反复压缩大塑性变形制备镁基复合材料的组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用反复压缩大塑性变形技术制备镁基复合材料,研究复合材料的组织和性能。将Si加入AZ31镁合金熔体制备了AZ31–Si原位镁基复合材料坯料,采用循环闭式模锻(CCDF)和反复镦压(RU)两种反复压缩大塑性变形技术细化和均匀组织结构,制备Mg2Si原位增强的均匀组织镁基复合材料,考察了Si含量对复合材料坯料组织、力学性能和耐磨性能的影响,研究了反复压缩工艺参数(变形道次、加工温度)对基体组织和增强相尺寸、形貌、分布,以及对力学性能的影响规律,分析了反复压缩对室温拉伸断裂行为的影响,探讨了AZ31–Si反复压缩过程中Mg2Si相的破碎机制,采用有限元法模拟了反复压缩过程中复合材料的温度场、流动场、应力场、应变场,优化了模具和工艺。通过高能超声技术将SiC纳米颗粒加入Mg熔体中制备了Mg–1wt.%SiC纳米复合材料坯料,采用往复挤压(CEC)大塑性变形技术细化和均匀组织,弥散SiC纳米颗粒分布,制备了SiC纳米颗粒均匀分布的镁基纳米复合材料,考察了往复挤压道次对Mg–1wt.%SiC纳米复合材料坯料组织和性能的影响。
     研究了Si含量对AZ31–Si原位复合材料坯料组织和室温性能的影响,表明铸态AZ31–Si原位复合材料由α-Mg基体、Mg17Al12相、树枝状初生Mg2Si相和汉字状共晶Mg2Si相组成,随着Si含量从0增加到5%(wt.%),Mg2Si相的尺寸和体积分数逐渐增大,复合材料的硬度、屈服强度和耐磨性能逐渐提高,由于基体中粗大的Mg2Si颗粒尖端附近容易产生应力集中,抗拉强度和延伸率逐渐降低,室温拉伸断裂形式由韧脆混合型穿晶断裂转变为解理脆性断裂。
     考察了铸态AZ31–Si复合材料坯料的高温力学性能和耐磨性能,发现随着Si含量从0增加到5%(wt.%),铸态AZ31–Si复合材料在150°C下的抗拉强度和延伸率逐渐减小;随着拉伸温度从100°C提高到200°C,AZ31–2wt.%Si复合材料的抗拉强度逐渐降低,延伸率逐渐提高;随着温度从30°C提高到190°C,由于复合材料的强度和硬度逐渐降低,高温下热应力与接触应力共同作用,磨损失重逐渐增大。
     研究了反复压缩道次对AZ31–2wt.%Si坯料组织的影响,发现随着循环闭式模锻及反复镦压道次从0增加到5,由于动态再结晶,晶粒平均尺寸逐渐减小,尺寸分布均匀性逐渐提高;变形时基体产生的剪切应力将Mg2Si由粗大的汉字状和树枝状逐渐破碎为细小多角块状,破碎的Mg2Si颗粒在多道次加工过程中反复流动而重新分布,其分布均匀性逐渐提高,5道次后呈细小、弥散分布;坯料反复压缩过程的有限元模拟表明应力场中存在剪切应力,应变场中累积应变和应变的分布均匀性随道次增加逐渐提高,这些因素导致Mg2Si颗粒的分布均匀性随道次增加逐渐提高。
     研究了反复压缩道次对AZ31–2wt.%Si坯料性能的影响,结果表明:随着循环闭式模锻及反复镦压道次从0增加到5,由于基体晶粒逐渐细化和Mg2Si相弥散化,复合材料的屈服强度、抗拉强度、延伸率和耐磨性能不断提高,拉伸断裂形式由解理脆性断裂转变为韧脆混合断裂。
     AZ31和AZ31–2wt.%Si坯料在不同温度反复压缩后的组织和性能研究表明:随着循环闭式模锻加工温度从350°C提高到450°C:AZ31合金晶粒平均尺寸逐渐增大,形成的基面织构减弱,屈服强度和抗拉强度逐渐降低,延伸率逐渐提高;在400°C下加工时AZ31–2wt.%Si复合材料中Mg2Si颗粒破碎效果最好,且基体晶粒平均尺寸最小,强度和延伸率最高。
     利用有限元法分析了反复镦压模具结构和工艺参数对材料流动的影响,发现减小型腔宽度可以提高每道次的等效应变,但降低应变分布均匀性和坯料的形状尺寸保持度;模具过渡角可提高坯料成型表面质量,随着过渡角半径的增大,坯料中应变分布均匀性有所提高;反复镦压过程中坯料的绝大部分在三个方向都处于压应力状态,变形过程中由于流速不均匀和流动方向不同,剪切变形总是存在的;随反复镦压道次的增加,累积应变和应变的分布均匀性都逐渐提高;采用路径B(每道次加工后坯料绕Z轴旋转90°)镦压获得的坯料中等效应变分布比路径A(每道次加工后坯料不旋转)更均匀;随着镦压温度的提高,最大镦压载荷不断减小,坯料中应变和应力分布更加均匀。
     研究了采用路径A和B反复镦压后镁合金的组织和性能,表明在350°C、5道次,采用路径B加工对AZ31合金具有更强的晶粒细化和均匀化效果,对强度和塑性的提高更加显著。
     往复挤压道次对Mg–1wt.%SiC纳米复合材料坯料组织和性能的影响研究表明:随着道次从0增加到8,复合材料的平均晶粒尺寸逐渐减小,纳米颗粒的分布均匀性、复合材料的硬度和耐磨性能逐渐提高;往复挤压过程中镁基体强烈的剪切变形使SiC纳米颗粒团簇解离并均匀分布;纳米复合材料性能的提高主要归结于弥散强化和细晶强化。
In this dissertation, magnesium matrix composites were fabricated by repeatedcompression severe plastic deformation (SPD) technologies. Microstructure and mechanicalproperties of the composites were investigated. AZ31–Si in-situ magnesium matrix compositebillets were fabricated by adding Si into AZ31magnesium alloy melt. Repeated compressionSPD technologies, cyclic closed-die forging (CCDF) and repeated upsetting (RU), wereadopted to refine and uniform the microstructure, and in situ Mg2Si reinforced magnesiummatrix composites with homogeneous microstructure were fabricated. Effects of Si content onmicrostructure, mechanical properties and wear resistance properties of as-cast compositebillets were examined. Effects of technological parameters (deformation pass, processingtemperature) on size, morphology, distribution of matrix structure and reinforcements,mechanical properties were studied. Influence of repeated compression on fracture behaviorduring tensile test at room temperature was analyzed. Breaking mechanism of Mg2Si phasesduring repeated compression of AZ31–Si was discussed. The temperature field, flow field,stress field, and strain field of composite were simulated with finite element method. The dieand technology were optimized. SiC nanoparticles were added into Mg melt by high intensityultrasonic method and Mg–1wt.%SiC nanocomposite billets were fabricated. Cyclicextrusion compression (CEC) severe plastic deformation technology was used to refine anduniform the microstructure, disperse the SiC nanoparticles, and magnesium matrixnanocomposite with homogeneous distribution of SiC nanoparticles was fabricated.Influences of CEC passes number on microstructure and properties of Mg–1wt.%SiCnanocomposite billets were studied.
