高性能混凝土建筑火灾烧损试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建筑物一旦发生火灾,必须及时进行灭火,以扑灭火焰和阻止火焰的传播蔓延,防止火势的扩大,将火灾损失降到最低。消防射水是最常用的灭火方式,通过对着火物进行射水,可以对正在燃烧的材料进行降温、覆盖燃烧物窒息火焰、水蒸气稀释氧气、抑制燃烧链反应的方式阻止燃烧;同时对可燃材料射水,降低可燃材料的温度和增加可燃材料的湿度,阻止火势的蔓延传播。消防射水在扑灭建筑火灾的时候,消防射水对经受高温后性能严重劣化的混凝土必然会产生一定的影响,水-火耦合作用可能会加速混凝土性能的劣化,使建筑结构损毁和承载力急剧下降,导致建筑结构的局部或整体性坍塌。作为建筑的承重和支撑体系,即使是在火灾和消防射水的共同作用下,也必须在一定时间内保持足够的承载能力,保证受灾人员能安全的撤离火灾现场、消防战斗人员能安全的进行灭火战斗和救护人员能安全的救护伤员。
     本文深入研究了高性能混凝土的耐火性能衰减规律,探究了消防射水与火灾共同作用下的高性能混凝土建筑的坍塌机理,建立了高性能混凝土建筑火灾后的坍塌预测和评价方法,为确定火灾后其残余承载力,从而延长结构受火时坍塌的时间提供了科学依据,为高性能混凝土结构火灾损伤后期诊断评估与修复加固提供了基础参数。
     本文主要研究内容和成果如下:1、高性能混凝土火灾烧损试验研究
     (1)对高温后C35、C40、C50高性能混凝土与掺防腐剂C35高性能混凝土的残余抗压强度进行了对比试验,分析了高性能混凝土爆裂原因,总结了试件外观特征随火场温度的变化规律,建立了火灾后HPC残余抗压强度与火场温度之间的关系式。研究表明:消防射水对建筑火灾后C35HPC的残余抗压强度有很大影响,自然冷却条件下,HPC的残余抗压强度整体呈衰减状态,300℃时略有升高;在射水冷却条件下,HPC的残余抗压强度始终呈衰减状态;在相同温度条件下,采用自然冷却方式测得的HPC的残余抗压强度均高于采用射水冷却方式测得的HPC的残余抗压强度,自然冷却条件下HPC的残余抗压强度最高的约为射水冷却条件下HPC的残余强度的13倍。
     (2)研究了高温过程中HPC的残余抗压强度的变化规律;对比分析HPC在高温过程中与高温自然冷却后残余抗压强度的异同。研究表明:300℃~400℃时,HPC残余强度在明显有所波动,但是冷却后的HPC残余抗压强度没有高温中残余抗压强度上升的那么明显;相同加热温度条件下,高温过程中HPC的残余抗压强度高温略高于自然冷却后HPC的残余抗压强度。
     2、公路隧道衬砌高性能混凝土的高温烧损试验研究
     以隧道常用的C50 HPC为研究对象,开展了HPC试件高温烧损试验,研究了高温后受损衬砌混凝土残余抗压强度在不同条件下随经历温度劣化的规律和定量关系,建立了火灾后隧道衬砌HPC残余抗压强度与火场温度之间的数学关系式。研究表明:高等级的HPC抗压强度很高,但其抗火性能却很差;在高温但过程中及自然冷却条件下,HPC残余抗压强度总体上呈降低趋势,在300℃时,C50HPC残余抗压强度有小幅增加;射水冷却条件下,HPC残余抗压强度随着温度升高一直呈衰减状态;相同加热温度等级条件下,高温过程中HPC的残余抗压强度略高于自然冷却后HPC的残余抗压强度,自然冷却后HPC的残余抗压强度高于射水冷却后HPC的残余抗压强度。
     3、抗蚀防腐剂对高性能混凝土耐火性能的影响
     对高温后掺抗蚀防腐剂高性能混凝土的残余抗压强度试验,描述了高温过程试验现象,分析了掺抗蚀防腐剂高性能混凝土爆裂原因,探索添加防腐剂对高温后高性能混凝土残余抗压强度的影响;通过回归分析建立了掺抗蚀防腐剂高性能混凝土抗压强度与温度之间的二元线性回归公式。研究表明:掺加抗蚀防腐剂高性能混凝土试件在400℃时就发生爆裂,而未掺抗蚀防腐剂高性能混凝土试件在试验过程中没发生爆裂现象,表明虽然掺抗蚀防腐剂有利于增强高性能混凝土抗压强度,但是不利于高性能混凝土抗爆裂性能。
     4、消防射水对持续燃烧建筑物坍塌的影响分析
     对特定功能建筑物火灾荷载进行了统计分析,并根据火灾动力学原理和概率统计原理,给出了特定功能建筑因持续燃烧致建筑坍塌的概率函数和有消防射水灭火情况下建筑物在火-水耦合损伤下坍塌的概率函数。根据分析,混凝土建筑构件在火-水耦合损伤下会降低其实际耐火时间,消防射水直接冷却高温混凝土会增加混凝土构件坍塌的概率。当建筑物构件耐火时间较小时,消防射水对建筑构件坍塌的影响较小,其坍塌概率主要受建筑构件在持续受火条件下吸收的热荷载决定;当建筑构件的耐火时间较大时,必须考虑消防射水对持续燃烧建筑构件坍塌的影响。
Prompt fire suppression is needed once a building fire disaster occurs in order to extinguish the flames, stop flame spread and minimize the damage. Fire-fighting water jetting (FFWJ) is a common method for fire extinguishment, which could stop combustion through water jetting to fire, cooling and covering the comburent, diluting the oxygen by water vapor and suppressing the combustion chain reaction. Moreover, FFWJ could also prevent fire spread though decreasing the temperature and increasing the moisture of comburent. However, the FFWJ would affect the performance of the concrete, which deteriorates in the high temperature environment. The effects of water-fire-coupling may accelerate the deterioration of concrete performance, damage the structure and decrease the bearing capacity of the buildings and finally lead to partial or whole collapse. As the bearing structural system, the high-performance concrete (HPC) must have sufficient bearing capacity in a certain period of time after the fire disaster occurs in order to assure evacuation, fire-fighting and rescue.
