高油气比驻涡燃烧室流动与燃烧性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
驻涡燃烧室(Trapped Vortex Combustor,简称TVC)是一种非常有发展潜力和应用前景的新概念燃烧室,目前的试验结果证明了其优于常规旋流稳定燃烧室的性能:火焰稳定范围宽、燃烧效率高、氮氧化物排放低等,驻涡燃烧室也因此成为未来军用航空发动机高油气比燃烧室发展的重要方向之一。本文结合试验研究和数值模拟研究,基于高油气比驻涡燃烧室开展了燃烧室气动方案、油气方案、结构方案设计,并就燃烧室气动特性、部分关键技术和燃烧性能开展了系统而深入的研究。
     应用粒子图像测速技术和数值计算方法获得了燃烧室冷态流场宏观特性及细节特征。结果表明,凹腔流动的两种典型模式同时存在于本文设计的燃烧室中,联焰板截面为单涡模式,联焰板中间截面为双涡模式;不同截面凹腔与主流掺混的机理和程度不同,这种差异也增强了流动的三维特性;本文研究参数范围内,流动已经处于自模状态,燃烧室进口马赫数的变化对燃烧室流动结构没有影响,马赫数升高,火焰筒内涡量增大,混合增强;对于本文高油气比驻涡燃烧室,standard k-ε湍流模型对流场的预测精度最高。
     开展了驻涡燃烧室进气结构和供油技术的研究。提出了一种被动流动控制方法优化凹腔流动,数值结果表明,在凹腔前壁进气缝中设置局部阻塞区可以在凹腔内诱导流向涡,增强凹腔流动的三维特性,强化混合。对联焰板结构的研究发现,联焰板的宽度、倾角等结构参数以及联焰板与凹腔前壁进气的匹配对凹腔内的流动、燃烧影响很大,是驻涡燃烧室设计中的两个关键因素,本文获得的联焰板最佳宽度为20mm、最佳倾角0°,凹腔阻塞区位于相邻两联焰板中间对应的燃烧性能最好。研究结果拓展了关于联焰板作用的认识,对驻涡燃烧室设计具有一定的指导意义。提出了部分预混预蒸发多点供油的主燃级供油方案,开展冷态试验获得了钝体空腔孔径、面积比等结构参数以及进口马赫数等对性能的影响,开展燃烧试验初步验证了该方案的可行性。完成了值班级离心喷嘴油雾特性对凹腔燃烧性能的影响试验,获得的最佳油雾锥角为60°,试验结果表明,空心油雾锥性能优于实心油雾锥。
     开展了常压进口条件仅凹腔供油和凹腔/主燃级同时供油两种模式下燃烧室燃烧性能的试验研究,获得了进口马赫数、总油气比、两级燃油分配等参数对燃烧性能的影响规律。结果表明,473K进口温度下燃烧室贫油熄火油气比最低为0.0042,两级同时工作模式下燃烧效率最高为99.8%,在一定程度上解决了高油气比燃烧室贫油熄火性能和大状态燃烧效率的矛盾。随着凹腔供油比例的升高(20%~50%),燃烧效率降低。出口温度分布系数变化范围为0.14~0.18。
     本文研究结果对驻涡燃烧室优化设计具有重要指导作用,同时也对高油气比燃烧室的发展具有一定的参考价值。
Trapped vortex combustor (TVC) is a very potential and promising new concept combustor forits demonstrated advantages over conventional swirl-stabilized combustors: wide operation range,high combustion efficiency (η) and low emissions. Now, TVC has become one of the most importantcandidates for the future high temperature rise combustor of military aero engine. This paper presentsthe aerodynamic, fuel/air scheme and geometry design of a high fuel/air ratio (FAR) trapped vortexcombustor, as well as numerical and experimental results of aerodynamics, some key technique inves-tigations and combustion characteristics.