     Effects of Si content on microstructure and room temperature properties of AZ31–Si in-situ composite billets were investigated, and the results show that as-cast AZ31–Si in-situcomposites are composed of α-Mg matrix, Mg17Al12phase, dendritic primary Mg2Si phaseand Chinese script type eutectic Mg2Si phase. With Si contents increasing from0to5%(wt.%), size and volume fraction of Mg2Si phase gradually increase. Hardness, yield strength(YS) and wear resistance also gradually increase. Both elongation and ultimate tensilestrength (UTS) decrease due to stress concentrations occur easily in the matrix near the sharptips of Mg2Si particles. The tensile fracture mode at room temperature transforms from ductileand brittle mixed transgranular fracture to cleavage brittle fracture.
     The mechanical properties and wear resistance properties of as-cast AZ31–Si compositebillets at elevated temperature were examined, it is found that with Si contents increasingfrom0to5%(wt.%), both UTS and elongation of as-cast AZ31–Si composites graduallydecrease. As tensile temperature increases from100°C to200°C, UTS of AZ31–2wt.%Sicomposite gradually decrease and the elongation increase. Wear loss of composite graduallyincrease with temperature rise from30°C to190°C, due to decrease of strength and hardness,interaction of thermal stress and contact stress at high temperature.
     Influence of repeated compression pass on microstructure of AZ31–2wt.%Si billets wasstudied, and it is found that as CCDF and RU passes number increasing from0to5, averagegrain size of AZ31–Si composites decreases and homogeneity of size distribution improvesfor dynamic recrystallization. Both dendritic and Chinese script type Mg2Si are broken up intosmaller polygonal pieces due to the shear stress imposed by the matrix. The broken Mg2Siparticles repeatedly flow and redistribute during multi-pass processing, and their homogeneityis gradually enhanced. Fine and dispersive distribution of Mg2Si is obtained after5passes.Finite element simulation of the billet during repeated compression shows that shear stressexists in strain field. Accumulated strain and strain homogeneity in strain field graduallyimprove with increasing passes number. These factors result in homogeneity of Mg2Siparticles gradually improves with increasing passes number.
     Effect of repeated compression pass on properties of AZ31–2wt.%Si billets wasinvestigated. It shows that with CCDF and RU passes number increasing from0to5, YS,UTS, elongation and wear resistance of AZ31–Si increase due to gradual refinement of matrixgrain and dispersion of Mg2Si phases. The tensile fracture mode transforms from cleavagebrittle fracture to ductile and brittle mixed fracture.
     Research on microstructure and properties of AZ31and AZ31–2wt.%Si billets processed by repeated compression at different temperature show that as CCDF processingtemperature increases from350°C to450°C, basal texture weakens, the average grain sizeand elongation of AZ31alloy increase, while the YS and UTS decrease. For AZ31–2wt.%Sicomposite, the finest grain size and Mg2Si particles along with the highest strength andelongation are achieved at processing temperature of400°C.
     Influences of RU die structure and technological parameters on material flow wereanalyzed by finite element method. It is found that reduction of cavity width could increasethe equivalent strain for each pass, however, it deceases homogeneity of strain distributionand retentivity of billet shape and size. Transitional angle can enhance the forming quality ofbillet. With increasing transitional radius, homogeneity of strain distribution is slightlyimproved. Most of the billet suffers compressive stress in three direction and sheardeformation always exists due to inhomogeneous flowing velocity and different flowingdirection during RU process. Both accumulated strain and strain homogeneity improve as RUpasses number increase. More homogeneous strain is obtained in the billet processed withroute B (rotate90°around Z axis after former processing pass) than route A (without rotationafter former pass). With increasing RU temperature, the maximum upsetting load decreaseswhile homogeneity of strain and stress distribution in the billet increase.