     The present research studied the deterioration of the HPC, explored the mechanism of the collapse of the HPC concrete building, and proposed the collapse prediction and evaluation method in order to provide scientific basis for determining the building bearing capacity and the endurance time after fire disasters, and to provide data for the damage analysis and evaluation of the HPC and building restoration.
     The research contents and results of this study were as follows:
     1、Damage analysis of the HPC after fire disasters
     (1) In order to analyze the reasons for the HPC burst, the pressive strengths of HPC C35, C40 and C50 were compared with C35-A (C35 mixed with anticorrosive). The variation of external characteristics of concretes associated with fire temperature was summarized, and the relationship between the HPC bearing capacity and fire temperature was analyzed. The results indicated that the bearing capacity of HPC C35 was strongly affected by FFWJ. In the common cooling condition, the HPC bearing capacity decreased with temperature in general except for a slightly increase at 300℃; In the FFWJ condition, however, the HPC bearing capacity decreased all along with temperature. Moreover, the HPC bearing capacity in the common cooling condition was higher than that in the FFWJ condition at the same temperature. The maximum HPC bearing capacity in the common cooling condition was 1.3-fold of that in the FFWJ condition.
     (2) The variation of the HPC bearing capacity under high temperature was analyzed and the HPC bearing capacity under high temperature and after common cooling was compared. The results showed that the HPC bearing capacity fluctuated significantly with the temperature ranging from 300℃to 400℃, whereas the fluctuation was less marked at lower temperature. The HPC bearing capacity in high temperature process was slightly higher than that after common cooling at the same temperature.
     2、Damage experiment of the highway tunnel lining HPC
     This experiment was conducted with HPC C50, which was widely used in highway tunnels, to explore the relationship between the bearing capacity and the fire temperature in different conditions. The results revealed that high-grade HPC showed low fire-resistant capacity despite of the high strength; in the common cooling condition, the bearing capacity of HPC C50 decreased generally with temperature except for a slightly increase at 300℃; In the FFWJ condition, however, the HPC bearing capacity decreased all along with temperature. Furthermore, the HPC bearing capacity in high temperature process was slightly higher than that after common cooling at the same temperature, while the HPC bearing capacity in the condition of common cooling was higher than that in the condition of FFWJ at the same temperature.