     Particle imaging velocimetry (PIV) measurement and numerical simulation were carried out toinvestigate the cold flow characteristics of the model combustor. The results show that single-vortexand dual-vortex cavity flow patterns were obtained in the radial strut plane and in the middle planebetween two radial struts, respectively. The cavity/mainstream mixing mechanism and mixing degreeof different planes are different, this difference is believed to be helpful in enhancing the three dimen-sional effect of the flow. It is also observed that the flow remains self-similar with the range of inletMach number from0.1to0.25, the vortices become more intense at higher inlet Mach number, whichimplies the ability for the TVC to operate at high inlet velocities. A comparison between the numericalresults and the experimental results demonstrates the superiority of the standard k-ε turbulence modelin TVC flow prediction. The data obtained by PIV measurements in this paper can be used as a benchmark for cold flow CFD simulations of TVC.
     Key techniques were investigated in terms of flow optimization and fuel supply. A passive flowcontrol technique is proposed to optimize the cavity flow, it is found that streamwise vortexes aresuccessfully induced in cavities by local block area settled in the slots of the cavity fore walls, whichwould result in enhanced heat and mass transfer in circumferential direction. The geometry of radialstrut was varied to check its effect on TVC performance, the results reveal that the geometry of radialstruts has very strong impact on flow field and combustion characteristics of cavities in addition to itsimpact on "flame transportation", the optimum width and inclination angle are20mm and0°respec-tively in present work. Also, the relative position of radial struts and cavity injectors in circumferentialdirection are proved to be a critical issue in TVC, the best performance was achieved when a radialstrut was located in the middle plane of two adjacent cavity injector planes. Partially pre-mixedpre-vaporized multi-injection concept was proposed for the fuel injection in main stage of TVC, the effect of hole diameter, the area ratio and the inlet Ma number on performance were investigated ex-perimentally. The feasibility of this fuel injection technique was validated preliminarily by combus-tion tests. It is shown that combustion performance varies nonmonotonicly with increasing spray an-gle of cavity swirl-pressure injectors, the performance curve peaks at the spray angle of60°, also,better performance is observed with hollow spray cone rather than solid spray cone.
     The combustion characteristics of the high FAR TVC both in cavity-only mode and in cav-ity+main mode were investigated at atmospheric pressure. The lowest lean blowout fuel/air ratioachieved at the inlet temperature of473K is0.0042, which indicates encouraging flame stability. Incavity-only mode, combustion efficiency over98%were obtained for most of the tested cases. In cav-ity+main mode, noticeable decrease of η is observed as the cavity fuel percentage increases from20%to50%, the highest η at the over fuel air ratio of0.04is96.7%, however, a higher value of η can beexpected at realistic engine conditions of higher temperature and higher pressure. The overall tem-perature distribution factor (OTDF) varies in the range of0.14~0.18.
引文
[1]刘大响,程荣辉.世界航空动力技术的现状及发展动向.北京航空航天大学学报,2002,28(5):490~496.
    [2]刘大响.航空发动机技术的发展和建议.中国工程科学,1999,1(2):24~29.
    [3]江和甫,蔡毅,斯永华.对航空发动机研究和发展规律的认识.燃气涡轮试验与研究,2001,14(3):7~10.
    [4]侯晓春,季鹤鸣,刘国庆,等.高性能航空燃气轮机燃烧技术.北京:国防工业出版社,2002.
    [5] H. C. Mongia.Gas Turbine Combustion Design,Technology and Research Current Status andFuture Direction.AIAA,1997.
    [6] H. C. Mongia. Aero-Thermal Design and Analysis of Gas Turbine Combustion Systems:Cleveland:34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit,AIAA98-3982,1998.
    [7]李继保,胡正义.高温升高热容燃烧室设计技术分析.燃气涡轮试验与研究,2000,13(4):5~8.
    [8] D. W. Bahr.Technology for the Design of High Temperature Rise Combustors. J.Propulsion,1987,3(2):179-186.
    [9]林宇震,许全宏,刘高恩.燃气轮机燃烧室.北京:国防工业出版社,2008.
