纸微流控芯片电泳-直接化学发光成像技术联用检测人血清蛋白质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近二十年来,在利用微分析系统进行化学和生物化学检测方面取得了举世瞩目的进展。在微分析系统中,科学家在PDMS、玻璃、硅片或者其它塑料及聚合物上制作数微米到数百微米宽度的通道或者反应容器用来反应或者分离检测。但是,微分析系统依然有很多需要改进的地方:首先,传统的制作微芯片的过程不仅仅需要昂贵的设备,还需要十分繁复的步骤;其次,传统的微芯片系统需要培训过的专业人士来操作并分析数据,这在发展中国家和不发达地区是稀缺而昂贵的资源。因此,昂贵的微芯片系统不是非常适合发展中国家和落后地区使用。所以,在本文中,我们介绍一种能够在生物分析、医学诊断、药物发展和环境监测中发挥作用的纸微流控芯片。其主要原理是将憎水性的物质打印在滤纸或纤维素膜上,形成一道道憎水性的“栅栏”,这样,滤纸上没有憎水性物质的部分,就形成了亲水性的通道,以便于进行(生物)化学反应或检测。与传统的微芯片制造技术相比,纸微流控芯片最吸引人之处在于其便于携带、简单、价格低廉、样品消耗量低等优点。
     由于人血清中的蛋白质在(早期)医学疾病诊断中常常起到了标志物的作用,所以,血清蛋白质的分析检测在生物化学和医学诊断中具有非常重要的意义。而蛋白质定性和定量分析最强有力的推动力来自于蛋白质的量变与特定疾病或者是特定的生理过程有直接关系。微流控芯片发展到今天,对于蛋白质的定量检测,如比色法和免疫法已经得到广泛的应用。但是,其检测的灵敏度已然需要得到改善。
     最近几年,化学发光成像技术在生物检测中应用的越来越广泛。而鲁米诺-过氧化氢体系由于其体系的水溶性好,在生物化学中应用是最为广泛的,特别是其作为一种蛋白质探针,能够有极高的灵敏度,因而极具应用价值。但是,血清中的绝大多数蛋白质不能够直接产生化学发光信号,除非该蛋白质中含有金属(离子)。因此,许多用于和蛋白质结合的化学发光探针不断涌现,扩大了化学发光检测方法的应用。但是,这些方法需要较为严格的条件,如严格的pH范围等。
     沙丁胺醇是一种人工合成的β2肾上腺素受体激动剂,被广泛的应用哮喘等呼吸道疾病的治疗中。近年来,有关沙丁胺醇的各种检测方法的报道很多。但是,这些检测方法仍然有很多缺点。在本文中,我们建立了一种新的利用聚丙烯酰胺凝胶电泳和化学发光成像技术检测沙丁胺醇的方法。人体血清蛋白中的结合珠蛋白(Hp)在这里作为检测沙丁胺醇的探针使用。
     本文包括两部分:文献综述和研究报告。
     第一章是文献综述。
     主要介绍了聚丙烯酰胺凝胶电泳、毛细管电泳、微流控芯片和纸微流控芯片的研究和基本原理。因为主要是研究蛋白质的分离和检测,所以在文中着重介绍了国内外相关蛋白质和沙丁胺醇研究技术,介绍了这些技术的背景和意义。
     第二章是研究报告。
     首先,本文建立了聚丙烯酰胺凝胶电泳-化学发光成像技术检测血清中药物沙丁胺醇的方法,研究了血清中的药物沙丁胺醇浓度随时间的变化。聚丙烯酰胺凝胶电泳是一种对蛋白分离和提纯的检测方法。化学发光成像检测方法是基于鲁米诺一过氧化氢的化学发光体系而建立的一种检测手段。并且推测沙丁胺醇药物对鲁米诺-过氧化氢发光体系的影响机理。此研究方法,对沙丁胺醇药物在血液中的代谢研究有重要的意义。
     其次,我们改进了文献报道中的方法,制作了纸微流控芯片。我们用纸微流控芯片来分离和定量检测血清蛋白质。本文中优化了影响分离和发光条件,并将直接化学发光成像技术与三种传统的染色方法进行了比较,绘制出前者的灵敏度曲线,并评价了该方法。纸微流控芯片-直接化学发光成像技术联用检测方法具有如下优点:(1)制作过程不需要昂贵的设备和复杂的过程;(2)检测过程中样品和试剂消耗量低、成本低;(3)灵敏度较高。
In the past twenty years, there has been a great progress in microfluidic systems for chemical and biochemical analysis. In these systems, channels with tens to hundreds of micrometers wide are fabricated by micromachining techniques including etching and molding channels into PDMS, glass, silicone, or other plastics or polymers. However, there are several demerits for them. First of all, conventional process for creating microfluidic channels requires not only expensive equipments and materials, but also complex steps. Secondly, traditional microfluidic systems require well trained healthcare providers, who are rare and valuable resource, to illuminate the data. Thus, it is not convenient for the use in the developing countries and rural areas. Paper-based microfluidic devices and other paper-based detection devices have been developed in biological assays, medical diagnosis, drug development and monitoring the quality of environment recently. Paper can be patterned into hydrophilic channels separated by hydrophobic walls printed. Compared with conventional microfluidic systems, paper-based devices are very attractive for its portability, simplicity, cheapness and microliter sample volume requirement.