     3、The effects of the anticorrosive on the HPC fire-resistant capacity
     In this experiment, the bearing capacity of HPC mixed with the anticorrosive was determined after the high temperature process, the phenomenon during the process was described, the reasons for the burst of the HPC mixed with the anticorrosive was analyzed, and the effects of the anticorrosive on the HPC bearing capacity was explored as well; Regression analysis revealed that the relationship between the bearing capacity of HPC mixed with the anticorrosive and temperature could be described by linear equation in two unknowns. Moreover, the result showed that the HPC mixed with the anticorrosive burst at 400℃, whereas the HPC without the anticorrosive did not burst during the experiment, indicating that the anticorrosive may help to increase the HPC bearing capacity, but may be adverse to the increase of HPC anti-burst capacity.
     4、The effects of FFWJ on the collapse of blazing buildings
     Based on the fire dynamics theory and probability statistics, the building fire loads were analyzed, and the collapse probability function of given buildings due to sustained combustion and the collapse probability function of given buildings due to water-fire-coupling in the condition of FFWJ were proposed. The results indicated that the fire endurance time of the HPC decreased with the water-fire-coupling damage, and cooling by FFWJ increased the HPC collapse probability. when the HPC fire endurance time was short, FFWJ showed little effects on the building collapse; when long, the collapse probability was mainly determined by the themal load of the building during sustained combustion. It was proposed that the effects of FFWJ on the collapse of buildings should be considered when the fire endurance time was long.
引文
[1]吴雪佳,王伟.高层建筑防火方面的问题及对策——几起大型高层建筑火灾中的几点启示.消防技术与产品信息,2007,(01):15-20.
    [2]代琳.浅析高层建筑的火灾特点.中国科技信息,2005,(18):185-186.
    [3]李耀庄,李昀晖.我国火灾坍塌事故的调查.消防科学与技术,2006,25(5):694-697.
    [4]李凌志.火灾后混凝土材料力学性能与温度、时间的关系.同济大学硕士论文,2006.
    [5]朋改非,李斌,马强等.火灾高温中高性能混凝土的裂纹扩展与爆裂关系.混凝土,2001,(7):15-18.
    [6]胡建勤.高性能混凝土抗裂性能及其机理的研究.武汉理工大学,2002.
    [7]吴建华.高强高性能大掺量粉煤灰混凝土研究.重庆大学,2005.
    [8]朱伯龙,陆洲导,胡克旭.高温(火灾)下混凝土与钢筋的本构关系.四川建筑科学研究,1991,17(1):37-43.
    [9]孟宏睿,高温作用后混凝土力学性能及无损检测的试验研究.西安建筑科技大学硕士论文,2005.
    [10]刘红彬,李康乐,鞠杨,盛国华,冯磊.高强高性能混凝土的高温力学性能和爆裂机理研究.混凝土,2009,7:11-14.
    [11]PhanT, CarinoNicholasJ. Review of Mechanical Properties of HSC at Elevated Temperature, JournalofMaterialsinCivilEngineering,1998,10(1):58-64.
    [12]陶津,柳献,袁勇,LucTaerwe自密实混凝土高温爆裂性能影响因素的试验研究.土木工程学报,2009,10(42):22-26.
    [13]HARMARTHY Y Z. Effect of moisture on the fire endurance of building elements. Philadelphia:ASTM publication STP,1965.74-95.
    [14]傅宇方,黄玉龙,潘智生,唐春安.高温条件下混凝土爆裂机理研究进展.建筑材料学报,2006,9(3):323-329.
    [15]ANDERBERGY. Spalling phenomena of HPC and OC. Proceedings of International Workshop on Fire Performance of High-Strength Concrete(NIST Special Publication 919). Gaithersburg:NIST,1997,69-73.
    [16]CHAN Y N, PENG G F, ANSON M. Fire behavior of high-performance concrete made with silica fume at various moisturecontents. ACI Materials Journal,1999, 96(3):405-411.