    [10]何小民,常海萍.高推重比发动机热端部件发展的技术途径与战略对策.航空科学技术,1999.6:32~34.
    [11]江义军.推重比12~15发动机技术途径分析.航空动力学报,2001,16(2):103~107.
    [12]陈大光,张津,朱之丽.推重比15一级发动机有关总体性能的关键技术和难点分析.航空动力学报,2001,16(1):8~12.
    [13] K. D. Brundish,M. N. Miller,L. C. Morgan,et al.Variable Placement Injector Development.Proceedings of ASME Turbo Expo2003Power for Land,Sea,and Air,Atlanta,Georgia,USA,16-19June2003,GT2003-38417.
    [14]刘百麟,林宇震,袁怡祥,等.高温升燃烧室贫油熄火稳定性研究.推进技术,2003,24(5):456~459.
    [15]彭云晖,刘旦,林宇震.高温升燃烧室主燃区流场和燃烧性能.燃烧科学与技术,2010,16(5):456~461.
    [16]许全宏,林宇震,刘高恩,等.航空发动机高温升燃烧室贫油熄火及冒烟性能研究.航空动力学报,2005,20(4):636~640.
    [17]彭云晖,林宇震,刘高恩,等.三旋流器燃烧室出口温度分布的初步试验研究.航空动力学报,2007,22(4):554~558.
    [18]袁怡祥,林宇震,刘高恩,等.三旋流器头部燃烧室拓宽燃烧稳定工作范围的研究.航空动力学报,2004,19(1):142~147.
    [19]林宇震,林阳,张弛,等.先进燃烧室分级燃烧空气流量分配的探讨.航空动力学报,2010,25(9):1924~1930.
    [20] W. A. Mair.The Effect of a Rear-Mounted Disc on the Drag of a Blunt-Based Body of Revo-lution.The Aeronautical Quarterly,November1965:296-302.
    [21] B. H. Little Jr,R. R. Whipkey.Locked Vortex Afterbodies.Journal of Aircraft,May1979,Vol16(5):296-302.
    [22] N. M. Komerath,K. K. Ahuja,F.W.Chambers.Prediction and Measurement of Flows overCavities—A Survey.AIAA-87-0166.
    [23] K.-Y.Hsu,L.P.Goss,D.D.Trump.Performance of A Trapped-Vortex Combustor. AIAA-1995-0810.33rd Aerospace Sciences Meeting and Exhibit,January9-12,1995/Reno,NV.
    [24] K.-Y.Hsu,L.P.Goss,W.M.Roquemore.Characteristics of a Trapped-Vortex Combustor. Journalof Propulsion and Power,1998,14(1):57-65.
    [25] G. J. Sturgess,K.-Y Hsu.Entrainment of Mainstream Flow Trapped-Vortex Combustor.AIAA-97-0261.
    [26] V. R. Katta,W. M. Roqumore,et al.Study On Trapped Vortex Combustor-Effect of InjectionOn Dynamics of Non-Reacting and Reacting Flows In a Cavity.AIAA-97-3256.33rdAIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit,July6-9,1997,Seattle,WA.
    [27] V. R. Katta,W. M. Roqumore. Study on Trapped-Vortex Combustor—Effect of Injection onFlow Dynamics.Journal of Propulsion and Power,1998,14(3):273-281.
    [28] V. R. Katta, W. M. Roqumore. Numerical Study on Trapped-Vortex Combustor Concepts forStable Combustion. Transactions of the ASME,1998,120:60-68.
    [29] K.-Y.Hsu,C. D. Carter,V. R. Katta,et al.Characteristics of Combustion Instability Associatedwith Trapped–Vortex Burner. AIAA99–16372.37th AIAA Aerospace Sciences Meeting andExhibit January11–14,1999/Reno,NV.
    [30] C. Stone,S. Menon.Simulation of Fuel-Air Mixing and Combustion in a Trapped-VortexCombustor.AIAA2000–0478.38th AIAA Aerospace Sciences Meeting and Exhibit January10–13,2000/Reno,NV.
