodavirus. Journal of Virological Methods, 2006, 131(1): 58-64.
    Rachlin JW, Perlmutter A. Fish cells in culture for study of aquatic toxicans. Water Research, 1968, 2:409-414.
    Rauchova H, Ledvinkova J, Kalous M. The effect of lipid peroxidation on the activity of various membrane-bound ATPases in rat kidney. The International Journal of Biochemistry & Cell Biology, 1995, 27 :251-255.
    Readman JW. Persistent organophosphorus pesticides in tropical marine environments. Marine Pollution Bulletin,1992,24(8):398-402.
    Reed L.J. Muench H. A simple method of estimating fifty percent endpoints. American journal of hygiene1938, 493-497.
    Robers RJ. Fish pathology. 3rd edition. London: W B Saunders Pree, 2001.
    Sancho E , Ferrando MD, Andreu E. Inhibition of gill Na + , K+ -ATPase activity in the eel , Anguilla anguilla , by fenitrothion. Ecotoxicology and Environmental Safety, 1997 , 38 :132 -136.
    Schirmer K, Dixon DG, Greenberg BM, et al. Ability of 16 priority PAHs to be directly cytotoxic to a cell line from the rainbow trout gill. Toxicology. 1998, 127(1-3): 129-141.
    Schmale MC, Gill KA, Cacal SM, et al. Characterization of Schwann cells from normal nerves and from neurofibromas in the bicolour damselfish. Journal of Neurocytology, 1994, 23(11): 668-681.
    Segner H, Behrens A, Joyce EM, et al. Transient induction of 7-ethoxyresorufin-O-deethylase (EROD) activity by medium change in the rainbow trout liver cell line, RTL-W1. Marine Environmental Research. 2000, 50(1-5):489-93.
    Segner H. Cytotoxicity assays with fish cells as an alternative to the acute lethality test with fish. Atla-alternatives to Laboratory Animals. 2004, 32(4): 375-382.
    Servili A, Bufalino M, Nishikawa R, et al. Establishment of long term cultures of neural stem cells from adult sea bass, Dicentrarchus labrax. Comparative Biochemistry and Physiology Part A Molecular & Integrative Physiology. 2009, 152(2): 245-254
    Shi CY, Wang YG, Yang SL, et al. The first report of an iridovirus-like agent infection in farmed turbot,Scophthaimus maximus, in China. Aquaculture, 2004, 236: 11-25.
    Sieczkarski SB, Whittaker GR. Dissecting virus entry via endocytosis. Journal of General Virology, 2002, 83: 1535-1545.
    Sivaprasad U., Fleming J., Verma P.S., et al. Stimulation of insulin-like growth factor (IGF) binding protein-3 synthesis by IGF-I and transforming growth factor-alpha is mediated by both phosphatidylinositol-3 kinase and mitogen-activated protein kinase pathways in mammary epithelial cells. Endocrinology, 2004, 145: 4213-4221.
    Sommerset I, Kross?y B, Biering E, et al. Vaccines for fish in aquaculture. Fish Vaccines, 2005, 4(1): 89–101.
    Spector DL, Goldman RD, Leinwand LA. Cells: a laboratory manual. Cold Spring Harbor Laboratory Press, 1998.
    Su F, Zhang S.C, Li HY, et al. In vitro acute cytotoxicity of neonicotinoid insecticide imidacloprid to gill cell line of flounder Paralichthys olivaceus. Chinese Journal of Oceanology and Limnology. 2007,25 (2):209–214.
    Tan FX, Wang M, Wang WM, et al. Comparative evaluation of the cytotoxicity sensitivity of six fish cell lines to four heavy metals in vitro. 2008, Toxicology in Vitro 22:164–170.
    Traven L, Zaja R, Loncar J, et al. CYP1A induction potential and the concentration of prioritypollutants in marine sediment samples--in vitro evaluation using the PLHC-1 fish hepatoma cell line. Toxicology In Vitro. 2008 22(6): 1648-1656.
    Thomas MC, Eric DC, Ralph LC. Envirionmental endocrine disruption: an effects assessment and analysis. Environmental Health Perspectives, 1998, 106(1): 11-56.
    Tan JL, Wang XB, Lu ZW. Thermoelectrically Cooled Si PIN Detector for X-ray Fluorescence Spectrometer. IMP & HIRFL Annual Report, 2002, 1:101-101.
    Tong S.L., Li H. Miao H.Z. The establishment and partial characterization of a continuous fish cell line FG-9307 from the gill of flounder Paralichthys olivaceus. Aquaculture,1997, 156:327-333.
    Van der oost R, Beyer J, Vermeulen NPE, et al. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology, 2003, 13: 57-149.
    Villena A.J. Applications and needs of fish and shellfish cell culture for disease control. Reviews in Fish Biology and Fisheries, 2003, 13: 111-140.
    Walker R. Fine structure of lymphocystis virus of fish. Virology, 1962, 18:503-505.
    Wen CM, Lee CW, Wang CS, et al. Development of two cell lines from Epinephelus coioides brain tissue for characterization of betanodavirus and megalocytivirus infectivity and propagation. Aquaculture, 2008, 278: 14-21.
    Whyte JJ, Jung RE, Schmitt CJ, et al. Ethoxyresorufin-O-deethylase (EROD) activity in fish as a biomarker of chemical exposure. Critical reviews in toxicology. 2000, 30(4):347-570.
    Wibe AE, Nordtug T, Jenssen BM. Effects of bis(tributyltin)oxide on antipredator behavior in threespine stickleback Gasterosteus aculeatus L. Chemosphere. 2001 44(3): 475-81.
    Wibe AE, Billing A, Rosenqvist G, et al. Butyl benzyl phthalate affects shoaling behavior and bottom-dwelling behavior in threespine stickleback. Environmental research, 2002 89(2):180-187.
    Wolf K, Snieszko SF, Dunber CE. Infections pancreatic necrosis, a virus-caused disease fish. Excerpta medica,1959,13(sect 1):228-235.
    Wolf K, Quimby MC. Established eurythermic line of fish cells in vitro. Science, 1962, 135: 1065-1066.
    Ye HQ,Chen SL, Sha ZX,et al. Development and characterization of cell lines from heart, liver, spleen and head kidney of sea perch Lateolabrax japonicus. Journal of Fish Biology, 2006,69 (Supplement A):115–126.
    Yu YX, Rearzotti M, Vende P, et al. Partial mapping and sequencing of a fish iridovirus genome reveals genes homologous to the frog virus 3 p31, p40 and human eIF2 alpha. Virus Research, 1999, 63 (1-2): 53-63.
    Zhou GZ, Li ZQ, Yuan XP, et al. Establishment, characterization, and virus susceptibility of a new marine cell line from red spotted grouper (Epinephelus akaara). Marine Biotechnology (NY), 2007, 9(3):370-376.