    [17]朋改非,陈延年,MikeAnson.高性能硅灰混凝土的高温爆裂与抗火性能.建筑材料学报,1999(3):86-91.
    [18]CASTILLO C, DURRANI A J. Effect of transient high temperature on high-strength concrete. ACI Material Journal,1990,87(1):47-53.
    [19]HAMMER T A. High-strength concrete phase 3, compressive strength and E-modulus at elevated temperatures (SP6 fire resistance, report 6.1). [sl]:SINTEF Structures and Concrete,1995.
    [20]Khoury GA, Anderberg Y. Concrete spalling review. Swedish:Swedish National Road Administration,2000.
    [21]PHAN LT. Porepressure and explosive spalling in concrete. Materials and Structures,2008(41):1623-1632.
    [22]FURUMURA F, ABE T, SHINOHARA Y. Mechanical properties of high strength concrete at high temperatures. Proceedings of the Fourth Weimar Workshop on High Performance Concrete:Material Properties and Design. Germany:Weimar, 1995.237-254.
    [23]CASTILLO C, DURRANI A J. Effect of transient high temperature on high-strength concrete. ACI Material Journal,1990,87(1):47-53.
    [24]吴波,袁杰,李惠,周文松.高温下高强混凝土的爆裂规律与柱截面温度场计算.自然灾害学报,2002,2(11):65-69.
    [25]王珩,钱春香,李敏等.高强混凝土湿扩散与火灾爆裂关系研究.东南大学学报:自然科学版,2003,33(4):454-457.
    [26]Chan Y N, Luo X, Sun W. Compressive Strength and Pore Structure of High Performance Concrete After Exposure to High Temperature up to 800℃. Cement and Concrete Research,2000,30(2):247-251.
    [27]SMITH P. Resistance to high temperature, in significance of test s and properties of concrete and concrete2making materials. Philadelphia:ASTM Publication STP 169B,1978.
    [28]AOANT Z P. Analysis of pore pressure, thermal stresses and fracture in rapidly heated concrete. Proceedings of International Workshop on Fire Performance of High-Strength Concrete (NIST Special Publication 919). Gaithersburg:NIST 1997.155-164.
    [29]FU Y F, WONG Y L, POON C S, et al. Experimental study of micro/macro crack development and stress-strain relations of cement-based composite materials at elevated temperatures. Cement and Concrete Research,2004,34(5):789-797.
    [30]FU Y F, WONG YL, TANG C A, et al. Thermal induced stress and associated cracking in cement-based composite at elevated temperatures (Part Ⅰ):Thermal cracking around single inclusion. Cement & Concrete Composites,2004,26(2): 99-111.
    [31]FU Y F, WONG YL, TANG C A, et al. Thermal induced stress and associated cracking in cement-based composite at elevated temperatures (Part Ⅱ):Thermal cracking around multiple inclusions. Cement & Concrete Composites,2004,26 (2): 113-126.
    [32]KRISTENSEN L, HANSEN T C. Cracks in concrete core due to fire or thermal heating shock. ACI Materials Journal,1994,91(5):453-459.
    [33]N. Khoylou and G. L. England. The effect of moisture on spalling of strength concrete. Worldwide Advances in Structural Concrete Chicago, Illinois,1996.4: 15-18.
    [34]PJE Sullivan. Deterioration and spalling of high strength. Offshore Research Focus.2001,34 (8):1156-1161.
    [35]G G Carette, K E Painter, V M Maihotra. Sustained High Temperature Effect on Concretes Made With Normal Portland Cement, Normal Portland Cement and Slag, or Normal Portland Cement and Fly ash. Concrete Intermational, Jul 1982:41-51.
    [36]U. M. Jumppanen, U. Schneider.高性能混凝土—材料特性与设计,北京:中国铁道出版社,1998.113-122.
    [37]马忠诚.火灾后钢筋混凝土结构损伤评估与抗震修复.哈尔滨建筑大学博士学位论文,1997.
    [38]王珩,钱春香.胶砂试件高温爆裂程度的外部影响因素.混凝土与水泥制品, 2003(5):16-18.
    [39]C. S. Poon, S. Azhar. Comparison of the strength and durability performance of normal and high strength pzzolanic concretes at elevated temperatures. Cem. Concr. Res.2001(31):1291-1300.