     Microstructure and properties of Mg alloy processed by RU with route A and B wereinvestigated, and it shows that more intense grain refinement and homogenization of AZ31alloy is obtained when processed with route B at350°C for5passes. Thus, more significantimprovement of strength and ductility of AZ31alloy processed with route B is obtained.
     Influences of CEC passes number on microstructure and properties of Mg–1wt.%SiCnanocomposite billets were studied, and it is found that with passes number increasing from0to8, a finer average grain size and more uniform nanoparticle distribution are obtained alongwith significant improvement in hardness and wear resistance. Nanoparticle declusteringoccurs due to intense shear deformation of Mg matrix during CEC and the SiC nanoparticlesdisperse homogeneously. The property improvement is mainly attributed to dispersionstrengthening and fine grain strengthening.
引文
[1] Froes F H, Eliezer D, Aghion E. The science, technology and applications ofmagnesium[J]. JOM,1998,50(9):3034.
    [2]曾小勤,王渠东,吕宜振,等.镁合金应用新进展[J].铸造,1998,11:3943.
    [3] Srivatsan T S, Al-Hajri Meslet, Lam P C. The quasi-static, cyclic fatigue and finalfracture behavior of a magnesium alloy metal-matrix composite[J]. Compos. Part B:Eng.,2005,36(3):209–222.
    [4] Lee D M, Suh B K, Kim B G, et a1. Fabrication, microstmctures, and tensile propertiesof magnesium alloy AZ91/SiCpcomposites produced by powder metallurgy[J]. Mater.Sci. Technol.,1997,13(7):590595.
    [5] Lu L, Lim C Y H, Yeong W M. Effect of reinforcements on strength of Mg9%Alcomposites[J]. Compos. Struct.,2004,66:41–45.
    [6] Sohn K S, Euh K, Lee S, et a1. Mechanical property and fracture behavior ofsqueeze–cast Mg matrix composites[J]. Metall. Mater. Trans. A,1998,29(10):25432554.
    [7] Arunachaleswaran A, Pereira I M, Dieringa H, et al. Creep behavior of AE42basedhybrid composites[J]. Mater. Sci. Eng. A,2007,460–461:268–276.
    [8]王辅忠,李荣华. Mg Li基复合材料研究[J].稀有金属,2003,2(27):273277.
    [9]黄正华,郭学锋,张忠明,等. Si对AZ91D镁合金显微组织与力学性能的影响[J].材料工程,2004,(6):2832.
    [10]胡勇,闫洪,陈国香,等. Si对原位自生Mg2Si/AM60复合材料组织及性能的影响[J].稀有金属材料与工程,2009,38(2):343347.
    [11]马莹.往复挤压Mg2Si/Mg Al基复合材料组织与性能的研究[硕士论文].西安:西安理工大学.2006.
    [12]杨明波,潘复生,程仁菊,等. Sr和Sb变质AZ610.7Si合金的铸态组织和力学性能[J].稀有金属材料与工程,2008,37(10):17371741.
    [13]贾树卓.原位生成Mg2Sip/Mg Al基复合材料及其挤压变形的组织与性能[硕士论文].西安:西安理工大学.2007.
    [14] Juarez-Islas J A. Rapid solidification of Mg Al Zn Si alloys[J]. Mater. Sci. Eng. A,1991,134:11931196.
    [15] Kim J J., Kim D H. Modification of Mg2Si morphology in squeeze cast Mg Al Zn Sialloys by Ca or P addition[J]. Scr. Mater.,2000,41(3):333340.
    [16] Jiang Q C, Wang H Y, Wang Y, et a1. Modification of Mg2Si in Mg Si alloys withyttrium[J]. Mater. Sci. Eng. A,2005,392:130135.
    [17] Kondoh K, Oginuma H, Kimura A, et a1. In situ synthesis of intermetallics via powdermetallurgy process[J]. Materials Transcation,2003,44(5):981985.
    [18] Du W B, Kondoh K, Yuasa E, et a1. In-situ solid state synthesis of Mg2Si/MgO/Mgcomposites[J]. Mater. Sci. Forum,2003,419422:783788.
    [19]周天承,杜文博,秦亚灵,等.反复塑性变形法制备SiCp/AZ31镁基复合材料[J].特种铸造及有色合金,2009,29(12):10891091.
    [20] Zhang C F, Fan T X, Cao W, et al. A model for work of solid–liquid adhesion inmulticomponent melts[J]. Acta Mater.,2009,57(12):3623–3632.
    [21] Fan T X, Zhang C F, Chen J Q, et al. Thermodynamics and Kinetics to AlloyingAddition on In-Situ AlN/Mg Composites Synthesis via Displacement Reactions inLiquid Mg Melt[J]. Metall. Mater. Trans. A,2009,40(11):2743–2750.
    [22] Zhang C F, Fan T X, Cao W, et al. Size control of in situ formed reinforcement in metalmelts-theoretical treatment and application to in situ (AlN+Mg2Si)/Mg composites[J].Compos. Sci. Technol.,2009,69(15–16):2688–2694.
    [23]于化顺.液态反应合成粒子增强Mg Li基复合材料的研究[博士论文].山东:山东工业大学.1997.
    [24] Hwang S, Nishimura C. Compressive mechanical properties of Mg Ti Cnanocomposite synthesised by mechanical milling[J]. Scr. Mater.,2001,44:24572462.
    [25] Lu L, Thong K K, Gupta M. Mg-based composite reinforced by Mg2Si[J]. Compos. Sci.Technol.,2003,63(5):627–632.