    [31] P.C.Mancilla, P.Chakka, et al. Performance of A Trapped Vortex Spray Combus-tor.2001-GT-0058.Proceeding of ASME TURBO EXPO2001,New Orleans.
    [32] W.M.Roquemore,D.Shouse,D.Burrus,et al.Trapped Vortex Combustor Concept for GasTurbine Engines.AIAA-2001-0483.
    [33] D.L.Burrus,A.W.Johnson,W.M.Roquemore,et al.Performance Assessment of A PrototypeTrapped Vortex Combustor Concept for Gas Turbine Application.2001-GT-0087.Proceedingof ASME TURBO EXPO2001,New Orleans.
    [34] R.C.Hendricks,D.T.Shouse,W. M. Roquemore,et al.Experimental and Computational Studyof Trapped Vortex Combustor Sector Rig With Tri-Pass Diffuser.NASA/TM-2004-212507.
    [35] A.Brankovic,R.C.Ryder,R.C.Hendricks,et al.Emissions Prediction and Measurement forLiquid-Fueled TVC Combustor With and Without Water Injection.NASA/TM-2005-213441.
    [36] T. R. Meyer,M. S. Brown,et al.Optical Diagnostics and Numerical Characterization of ATrapped-vortex combustor.AIAA-2002-3863.38th AIAA/ASME/SAE/ASEE Joint Propul-sion Conference&Exhibit7-10July2002,Indianapolis,Indiana.
    [37] R. C. Hendricks,R. C. Ryder,A. Brankovic,et al.Computational Parametric Study of FuelDistribution in an Experimental Trapped Vortex Combustor Sector Rig.Proceedings of ASMETurbo Expo2004Power for Land,Sea,and Air,June14-17,2004,Vienna,Austria.
    [38] G. J. Sturgess,D. T. Shouse,J. Zelina.Emissions Reduction Technologies for Military GasTurbine Engines.AIAA2003-2622. AIAA/ICAS International Air and Space Symposium andExposition: The Next100Y,14-17July2003,Dayton,Ohio.
    [39] K. Barlow,D. Burrus,E. Stevens.Trapped Vortex Combustor Development for MilitaryAircraft.US Navy Contract N00421-02-C-3202.
    [40] D. L. Straub,K. H. Casleton,R. E. Lewis,et al.Assessment of Rich-Burn,Quick-Mix,Lean-Burn Trapped Vortex Combustor for Stationary Gas Turbines.Journal of Engineering for GasTurbines and Power.Vol.127, JANUARY2005:36~41.
    [41] D. L. Straub,T. G. Sidwell,et al.Simulations of a Rich Quench Lean (RQL) Trapped VortexCombustor.The American Flame Research Committee International Symposium NewportBeach,September2000,CA,USA.
    [42] G. J. Sturgess,D. T. Shouse,et al.Emissions Reduction Technologies For Military Gas TurbineEngines.AIAA-2003-2622.AIAA/ICAS International Air and Space Symposium and Exposi-tion:The Next100Y,14-17July2003,Dayton,Ohio.
    [43] R. C. Hendricks,D. T. Shouse,et al.Water Injected Turbomachinery.NASA/TM-2005-212632.
    [44] J. Bucher,R. G. Edmonda,et al.The Development of a Lean-premixed Trapped VortexCombustor.GT-2003-38236.Proceedings of ASME Turbo Expo2003Power for Land, Sea,and Air July16-19,2003,Atlanta,Georgia,USA.
    [45] J. Zelina,J. Ehret,R. D. Hancock,et al.Ultra-Compact Combustion Technology Using HighSwirl for Enhanced Burning Rate.38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit,Indianapolis,Indiana,7-10July2002.
    [46] J.Zelina,G.J.Sturgess,D.T.Shouse.The Behavior of an Ultra-Compact Combustor (ucc) Basedon Centrifugally-Enhanced Turbulent Burning Rates.40th AIAA/ASME/SAE/ASEE JointPropulsion Conference&Exhibit,Fort Lauderdale,Florida,11-14July2004.