     The analysis of proteins in human serum is of great significance in biochemistry and medical applications because protein may often serve as the indicator for the (early) diagnosis of diseases. The most powerful impetus for the proteome analysis is the discovery of proteins that change in concentration in associations with a certain biological process or disease. Based on paper, quantitative colorimetric and immunostaining detections amongst others have been widely used in paper-based systems. However, the sensitivity of these detection techniques may still be improved.
     In recent years, a direct chemiluminescent (CL) imaging technique was introduced in the area of biochemistry research. The CL detection based on the reaction of hydrogen peroxide and 3-aminophthalic hydrazide (luminol) is in the presence of probe, providing outstanding analytical sensitivity. However, to our knowledge, major proteins in serum can not generate a CL signal directly, and only the proteins containing metal (ions) could produce CL emission. Therefore, several CL probes have been devoted to combine with the proteins to catalyze the CL reaction, extending the detection of range. However, strict conditions are still needed in these methods, such as pH range.
     Salbutamol is a synthesized and selectiveβ2-adrenoceptor agonist, which is widely used in the treatment of some chronic obstructive respiratory apparatus diseases. Varieties of methods for the detection of Salbutamol have been reported in recent years. However, there are still some disadvantages for the detection of Salbutamol by these methods. In present experiments, a novel method was applied for the detection of Salbutamol by direct chemiluminescent (CL) imaging after polyacrylamide gel electrophoresis (PAGE). Haptoglobin (Hp) was performed as a probe for the Salbutamol detection.
     The paper includes two parts, review and study.
     The first chapter is part of the overview section to describe the principle of polyacrylamide gel electrophoresis, capillary electrophoresis, microfluidic chip (electrophoresis) and paper-based micro devices, application and research. Focuses on the separation and detection of proteins and Salbutamol, we also introduced domestic and foreign protein testing technology, explained the background of this thesis, and to study the meaning, purpose and research content.
     The second chapter is research report.
     First, In this thesis, the development of chemiluminescence detection method for Salbutamol after electrophoresis was established, binding of drug with albumen in human serum and plasma concentration changing with time were discussed.
     Second, we fabricated paper-based microfluidic electrophoresis chip. Paper-based detection devices were used to separate, detect and quantify proteins in serum. Then we optimized the factors related to separation and detection. And we compared direct CL imaging with other three staining method, evaluated Sensitivity of this method. There are several merits for this method:(1) the procedure does not require expensive instruments and complex steps; (2) it requires low sample and reagent consumption and reduces the cost of analysis; (3) it provides a sensitive method.
引文
[1]廖秋林,陈晓东,丁彦青.血清蛋白质组学技术及研究进展[J].中国病理生理杂志,2008,24(2):402-407.
    [2]康熙雄.临床电泳[M].北京:人民卫生出版社,2006:167-168.
    [3]邓学思,卢义钦.人血清白蛋白的结构与功能[J].国外医学(卫生经济分册),1988,10(6):260-264.
    [4]陈颖,杨晓红.慢性阻塞性肺疾病的蛋白酶/抗蛋白酶平衡失调机制研究进展[J].新疆医学,2007,37(6):117-121.
    [5]G. Reh, B. Nerli, G. Pico. Isolation of Al-Antitrypsin from Human Plasma by Partitioning in Aqueous Biphasic Systems of Polyethyleneglycol-Phosphate[J]. J. Chromatogr. B,2002,780(2):389-396.
    [6]杨勇;董长林;陈广平.血清α1-酸性糖蛋白(AAG)检测的临床价值[J].中国实验诊断学,2004,8(4):382-383.
    [7]J. C. Duche, S. Urien, N. Simon, et al. Expression of The Genetic Variants of Human Alpha-Acid Glycoprotein in Cancer [J]. Clin. Biochem.,2000,33(3): 197-202.