    [26] Ye H Z, Lin X Y, Ben Luan. In situ synthesis of AlN particles in Mg Al alloy byMg3N2addition[J]. Mater. Lett.,2004,58(19):23612364.
    [27] Zhang X Q, Liao L H, Ma N H, et a1. The effect of heat treatment on dampingcharacterization of TiC/AZ91composites[J]. Mater. Lett.,2006,60(5):600604.
    [28] Chen C Y, Chi Y A Tsao. Spray forming of silicon added AZ91magnesium alloy and itsworkability[J]. Mater. Sci. Eng. A,2004,383(1):2129.
    [29] Matin M A, Lu L, Gupta M. Investigation of the reactions between boron and titaniumcompounds with magnesium[J]. Scr. Mater.,2001,45(4):479–486.
    [30] Dong Q, Chen L Q, Zhao M J, et a1. Analysis of in situ reaction and pressurelessinfiltration process in fabricating TiC/Mg composites[J]. Mater. Sci. Technol.,2004,20(1):3–7.
    [31] Wang H Y, Jiang Q C, Li X L, et a1. Effect of Al content on the self–propagatinghigh–temperature synthesis reaction of Al–Ti–C system in molten magnesium[J]. J.Alloys Compd.,2004,366(1–2): L9–L12.
    [32] Jiang Q C, Li X L, Wang H Y. Fabrication of TiC particulate reinforced magnesiummatrix composites[J]. Scr. Mater.,2003,48(6):713–717.
    [33]吴昆,神尾彰彦.挤压态SiCw/AZ91镁基复合材料的组织及其性能[J].兵器材料科学与工程,1993,16(2):36.
    [34]胡连喜,李小强,王尔德,等.挤压变形对SiCw/ZK51A镁基复合材料组织和性能的影响[J].中国有色金属学报,2000,10(5):680683.
    [35]孙旭炜,曾苏民,陈志谦,等. SiCp/6066Al复合材料的制备工艺研究[J].西南师范大学学报(自然科学版).2005,30(5):888892.
    [36] Hanada K, Murakoshi Y, Negishi H, et al. Microstructures and mechanical properties ofAl-Li/SiCpcomposite produced by extrusion processing[J]. J. Mater. Process. Technol.,1997,63(1–3):405410.
    [37] Cocen U, Onel. K Ductility and strength of extruded aluminum alloy composites[J].Compos. Sci. Technol.,2002,62(2):275282.
    [38] Sudarshan, Surappa M K. Synthesis of fly ash particle reinforced A356Al compositesand their characterization[J]. Mater. Sci. Eng. A,2008,480(12):117124.
    [39] Wang X J, Wu K, Zhang H F, et al. Effect of hot extrusion on the microstructure of aparticulate reinforced magnesium matrix composite[J]. Mater. Sci. Eng. A,2007,465(12):7884.
    [40]张文龙,闫家超,顾明元.挤压铸造SiCw/1050A复合材料的冷轧[J].轻合金加工技术,2000,28(6):3740.
    [41] Zhang W L, Gu M Y, Wang D Z, Yao Z K. Rolling and annealing textures of a SiCw/Alcomposite[J]. Mater. Lett.,2004,58:34143418.
    [42] Ceschini L, Minak G, Morri A. Forging of the AA6061/23vol.%Al2O3pcomposite:Effects on microstructure and tensile properties[J]. Mater. Sci. Eng. A,2009,513514:176184.
    [43] Ceschini L, Minak G, Morri A. Forging of the AA2168/20vol.%Al2O3pcomposite:Effects on microstructure and tensile properties[J]. Compos. Sci. Technol.,2009,69(1112):17831789.
    [44] Nieh T G, Henshall C A, Wadsworth J. Superplasticity at high strain rates in a SiCwhisker reinforced Al alloy[J]. Scr. Metall.,1984,18:14051413.
    [45] Yang M B, Pan F S, Cheng R J, et al. Effect of semi-solid isothermal heat treatment onthe microstructure of Mg–6A1–1Zn–0.7Si alloy[J]. J. Mater. Process. Technol.,2008,206:374–381.
    [46] Mabuchi M, Kubota K, Higashi K. High strength and high strain rate superplasticity in aMg Mg2Si composite[J]. Scr. Metall. Mater.,1995,33:331336.
    [47] Mabuchi M, Higashi K. High-strain superplasticity in magnesium matrix compositescontaining Mg2Si particle[J]. Phil. Mag.,1996,74(4):887905.
    [48] Mabuchi M, Higashi K. Strengthening mechanisms of Mg Si alloys[J]. Acta Mater.,1996,44:46114618.
    [49] Terry C L. Metals and alloys nanostructured by severe plastic deformation:commercialization pathways[J]. JOM,2006,58(4):28–32.
    [50] Valiev R Z. Nanomaterial advantage[J]. Nature,2002,419:887–888.
    [51] Furukawa M, Horita Z, Nemoto M, et al. Review: Processing of metals byequal-channel angular pressing[J]. J. Mater. Sci.,2001,36(12):2835–2843.
    [52] Azushima A, Kopp R, Korhonen A, et al. Severe plastic deformation (SPD) processesfor metals[J]. CIRP Ann. Manuf. Technol.,2008,57(2):716–735.
    [53]郭炜,王渠东.大塑性变形制备超细晶复合材料的研究进展[J].锻压技术,2010,35(1):49.