    [47] J.Zelina,D.T.Shouse,R.D.Hancock.Ultra-Compact Combustor for Advanced Gas TurbineEngines.Proceedings of ASME Turbo Expo2004Power for Land,Sea,and Air,Vienna,Austria,14-17June2004,GT2004-53155.
    [48] J.Zelina,D.T.Shouse,C.Neuroth.High-Pressure Tests of a High-g,Ultra-Compact Combustor41stAIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit,Tucson, Arizona,10-13July2005.
    [49] J.Zelina,D.T.Shouse,J.S.Stutrud.Exploration of Compact Combustors for Reheat Cycle AeroEngine Applications.Proceedings of GT2006ASME Turbo Expo2006: Power for Land,Sea,and Air,Barcelona,Spain,8-11May2006,GT2006-90179.
    [50] J.Zelina, R.T.Greenwood, D.T.Shouse. Operability and Efficiency Performance of Ul-tra-Compact,High Gravity (g) Combustor Concepts.Proceedings of GT2006ASME TurboExpo2006: Power for Land,Sea,and Air,Barcelona,Spain,8-11May2006,GT2006-90119.
    [51] Farhad, R. Buehrle, N. Suey, et al. Numerical Simulation of the RTA CombustionRig. NASA/TM-2005-213899,2005.
    [52] J. Lee,R. Winslow,R. J. Buehrle.The GE-NASA RTA Hyperburner Design and Develop-ment.NASA/TM-2005-213803,2005.
    [53] I. E. Wolmann, S. S. Archer, F. G. Bachman, et al.Augmentor With Trapped Vortex Pilot,United States,0056340,2009.
    [54] P. K. Ezhil Kumar,D. P. Mishra.Numerical Simulation of Cavity Flow Structure in an Axi-symmetric Trapped Vortex Combustor. Aerospace Science and Technology,2011,doi:10.1016/j.ast.2011.04.007.
    [55] P. K. Ezhil Kumar,D. P. Mishra.Numerical Investigation of the Flow and Flame Structure inan Axisymmetric Trapped Vortex Combustor.Fuel,2012,102:78~84.
    [56] K. K. Agarwal,R. V. Ravikrishna.Experimental and Numerical Investigation Studies in aCompact Trapped Vortex Combustor: Stability Assessment and Augmentation.CombustionScience and Technology,2011,183(12):1308~1327.
    [57] K. K. Agarwal,R. V. Ravikrishna.Mixing Enhancement in a Compact Trapped VortexCombustor.Combustion Science and Technology,2013,185(3):363~378.
    [58] C. Merlin,P. Domingo,L.Vervisch.Large Eddy Simulation of Turbulent Flames in a TrappedVortex Combustor(TVC)—A Flamelet Presumed-pdf Closure Preserving Laminar FlameSpeed.C. R. Mecanique (2012),http://dx.doi.org/10.1016/j.crme.2012.10.039.
    [59]何小民,王家骅.驻涡火焰稳定器冷态流场特性的初步研究.航空动力学报,2002,17(5):567~571.
    [60]何小民,姚锋.流动和油气参数对驻涡燃烧室燃烧性能的影响.航空动力学报,2006,21(5):810~813.
    [61]何小民,许金生,苏俊卿.驻涡区进口结构参数影响TVC燃烧性能的试验.航空动力学报,2007,22(11):1798~1802.
    [62]何小民,张净玉.驻涡燃烧室燃烧组织方式和设计思路分析.航空科学技术,2008,2:26~29.
    [63]何小民,许金生,苏俊卿.驻涡燃烧室燃烧性能试验.航空动力学报,2009,24(2):318~323.
    [64]金义,何小民,蒋波.富油燃烧/快速淬熄/贫油燃烧(RQL)工作模式下驻涡燃烧室排放性能试验.航空动力学报,2011,26(5):1031~1036.