    [8]F. Herve, J. C. Douche, M. C. Jaurant. Changes in Expression and Microheterogenecity of the Genetic Variants of Human Alpha-Acid Glycoprotein in Maligrant Mesothelioma[J]. J. Chromatogr. B,1998,715(1):111-123.
    [9]S. Ongay, P. J. Martin-Alvarez, C. Neususs, et al. Statistical Evaluation of CZE-UV and CZE-ESI-MS Data of Intact Alpha-1-Acid Glycoprotein Isoforms for Their Use as Potential Biomarkers in Bladder Cancer [J]. Electrophoresis, 2010,31(19):3314-3325.
    [10]M. R. Langlois, J. R. Delanghe. Biological and Clinical Significance of Haptoglobin Polymorphism in Humans [J]. Clin. Chem.,1996,42(10):1589-1600
    [11]J. Ouyang, J. R. Delanghe, W. R. G. Baeyens, M. R. Langlois. Application of Western-Blotting Technique with Chemiluminescence Imaging to the Study of Haptoglobin Type and Haptoglobin Complexes[J]. Anal. Chim. Acta,1998, 362(2-3):113-120.
    [12]谭丽娜,黄进华.结合珠蛋白的研究进展[J].国际病理科学与临床杂志,2006, 26(1):43-47.
    [13]刘海波.结合珠蛋白基因多态性与冠心病[J].国际心血管病杂志,2008,35(1):19-22.
    [14]C. Mstas, J. Joven, E. Vilella, X. Clivill, et al. Lipoprotein Alterations in Liver Cirrhosis:A Possible Contribution to Changes in Plasma Oncotic Pressure and Viscosity[J]. Journal of Hepatology,1997,27(4):639-644.
    [15]J. Y. Kwak, M. J. Ma, B. H. Choi, et al. The Comparative Analysis of Serum Proteomes for the Discovery of Biomarkers for Acute Myeloid Leukemia[J]. Exp. Hematol,2004,32(9):836-842.
    [16]J. R. Delanghe, M. R. Langlois, J. R. Boelaert, et al. Haptoglobin Polymorphism, Iron Metabolism and Mortality in HIV Infection[J]. AIDS,1998,12(9): 1027-1032.
    [17]M. R. Langlois, M. E. Martin, J. R. Boelaert, C. Beaumont, Y. E. Taes, M. L. De Buyzere, D. R. Bernard, H. M. Neels, J. Delanghe. The Haptoglobin 2-2 Phenotype Affects Serum Markers of Iron Status in Healthy Males[J]. Clin. Chem.,2000,46(10):1619-1625.
    [18]J. M. C. Gutteridge. Lipid Peroxidation and Antioxidants as Biomarkers of Tissue Damage[J]. Clin. Chem.,1995,41(12):1819-1828.
    [19]张宏伟,刘俊涛,王晓航.转铁蛋白和转铁蛋白受体的研究进展[J].国外医学临床生物化学与检验学分册,2000,21(4):183-184.
    [20]谢天培,吴孟超,沈锋,施乐华,刘彦君,王皓,王华菁,钱卫珠,郭亚军.肝癌细胞膜上转铁蛋白受体和去唾液酸糖蛋白受体数量的变化[J].第二军医大学学报,1997,18(1):6-8.
    [21]龙华,曾勇,郑英.转铁蛋白的研究与发展[J].生物工程进展,2001,21(2):32-40.
    [22]S. H. Vincent, R. W. Grady, N.Shaklai, J. M. Snider, et al. The Influence of Heme-Binding Proteins in Heme-Catalyzed Oxidations[J]. Arch. Biochem. Biophys.,1988,265(2):539-550.
    [23]E.Tolosano, E. Hirsch, E. Patrucco, R. Navone, et al. Defective Recovery and Severe Renal Damage after Acute Hemolysis in Hemopexin-Deficient Mice[J], Blood,1999,94(11):3906-3914.
    [24]S. Taketani, S. Immenschuh, P. R. Sinclair, et al. Hemopexin from Four Species Inhibits the Association of Heme with Cultured Hepatoma Cells or Primary Rat Hepatocytes Exhibiting a Small Number of Species Specific Hemopexin Receptors [J]. Hepatology,1998,27(3):808-814.
    [25]W. Chen, H. Lu, K. Dutt, A. Smith. Expression of the Protective Proteins Hemopexin and Haptoglobin by Cells of the Neural Retina[J]. Exp. Eye. Res., 1998,67(1):83-93.