    [54] Wang Q D, Chen Y J, Zhang L J, et al. Microstructure and mechanical properties ofAZ31–0.5%Si alloy processed by ECAP[J]. Trans. Nonferrous Met. Soc. China,2006,16: s1660–s1663.
    [55] Gan W M., Wu K, Zheng M Y, et al. Microstructure and mechanical property of theECAPed Mg2Si/Mg composite[J]. Mater. Sci. Eng. A,2009,516:283–289.
    [56] Zheng M Y, Xu S W, Wu K, et al. Superplasticity of Mg–Zn–Y alloy containingquasicrystal phase processed by equal channel angular pressing[J]. Mater Lett.,2007,61(22):4406–4408.
    [57] Hai C, Wang X J, Zheng M Y, et al. Effect of ECAP on the microstructure and tensileproperty of SiCp/AZ91magnesium matrix composite[J]. Key Eng. Mat.,2007,353–358:1342–1345.
    [58] Valiev R Z, Islamgaliev R K, Kuzmina N F. Strengthening and grain refinement in anAl–6061metal matrix composite through intense plastic straining[J]. Scr. Mater.,1998,40(1):117–122.
    [59] Sabirov I, Kolednik O, Valiev R Z, et al. Equal channel angular pressing of metal matrixcomposites: Effect on particle distribution and fracture toughness[J]. Acta Mater.,2005,53(18):4919–4930.
    [60] Munoz–Morris M A, Gutierrez–Urrutia I, Morris D G. The effect of geometricallynecessary dislocations on grain refinement during severe plastic deformation andsubsequent annealing of Al–7%Si[J]. Mater. Sci. Eng. A,2008,493(1–2):141–147.
    [61] Han B Q, Langdon T G. Achieving enhanced tensile ductility in an Al-6061compositeprocessed by severe plastic deformation[J]. Mater. Sci. Eng. A,2005,410-411:430-434.
    [62] Chen L J, Ma C Y, Stoica G M, et al. Mechanical behavior of a6061Al alloy and anAl2O3/6061Al composite after equal–channel angular processing[J]. Mater. Sci. Eng. A,2005,410–411:472–475.
    [63] Li Y, Langdon T G. Equal-channel angular pressing of an Al-6061metal matrixcomposite[J]. J. Mater. Sci.,2000,35(5):1201–1204.
    [64] Munoz-Morris M A, Calderon N, Gutierrez–Urrutia I, et al. Matrix grain refinement inAl–TiAl composites by severe plastic deformation: Influence of particle size andprocessing route[J]. Mater. Sci. Eng. A,2006,425(1–2):131–137.
    [65] Ravi K R, Saravanan M, Pillai R M, et al. Equal channel angular pressing of Al–5wt%TiB2in situ composite[J]. J. Alloys Compd.,2008,459(1–2):239–243.
    [66] Saravanan M, Pillai R M, Ravi K R, et al. Development of ultrafine grainaluminium–graphite metal matrix composite by equal channel angular pressing[J].Compos. Sci. Technol.,2007,67(6):1275–1279.
    [67] Ma D Y, Wang J T, Xu K W. Equal channel angular pressing of a SiCwreinforcedaluminum-based composite[J]. Mater. Lett.,2002,56(6):999–1002.
    [68] Richert J, Richert M. A new method for unlimited deformation of metals and alloys[J],Aluminum,1986,62(8):604607.
    [69]宋佩维,井晓天,郭学锋.往复挤压Mg–4Al–2Si镁合金的组织细化与力学性能[J].中国有色金属学报.2007,17(1):111–117.
    [70] Zhang Z M, Xu C J, Guo X F et al. Reciprocating extrusion of in situ Mg2Si reinforcedMg–Al based composite[J]. Acta Metal. Sin.,2008,21(3):169–177.
    [71] Lee S W, Chen Y L, Wang H Y. On mechanical properties and superplasticity ofMg–15Al–1Zn alloys processed by reciprocating extrusion[J]. Mater. Sci. Eng. A,2007,464(1–2):76–84.
    [72] Guo X F, Shechtman D. Reciprocating extrusion of rapidly solidifiedMg–6Zn–1Y–0.6Ce–0.6Zr alloy[J]. J. Mater. Process. Technol.,2007,187–188:640–644.
    [73] Yeh J W, Yuang S Y, Peng C H. Microstructures and tensile properties of an Al–12wt pctSi alloy produced by reciprocating extrusion[J]. Metall. Mater. Trans. A,1999,30(9):2503–2512.
    [74] Chu H S, Liu K S, Yeh J W. Study of6061–A12O3pcomposites produced byreciprocating extrusion[J]. Metall. Mater. Trans. A,1998,31A:2587–2596.
    [75] Chu H S, Liu K S, Yeh J W. An in situ composite of Al(graphite, Al4C3) produced byreciprocating extrusion[J]. Mater. Sci. Eng. A,2000,277(1–2):25–32.
    [76] Chu H S, Liu K S, Yeh J W. Damping behavior of in situ Al–(graphite, A14C3)composites produced by reciprocating extrusion[J]. J. Mater. Res.,2001,16(5):1372–1379.
    [77] Chu H S, Liu K S, Yeh J W. Aging behavior and tensile properties of6061Al–0.3μmAl2O3pparticle composites produced by reciprocating extrusion[J]. Scr. Mater.,2001,45(5):541–546.
    [78]张志伟,陈敬超,潘勇,等.大塑性变形改善反应合成制备Ag/SnO2材料性能研究[J].稀有金属材料与工程,2008,37(2):338–341.