    [40]Clayton, N. Fire performance of high-grade concrete, Institution of Civil Engineers. Research Focus.200043(7):1025-1030.
    [41]石东升,王海波,刘曙光.影响火灾下混凝土爆裂因素的试验研究.内蒙古工业大学学报(自然科学版),2007,(02).
    [42]易兵.混凝土爆裂的原因分析与预防.消防科学与技术,1991,(01).
    [43]蒋玉川.普通强度高性能混凝土的高温性能特征.北京交通大学硕士论文,2007.
    [44]吴波,袁杰,王光远,高温后高强混凝土力学性能的试验研究.土木工程学报,2000,33(2):8-12.
    [45]王峥.混凝土高温后力学性能的试验研究.大连理工大学硕士论文,2010.
    [46]何振军.高温前后高强混凝土多轴力学性能试验研究.大连理工大学博士论文,2008.
    [47]吕天启,赵国藩,林志伸.高温后静置混凝土力学性能试验研究.建筑结构学报,2004,25(1):63-69.
    [48]曹蓓蓓.混凝土的热特性与再生利用研究.武汉理工大学硕士论文,2006
    [49]王孔藩,许清风,刘挺林.混凝土结构火灾损伤及可靠性分析方法的研究报告.上海:上海建筑科学研究院.2003,(10).
    [50]吕天启,赵国藩,林志伸,岳清瑞.高温后静置混凝土的微观分析.建筑材料学报.2003,6(2):135-141.
    [51]Y. N. Chan, G. F. Peng, M. Anson. Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperature, Cem. Concr. Res.1999(21):23-27.
    [52]I. Janotka. Behavior of High-strength Concrete with Dolomite Aggregate at High Temperatures. Magazine of Concrete Research,2000,52(6):399-409.
    [53]沈鲁明.碳化混凝土及钢筋混凝土柱抗火性能分析.同济大学工程结构研究所,1997.
    [54]陈磊,李彬,滕桃居等.混凝土高温力学性能分析.混凝土,2003,7(7):26-28.
    [55]阎慧群.高温(火灾)作用后混凝土材料力学性能研究,四川大学硕士论文,2004.
    [56]CASTILLOC, DURRANIAJ. Effect of transient high temperature on high-strength concrete. ACI Materials Journal,1990,87(1):47-53.
    [57]BIOLZIL, CATTANEO S, ROSATI G. Evaluating residual properties of thermally damaged concrete. Cement and Concrete Composites,2008,30(10):907-916.
    [58]胡海涛,董毓利.高温时高强混凝土强度和变形的试验研究.土木工程学报.2002,35(6):44-47.
    [59]徐晓勇,马彦飞,石国柱.高强混凝土高温作用后的力学性能研究.安阳师范学院学报,2008:149-151.
    [60]曹蓓蓓,梁志刚.高温条件下混凝土结构与性能的变化.国外建材科技,2005,6(25):17-21.
    [61]T. T. Lie. A procedure to Calculate Fire Resistance of Structural Members: International Seminar on Three Decades of Structural Fire Safety,1983.
    [62]陆洲导.钢筋混凝土梁对火灾反应的研究.同济大学博士论文,1989.
    [63]李卫.高温下混凝土强度和变形的试验研究.清华大学博士论文,1991.
    [64]凌立,贾清,刘宏波.高温后高性能混凝土抗压强度试验研究.工业建筑,2009,(39):901-902.
    [65]杨建江,慈芳,魏晓辉.高温后钢筋与混凝土的力学性能评述.建筑结构.2009,(39): 159-164.
    [66]CastilloC, Durrani A J. Effect of Transient High Temperature on High Strength Concrete. ACI Materials Journal,1990,87(1):47-53
    [67]Hoff G C, Bilodeau A, Malhotra V M. Elevated Temperature Effects on HSC Residual Strength. Concrete International,2000,22(4):41-47.
    [68]Sanjayan G, Stocks L J. Spalling of High-strength Silica Fume Concrete in Fire. ACI Materials Journal,1993,90(2):170-173.
    [69]徐志胜.高温作用后混凝土强度试验研究.混凝土,2000,(2):44-45.