    [65] JIN Yi,HE Xiaomin,Zhang Jingyu,et al.Experimental Study on Emission Performance ofa LPP/TVC.Chinese Journal of Aeronautics,2012,25(3):335-341.
    [66] JIN Yi,HE Xiaomin,JIANG Bo,et al.Design and Performance of an Improved TrappedVortex Combustor. Chinese Journal of Aeronautics,2012,25(6):864-870.
    [67]秦伟林,何小民,金义,等.凹腔驻涡与支板稳焰组合加力燃烧室模型冷态流场试验.航空动力学报,2012,27(6):1347-1354.
    [68]丁国玉,何小民,金义,等.涡轮级间燃烧室燃烧性能试验.航空动力学报,2012,27(11):2442-2447.
    [69]樊未军,易琪,严明,等.驻涡燃烧室凹腔双涡结构研究.中国电机工程学报,2006,13426(9):66~70.
    [70]樊未军,孔昭健,邢菲,等.凹腔驻涡模型燃烧室内涡的演化发展.航空动力学报,2007,22(6):888~892.
    [71]邢菲,孟祥泰,李继宝,等.凹腔双驻涡稳焰冷态流场初步研究.推进技术,2008,29(2):135~138.
    [72]李瑞明,刘玉英,刘河霞,等.驻涡燃烧室主流对凹腔涡流动的影响.航空动力学报,2009,24(7):1482~1487.
    [73]刘玉英,李瑞明,杨茂林,等.驻涡燃烧室凹腔流场结构实验.推进技术,2010,31(1):29~33.
    [74]邢菲,张荣春,樊未军,等.主流及掺混气温度对单涡/贫油驻涡燃烧室点火及熄火性能影响的试验.航空动力学报,2008,23(12):2280~2285.
    [75]邢菲,樊未军,张荣春,等.蒸发管供油的单驻涡燃烧室贫油点火试验.推进技术,2009,30(5):523~527.
    [76]孔祥雷,樊未军,邢菲,等.单涡/贫油驻涡燃烧室的出口温度分布试验.航空动力学报,2010,25(4):794~799.
    [77]张荣春,樊未军,邢菲.涡轮级间单涡燃烧室壁温研究.航空动力学报,2010,25(7):1512~1517.
    [78]邢菲,张帅,邹建锋,等.基于驻涡燃烧室的贫油熄火经验关系式初探.航空学报,2010,31(10):1914~1918.
    [79]张韬,宋双文,樊未军,等.双涡/贫油驻涡燃烧室的贫油熄火特性试验.航空动力学报,2011,26(6):1328~1333.
    [80]张荣春,樊未军,宋双文.驻涡燃烧室蒸发管供油装置的雾化蒸发性能试验.航空动力学报,2011,26(11):2495~2502.
    [81] F. Xing,S. Zhang,P. Y. Wang,et al. Experimental Investigation of a Single Trapped-VortexCombustor with a Slight Temperature Raise. Aerospace Science and Technology,2010,14:520~525.
    [82] F. Xing,P. Y. Wang,S. Zhang,et al.Experimental and Simulation Study on Lean Blow-outof Trapped Vortex Combustor with Various Aspect Ratios. Aerospace Science and Technology,2012,18:48~55.
    [83]张弛.切向驻涡燃烧室基础研究[博士学位论文].北京:北京航空航天大学,2007.
    [84]张弛,林宇震,刘高恩.冲压转子发动机切向驻涡燃烧室.航空发动机,2007,33(4):30~35.
    [85]程平.驻涡燃烧室冷态流场气体喷射的研究[硕士学位论文].大连:大连海事大学,2009.
    [86]刘世青,钟兢军.驻涡燃烧室内涡系分布研究.大连海事大学学报,2009,35(4):103~107.
    [87]刘世青,钟兢军,程平.喷射孔径影响驻涡燃烧室性能冷态数值研究.汽轮机技术,2010,52(2):107~111.