    [79] Zughaer H J, Nutting J. Deformation of sintered copper and50Cu50Fe mixture to largestrains by cyclic extrusion and compression[J]. Mater. Sci. Technol.,1992,8(12):11041107.
    [80] S.Y. Yuan, C.H. Peng, J.W. Yeh. Synthesis of fine Pb50vol.%Sn alloys by a newprocess of reciprocating extrusion[J]. Mater. Sci. Technol.,1999,15(6):683688.
    [81] Jenei P, Yoon E Y, Gubicza J, et al. Microstructure and hardness of copper-carbonnanotube composites consolidated by High Pressure Torsion[J]. Mater. Sci. Eng. A,2011,528(13–14):4690–4695.
    [82] Mishra R S, Valiev R Z, McFadden S X, et al. Severe plastic deformation processingand high strain rate superplasticity in an aluminum matrix composite[J]. Scr. Mater.,1999,40(10):1151–1155.
    [83] Tokunaga T, Kaneko K, Sato K et al. Microstructure and mechanical properties ofaluminum–fullerene composite fabricated by high pressure torsion[J]. Scr. Mater.,2008,58(9):735–738.
    [84] Tokunaga T, Kaneko K, Horita Z. Production of aluminum–matrix carbon nanotubecomposite using high pressure torsion[J]. Mater. Sci. Eng. A,2008,490(1-2):300–304.
    [85] Sabirov I, Kolednik O, Pippan R. Homogenization of metal matrix composites byhigh–pressure torsion[J]. Metall. Mater. Trans. A,2005,36(10):2861–2870.
    [86] Alexandrov I V, Zhu Y T, Lowe T C, et a1. Microstructures and properties ofnanocomposites obtained through SPTS consolidation of powders[J]. Metall. Mater.Trans. A,1998,29A:22532260.
    [87] Quelennec X, Menand A, Le Breton J M, et al. Homogeneous Cu–Fe supersaturatedsolid solutions prepared by severe plastic deformation[J]. Philos. Mag.,2010,90(9):1179–1195.
    [88] Sauvage X, Jessner P, Vurpillot F, et al. Nanostructure and properties of a Cu–Crcomposite processed by severe plastic deformation[J]. Scr. Mater.,2008,58(12):1125–1128.
    [89] Islamgaliev R K, Buchgraber W, Kolobov Y R, et al. Deformation behavior ofCu–based nanocomposite processed by severe plastic deformation[J]. Mater. Sci. Eng.A,2001,319–321:872–876.
    [90] Sabirov I, Pippan R. Formation of a W–25%Cu nanocomposite during high pressuretorsion[J]. Scr. Mater.,2005,52(12):1293–1298.
    [91] Stolyarov V V, Zhu Y T, Lowe T C, et al. Processing nanocrystalline Ti and itsnanocomposites from micrometer–sized Ti powder using high pressure torsion[J].Mater. Sci. Eng. A,2000,282(1–2):78–85.
    [92] Chen M C, Hsieh H C, Wu W. The evolution of microstructures and mechanicalproperties during accumulative roll bonding of Al/Mg composite[J]. J. Alloy Compd.,2006,416(1–2):169–172.
    [93] Tanaka K, Takeichi N, Tanaka H, et al. Relations between microstructure of Mg/Cusuper-laminates and kinetics of hydrogen absorption/desorption[J]. Mater. Res. Soc.Symp. Proc.,2006,971:13–18.
    [94] Rezayat M, Akbarzadeh A, Owhadi A. Production of high strength Al–Al2O3composite by accumulative roll bonding[J]. Compos. Part A Appl. Sci. Manuf.,2012,43(2):261-267
    [95] Alizadeh M, Paydar M H. Fabrication of nanostructure Al/SiCpcomposite byaccumulative roll-bonding (ARB) process[J]. J. Alloys Compd.,2010,492(1–2):231–235.
    [96] Alizadeh M, Talebian M. Fabrication of Al/Cupcomposite by accumulative rollbonding process and investigation of mechanical properties[J]. Mater. Sci. Eng. A,2012,558:331–337.
    [97] Min G H, Lee J M, Kang S B, et al. Evolution of microstructure for multilayered Al/Nicomposites by accumulative roll bonding process[J]. Mater. Lett.,2006,60(27):3255–3259.
    [98] Xu R C, Tang D, Ren X P, et al. Improvement of the matrix and the interface quality ofa Cu/Al composite by the MARB process[J]. Rare Met.,2007,26(3):230–235.
    [99] Jamaati R, Toroghinejad M R. Application of ARB process for manufacturinghigh-strength, finely dispersed and highly uniform Cu/Al2O3composite[J]. Mater. Sci.Eng. A,2010,527(27–28):7430–7435.
    [100] Mishra R S, Ma Z Y, Charit I. Friction stir processing: a novel technique forfabrication of surface composite[J]. Mater. Sci. Eng. A,2003,341(1–2):307–310.
    [101] Morisada Y, Fujii H, Nagaok T, et al. MWCNTs/AZ31surface composites fabricatedby friction stir processing[J]. Mater. Sci. Eng. A,2006,419(12):344348.
    [102]王开东,常丽丽,王轶农等.搅拌摩擦加工技术制备Ti颗粒增强AZ31镁基复合材料[J].中国有色金属学报,2009,19(3):418423.
    [103] Morisada Y, Fujii H, Nagaok T, et al. Nanocrystallized magnesium alloy uniformdispersion of C60molecules[J]. Scr. Mater.,2006,55(11):10671070.
    [1] Azushima A, Kopp R, Korhonen A, et al. Severe plastic deformation (SPD) processes formetals[J]. CIRP Ann. Manuf. Technol.,2008,57(2):716–735.