    [70]徐志胜,朱玛.高温作用后混凝土强度与变形试验研究.长沙铁道学院学报, 2000,(2):13-16.
    [71]吕天启.高温后混凝土静置性能的试验研究及己有建筑物的防火安全评估.大连理工大学博士论文,2002.
    [72]张彦春,胡晓波,白成彬.刚纤维混凝土高温后力学强度研究.混凝土,2001,9:50-53.
    [73]Hammer TA. High Strength Concrete Phase 3. SP6:Fire Resistance Report 6.1. Compressive Strength and E-Modulus at Elevated Temperatures, Structures and Concrete,1995,28(2):20-26.
    [73]Carlos Castillo and A. J. Durrani. Effect of Transient High Temperature on High-Strength Concrete. ACI Materials Journal,1990, (87):85-89.
    [74]Williams, R. B., and Rashed, A. I, Comparison of ASTM E 119 Fire Endurance Exposure of Two EMSAV Concrete with Similar Conventional Concretes, Report No. UCB FRG 87-1, Fire Research Laboratory, University of California, Berkeley, 1987(7):22-87.
    [75]V. K. R. Kodur; Fu-Ping Cheng; Tien-Chih Wang; and M. A. Sultan. Effect of Strength and FiberReinforcement on Fire Resistance of High-Strength Concrete Columns, Journal of Structural Engineering,2003,129(2):1110-1114.
    [76]Hertz KD. Explosion of silica-fume concrete. Fire Safe J,1984(85):8-77.
    [77]Dale P. Bentz. Fibers, Percolation, and Spalling of High-Performance Concrete, ACI Mater. J.2000,97(30):351-359.
    [78]Mohamedbhai, G T. G. Effect of Exposure Time And Rates of Heating and Cooling on Residual Strength of Heated Concrete. Magazine of Concrete Research,1986, 38(9):151-158.
    [79]王珍,黄涛,张泽江.高温后PPF掺防腐剂HPC剩余抗压强度试验研究.材料导报,2010,24(10):58-61.
    [80]李敏.高强混凝土受火损伤及其综合评价研究.东南大学博士论文,2005.
    [81]李卫,过镇海.高温中混凝土的强度和变形性能试验研究.建筑结构学报,1993,14(1): 8-16.
    [82]张彦春,胡晓波,白成彬.钢纤维混凝土高温后力学性能研究.混凝土,2001, (9),5053.
    [83]肖建庄,王平,李杰等,矿渣高性能混凝土高温后抗压强度,高强与高性能混凝土及其应用第四届学术讨论会论文集,2001.204-210.
    [84]阎继红.高温作用下混凝土材料性能试验研究及框架结构性能分析.天津大学博士论文,2000.
    [85]姚坚,朱合华,闫治国,曾令军.隧道衬砌混凝土高温后力学性能实验研究.地下空间与工程学报.2007,1(3):66-82.
    [86]阎慧群,雷兵,王清远,戴光泽.隧道火灾高温后混凝土的力学性能研究.四川大学学报(工程科学版),2008,5(40):74-78.
    [87]苏承东,管学茂,李小双.高温作用后混凝土力学性能实验研究.河南理工大学学报(自然科学版).2008,1(27):111-117.
    [88]PENG G F, BIAN S H, GUO Z Q, et al. Effect of thermal shock due to rapid cooling on residual mechanical properties of fiber concrete exposed to high temperatures. Construction and Building Materials,2008,22(5):948-955.
    [89]王孔藩,许清风,刘挺林.高温下及高温冷却后混凝土力学性能的试验研究.施工技术,2005,8(34):1-2.
    [90]贾福萍,吕恒林,崔艳莉,渠艳艳,王永春.不同冷却方式对高温后混凝土性能退化研究.中国矿业大学学报,2009,1(38):25-29.
    [91]孟宏睿.高温作用后混凝土力学性能及无损检测的试验研究.西安建筑科技大学,2005.
    [92]王新平,丁伟.高温浇水冷却后普通混凝土的力学性能,山东建筑工程学院学报,1997,12(1):15-19.
    [93]王珍;张泽江;祝杰.掺防腐剂C35高性能混凝土力学性能试验研究.混凝土,2010,(3).