    [88]刘世青,钟兢军.驻涡燃烧室最佳中心驻体宽度的数值研究.航空动力学报,2010,25(5):1005~1010.
    [89]刘世青,钟兢军.驻涡燃烧室后驻体喷射角度影响冷态数值研究.哈尔滨工程大学学报,2010,31(8):1065~1072.
    [90]刘世青,钟兢军.驻涡燃烧室后驻体形状选择冷态数值研究.工程热物理学报,2010,31(9):1480~1483.
    [91]钟兢军,刘世青.驻涡燃烧室前驻体后端面冷态流场数值模拟.热能动力工程,2010,25(5):482~486.
    [92]钟兢军,刘世青.后驻体喷孔位置对驻涡腔流动冷态数值的影响.上海海事大学学报,2011,32(1):44~48.
    [93]武辉.凹腔驻涡燃烧器的实验与数值研究[博士学位论文].北京:中国科学院工程热物理研究所,2009.
    [94]林宏军,程明,何小民.驻涡燃烧室的研究进展和应用浅析.航空科学技术,2011,4:68~70.
    [95]宋双文,雷雨冰,姚尚宏,等.可压流条件下凹腔驻涡流动试验.航空动力学报,2011,26(10):2267~2273.
    [96]费立群,张炎,牛志刚,等.冲压发动机驻涡燃烧室模型方案数值模拟研究.推进技术,2011,32(5):676~679.
    [97]胡正义等.航空发动机设计手册(第9册).北京:航空工业出版社,2000.
    [98]杨开田等.航空发动机设计手册(第11册).北京:航空工业出版社,2001.
    [99] K. B. M. Q. Zaman.Streamwise vorticity generation and mixing enhancement in free jets by‘delta-tabs’.1993,AIAA-93-3253.
    [100] K. B. M. Q. Zaman,M. F. Reeder,M. Smimy.Supersonic jet mixing enhancement by del-ta-tabs.1992,AIAA-92-3548.
    [101] K. B. M. Q. Zaman,M. F. Reeder,M. Smimy.Effect of tabs on the evaluation of an axi-symmetrical jet.NASA,1991,2263.
    [102]刘欣.加小突片喷口射流增强混合的机理研究[博士学位论文].天津:天津大学,2006.136
    [103]甘晓华.航空燃气轮机燃油喷嘴技术.北京:国防工业出版社,2006.
    [104] B. B. Bai,H. J. Sun,H. B. Zhang,et al.Numerical Study on Turbulent Mixing of SprayDroplets in Crossflow.Journal of Propulsion and Power,2011,27(1):132-142.
    [105] R. I. Sujith,G. A. Waldherr,J. I. Jagoda,et al.Experimental Investigation of the Evaporationof Droplets in Axial Acoustic Fields.Journal of Propulsion and Power,2000,16(2):278-285.
    [106] K.-C. Lin,P. J. Kennedy,T. A. Jackson.Spray Structures of Aerated-Liquid Jets in SubsonicCrossflows.AIAA-2001-0330.39th AIAA Aerospace Sciences Meeting&Exhibit8-11January2001,Reno,NV.
    [107] E. Ivanova,B. Noll,M. Aigner.Unsteady Simulations of turbulent Mixing in Jet in Cross-flow.AIAA-2010-4724.40th Fluid Dynamics Conference and Exhibit28June-1July,Chicago,Illinois.
    [108] M.Dziuba,J.Fay,T.Rossmann.Detailed Study of Mixing Enhancement by Jet Modulation andOblique Injection.AIAA-2007-117.45th AIAA Aerospace Sciences Meeting&Exhibit8-11January2007,Reno,Nevada.
    [109]王卫东.氢冲压发动机中用流向旋涡强化氢气与空气混合的研究[博士学位论文].北京:清华大学,1997.
    [110]刘世青.驻涡燃烧室流动特性的冷态数值研究[博士学位论文].大连:大连海事大学,2011.