    [2] Cao G P, Konishi H, Li X C. Mechanical Properties and Microstructure of Mg/SiCNanocomposites fabricated by ultrasonic cavitation based nanomanufacturing[J]. J.Manuf. Sci. Eng. Trans. ASME,2008,130(3):0311051–0311056.
    [3]林金保.往复挤压ZK60与GW102K镁合金的组织演变及强韧化机制研究[博士论文].上海:上海交通大学.2008.
    [4] Karnezis P A, Durrant G, Cantor B. Characterization of reinforcement distribution in castAl-alloy/SiCpcomposites[J]. Mater. Charact.,1998,40:97–109.
    [5]陈勇军.往复挤压镁合金的组织结构与力学性能研究[博士论文].上海:上海交通大学.2007.
    [1]孙茂才.金属力学性能,哈尔滨:哈尔滨工业大学出版社,2005:69–73.
    [2] Xiu K, Wang H Y, Sui H L, et al. The sliding wear behavior of TiCp/AZ91magnesiummatrix composites[J]. J. Mater. Sci.,2006,41:7052–7058.
    [3] Sharma S C, Anand B, Krishna M. Evaluation of sliding wear behaviour of feldsparparticle-reinforced magnesium alloy composites[J]. Wear,2000,241(1):33–40.
    [4]戈晓岚. SiCp/Al复合材料摩擦学特性及其分形研究[博士论文].镇江:江苏大学.2010.
    [5] Lim C Y H, Lim S C, Gupta M. Wear behaviour of SiCp-reinforced magnesium matrixcomposites[J]. Wear,2003,255:629–637.
    [6]丁雨田,刘孝根,金培鹏,等.镁基复合材料磨损性能研究进展[J].机械研究与应用,2008,21(1):24–26.
    [7]黄伟九,林强,郭源君,等. AS41镁合金在不同温度的摩擦学行为[J].中国机械工程,2010,21(13):1536–1541.
    [8] Lin J B, Wang Q D, Peng L M, et al. Study on deformation behavior and strainhomogeneity during cyclic-extrusion-compression[J]. J. Mater. Sci.2008,43:6920–6924.
    [9] Figueiredo R B, Pereira P H R, Aguilar, M T P, et al. Using finite element modeling toexamine the temperature distribution in quasi-constrained high-pressure torsion[J]. ActaMater.,2012,60(6–7):3190–3198.
    [10]江鸿.纯钛ECAE过程三维模拟及超细晶纯钛织构和耐腐蚀性能的研究[博士论文].上海:上海交通大学.2010.
    [11] Guo W, Wang Q D, Liu M P, et al. Microstructure and mechanical properties ofmagnesium alloy prepared by repetitive upsetting. Mater. Sci. Forum,2012,706–709:1261–1266.
    [12] Yang Q, Ghosh A K. Deformation behavior of ultrafine-grain (UFG) AZ31B Mg alloy atroom temperature[J]. Acta Mater.,2006,54:5159–5170.
    [13] Kim H K, Kim W J. Microstructural instability and strength of an AZ31Mg alloy aftersevere plastic deformation[J]. Mater. Sci. Eng. A,2004,385(1–2):300–308.
    [14] Wert J A, Paton N E, Hamilton C H, et al. Grain refinement in7075aluminum bythermomechanical processing[J]. Metall. Trans. A,1981,12(7):1267–1276.
    [15]刘楚明,刘子娟,朱秀荣,等.镁及镁合金动态再结晶研究进展[J].中国有色金属学报,2006,16(1):1–12.
    [16] Wang X J, Xu L, Hu X S, et al. Influences of extrusion parameters on microstructureand mechanical properties of particulate reinforced magnesium matrix composites[J].Mater. Sci. Eng. A,2011,528(21):6387–6392.
    [17] Yeh J W, Liu WP. The cracking mechanism of silicon particles in an A357aluminumalloy[J]. Metall. Mater. Trans. A,1996,27A:3558–3568.
    [18]周惠久,黄明志.金属材料强度学,北京:科学出版社,1989:174–176.
    [19]宋佩维.往复挤压Mg-4Al-2Si合金时Mg2Si颗粒的破碎规律[J].机械工程材料,2011,35(7):75–80.
    [20] Hirth J P, Lothe J. Theory of Dislocations, New York: Wiley,1981:764.
    [21] Weertman J, Weertman J R. Elementary Dislocation Theory, New York: Macmillan,1964:126.
    [22] Hertzberg R W. Deformation and Fracture Mechanics of Engineering Materials, NewYork: Wiley,1989:239.
    [23]冯端,王业宁,丘第荣.金属物理,北京:科学出版社,1975:743–744.
    [24]宋佩维.往复挤压Mg-Al-Si合金的组织、性能及强化机制[博士论文].西安:西安理工大学.2007.
    [25] Abachi P, Masoudi A, Purazrang K. Dry sliding wear behavior of SiCp/QE22magnesium alloy matrix composites[J]. Mater. Sci. Eng. A,2006,435–436:653–657.
    [1] Zhou H, Ye B, Wang Q D, et al. Uniform fine microstructure and random texture ofMg-9.8Gd-2.7Y-0.4Zr magnesium alloy processed by repeated-upsetting deformation[J].Mater. Lett.,2012,83:175178.
    [2] Guo W, Wang Q D, Ye B, et al. Enhanced microstructure homogeneity and mechanicalproperties of AZ31magnesium alloy by repetitive upsetting[J]. Mater. Sci. Eng. A,2012,540:115–122.