    [94]祝杰.砼桥桩基高性能混凝土抗硫酸盐侵蚀性能研究.西南交通大学硕士论文2010.
    [95]中华人民共和国建设部.GB/T50080-2002普通混凝土拌合物性能试验方法标准.北京:中国建筑工业出版社,2008.
    [96]中华人民共和国建设部.GB/T50081-2002普通混凝土力学性能试验方法标 准.北京:中国建筑工业出版社,2002.
    [97]吴寅,孙玲.矿渣与粉煤灰高性能混凝土力学性能研究.大连民族学院学报,2004年5月,第6卷第3期,53-58.
    [98]成厚昌,高性能混凝土的力学性能研究,重庆建筑大学学报.1999,21(3):76-80.
    [99]石明霞,龙广成,张松洪.水胶比和集料对高性能混凝土力学性能的影响.山西建筑2006,32(16):3-7.
    [100]李红辉.大掺量粉煤灰高性能混凝土研究.北京建筑工程学院硕士论文,2008.
    [101]姚燕,王玲,田培,高性能混凝土,化学工业出版社,2006,287-289.
    [102]阎继红,林志伸,胡云昌.高温作用后混凝土抗压强度的试验研究.土木工程学报,2002,35(05):44-46.
    [103]徐或,徐志胜,朱玛.高温作用后混凝土强度与变形试验研究.长沙铁道学院学报,2000,18(2):13-21.
    [104]王珍,张泽江,黄涛.高温中及冷却后高性能混凝土残余抗压强度试验.郑州大学学报(工学版),2010,31(5):78-81.
    [105]M. Saad, S. A. Abo-EI-Enein, et. al. Effect of Temperature on Physical and Mechanical Properties of Concrete Containing Silica Fume. Cem. Concr. Res.1996, 26(5):669-675.
    [106]V. K. R. KodurFu-Ping Cheng and M. A. Sultan. Effect of Strength and Fiber Reinforcement on Fire Resistance of High-Strength Concrete Columns, Journal of Structural Engineering,2003,129(2):1110-1114.
    [107]CastilloC, Durrani A J. Effect of Transient High Temperature on High Strength Concrete. ACI Materials Journal,1990,87(1):47-53
    [108]王振信.公路隧道安全问题初探.地下工程与隧道,2003,(1):2-5.
    [109]时旭东,过镇海.高温下钢筋混凝土受力性能的试验研究.土木工程学报,2000,33(6): 6-16.
    [110]宿晓萍,吴波,袁杰.高温(非均匀温度场)后约束高强混凝土力学性能的理论研究.哈尔滨建筑大学学报,2002,35(2):21-25.
    [111]王珍,张泽江.高温后掺防腐剂C35高性能混凝土剩余抗压强度试验研究.混 凝土,2010,(9):32-34.
    [112]李敏.高强混凝土受火损伤及其综合评价研究.东南大学博士论文,2005.
    [113]朋改非,李斌,马强,赵杰.火灾高温下高性能混凝土的裂纹扩展与爆裂的关系.混凝土,2001,7(141):15-18.
    [114]张泽江,王珍,祝杰.消防射水对火灾后高性能混凝土剩余抗压强度的影响.防灾减灾工程学报,30(4):414-418.
    [115]南建林,过镇海,时旭东.混凝土的温度一应力祸合本构关系.清华大学学报(自然科学版),1997,37(6):87-90.
    [116]许名鑫,郑文忠.建筑结构抗火知识及对建筑结构抗火问题的思考.工业建筑.2006,(36)123-126.
    [117]万绍杰.建筑耐火设计与火灾坍塌的预防.广西民族大学学报(自然科学版).2006,9:137-139.
    [118]孙金华,孙占辉,陆守香,范维澄.中国工程科学.2003,11(5):51-55.
    [119]李宗翔,纪奕君,孙平.楼房火灾的安全灭火时限分析与施救对策.中国安全科学学报.2004,6(14):47-49.
    [120]Mehaffe. J. R, Harmathy. T. Z. Assessment of Fire Resistance Requirements. Fire Technology.1981,4(17):221-237.
    [121]D. Yung, J. R. Harmathy. Fire Resistance Requirements For Rubber-Tire Warehouses. Fire Technology.1991,5:100-112.