    [3] Oruganti R K, Subramanian P R, Marte J S, et al. Effect of friction, backpressure andstrain rate sensitivity on material flow during equal channel angular extrusion[J]. Mater.Sci. Eng. A,2005,406:102–109.
    [4] Xia K, Wang J T, Wu X, et al. Equal channel angular pressing of magnesium alloyAZ31[J]. Mater. Sci. Eng. A,2005,410-411:324–327.
    [5] Lapovok R, Thomson P F, Cottam R, et al. The effect of grain refinement by warm equalchannel angular extrusion on room temperature twinning in magnesium alloy ZK60[J]. J.Mater. Sci.,2005,40(7):1699–1708.
    [1]胡志,闫洪,陈国香.镁基纳米复合材料的研究现状与展望[J].热加工工艺,2009,38(14):58–61,65.
    [2]潘蕾,陶杰,刘子利,等.超声复合法制备的SiCp/ZA27复合材料的力学性能[J].南京航空航天大学学报.2005,37(5):653–658.
    [3] Cao G, Kobliska J, Konishi H, et al. Tensile properties and microstructure of SiCnanoparticle-reinforced Mg-4Zn alloy fabricated by ultrasonic cavitation-basedsolidification processing[J]. Metall. Mater. Trans. A,2008,39A(4):880–886.
    [4] Habibnejad-Korayem M, Mahmudi R, Ghasemi H M, et al. Tribological behavior of pureMg and AZ31magnesium alloy strengthened by Al2O3nano-particles[J]. Wear,2010,268:405–412.
    [5] De Cicco M, Konishi H, Cao G P, et al. Strong, ductile magnesium-zincnanocomposites[J]. Metall. Mater. Trans. A,2009,40:3038–3045.
    [6]康永林,王朝辉.半固态工艺制备纳米SiC颗粒增强AM60镁合金的研究[J].特种铸造及有色合金,2007,(8):327–329.
    [7] Lan J, Yang Y, Li X C. Microstructure and micro hardness of SiC nano-particlesreinforced magnesium composites fabricated by ultrasonic method[J]. Mater. Sci. Eng. A,2004,386:284–290.
    [8]刘世英,李文珍,高飞鹏,等.高能超声处理在制备纳米SiC颗粒增强镁基复合材料中的作用[J].铸造,2009,58(3):210-212,216.
    [9]贾秀颖,高飞鹏,张琼元,等.高能超声法制备SiCp/AZ91D纳米复合材料[J].特种铸造及有色合金,2008,28(12):962–964.
    [10] Ferkel H, Mordike B L. Magnesium strengthened by SiC nanoparticles[J]. Mater. Sci.Eng. A,2001,298:193–199.
    [11]陈培生,薛烽,李子全,等. n-SiC/MB2复合材料组织与力学性能[J].中国有色金属学报,2004,14(10):1648–1652.
    [12] Choi H, Alba-Baena N, Nimityongskul S, et al. Characterization of hot extrudedMg–SiC nanocomposites fabricated by casting[J]. J. Mater. Sci.,2011,46:2991–2997.
    [13] Valiev R. Nanostructuring of metals by severe-plastic-deformation for advancedproperties[J]. Nat. Mater.,2004,3:511–516.
    [14] Viswanathan V, Laha T, Agarwal A, et al. Challenges and advances in nanocompositesprocessing techniques[J]. Mater. Sci.&Eng. R,2006,54:121–285.
    [15] Goussous S, Xu W, Wu X, et al. Al–C nanocomposites consolidated by back pressureequal channel angular pressing[J]. Compos. Sci. Technol.,2009,69(11–12):1997–2001.
    [16] Asadi P, Faraji G, Masoumi A, et al. Experimental investigation of magnesium-basenanocomposite produced by friction stir processing: effects of particle types and numberof friction stir processing passes[J]. Metall. Mater. Trans. A,2011,42A:2820–2832.
    [17] Rezayat M, Akbarzadeh A, Owhadi A. Fabrication of high-strength Al/SiCpnanocomposite sheets by accumulative roll bonding[J]. Metall. Mater. Trans. A,2012,43A:2085–2093.
    [18] Joo S H, Yoon S C, Lee C S, et al. Microstructure and tensile behavior of Al andAl-matrix carbon nanotube composites processed by high pressure torsion of thepowders[J]. J. Mater. Sci.,2010,45:4652–4658.
    [19] Pramlla Bai B N, Ramasesh B S, Surappa M K. Dry sliding wear of A356-Al-SiCpcomposites[J]. Wear,1992,157(2):295–304.
    [20]陈跃,邢建东,张永振,等.增强颗粒对铝基复合材料摩擦学性能的影响[J].摩擦学学报,2001,21(4):251–255.
    [21]戈晓岚. SiCp/Al复合材料摩擦学特性及其分形研究[博士论文].镇江:江苏大学.2010.
    [22]王德宝.高性能耐磨铜基复合材料的制备与性能研究[博士论文].合肥:合肥工业大学.2008
    [23] Dharan C K H, Ritchie R O, Gun Lee Y. A physically-based abrasive wear model forcomposite materials[J]. Wear,2002,252(3–4):322–331.
    [24] Habibi M K, Joshi S P, Gupta M. Hierarchical magnesium nano-composites forenhanced mechanical response[J]. Acta Mater.,2010,58:6104–6114.
    [25] Tan M J, Zhang X. Powder metal matrix composites: selection and processing[J]. Mater.Sci. Eng. A,1998,244(1):80–85.