    [26]M. I. Kamboh, R. E. Ferrell. Genetic Studies of Low Abundance Human Plasma Proteins.VI. Polymorphism of Hemopexin[J]. Am. J. Hum. Genet.,1987,41(4): 645-653.
    [27]张占卿,陆伟,史连国等.Logistic回归分析评价血清免疫球蛋白预测乙型肝炎相关肝硬化[J].临床消化病杂志,2009,21(1):34-35.
    [28]张丽.免疫球蛋白在肝病患者血清检测中的作用[J].吉林医学,2010,31(36):6683-6684.
    [29]H. Verbaan, L. Bondeson, S. Eriksson. Non-Invasive Assessment of Inflammatory Activity and Fibrosis(Grade And Stage) in Chronic Hepatitis C Infection[J]. Scand J. Gastroenterol,1997,32(5):494-499.
    [30]H. Schmilovitz-Weiss, A. Tovar, M. Halpern, et al. Predictive Value of Serum Globulin Levels for The Extent of Hepatic Fibrosis in Patients with Chronic Hepatitis B Infection[J]. J. Viral Hepatitis,2006,3(10):671-677.
    [31]M. C. Re, P. Schiavone, I. Bon, et al. Incomplete IgG Response to HIV-1 Proteins and Low Avidity Levels in Recently Converted HIV Patients Treated with Early Antiretroviral Therapy[J]. Int. J. Infect Dis.,2010,14(11): E1008-E1012.
    [32]W. Egner. The Use of Laboratory Tests in the Diagnosis of SLE[J]. J. Clin. Pathol,2000,53(6):424-432.
    [33]徐红先,罗贵有,何林,岳化葵.抗核小体抗体、免疫球蛋白及补体与系统性红斑狼疮活动性的相关性研究[J].实用医学杂志,2005,21(9):932-933.
    [34]赵武玲.基础生物化学[M].北京:中国农业大学出版社,2008:60-61.
    [35]王永武,张向清.烧伤病人血浆游离血红蛋白检测及临床意义[J].中国烧伤创疡杂志,1992(2):3-6.
    [36]王泓,江泳梅,马婧,张霞,陈岚,黄东越.BIO-RADD-10血红蛋白检测仪在地中海贫血筛查中的应用[J].华西医学,2008,23(1):112-113.
    [37]A. L. Alayash. Oxygen Therapeutics:Can We Tame Hemoglobin?[J]. Nat. Rev. Drug Discov.,2004,3(2):152-159.
    [38]陈耀强,王蜻,万家义,谢均.血红蛋白的分子结构及与其载氧功能相关的药物研究进展[J].绵阳师范学院学报,2004,23(5):1-4.
    [39]宋鉴清,阎佩珩,孙淑艳等.电泳技术临床应用[M].沈阳:辽宁科学技术出版社,2006:5-6.
    [40]林庆芳.血红蛋白电泳方法的研究进展[J].检测医学,2010,16(6):922-924.
    [41]张迪,张丽.血红蛋白分析方法的研究进展[J].实用药物与临床,2008,11(3):175-176.
    [42]P. Kahn. From Genome to Proteome:Looking at A Cell's Proteins[J]. Science, 1995,270(5235):369-370.
    [43]D. Swinbanks. Government Backs Proteome Proposal[J]. Nature,1995, 386(6558):653-653.
    [44]M. R. Wilkins, J. C. Sanchez, A. A. Gooley, et al. Progress with Proteome Projects:Why All Proteins Expressed by A Genome Should Be Identified and How to Do It[J]. Biotechnol. Genet. Eng. Rev.,1996,13:19-50.
    [45]侯振江,侯建章.血清差异蛋白质组学在肝癌研究中的进展[J].医学与哲学(临床决策论坛版),2009,30(2):54-55.
    [46]鲁碧楠,许丽娜,韩旭,彭金咏.蛋白质分离分析中的色谱技术新进展[J].中国现代应用药学杂志,2009,26(13):1116-1121.
    [47]F. B. Jiang, Y. N. Wang, X. F. Hu, et al. Carbon Nanotubes-Assisted Polyacrylamide Gel Electrophoresis for Enhanced Separation of Human Serum Proteins and Application in Liverish Diagnosis[J]. J. Sep. Sci.,2010,33(21): 3393-3399.
    [48]C. G. Huang, N. Na, L. Y. Huang, et al. TEMED Enhanced Photoluminescent Imaging Detection of Proteins in Human Serum Using Quantum Dots after PAGE[J]. J. Proteome Res,2010,9(11):5574-5581.
    [49]蔡培原.电泳技术研究进展及应用[J].生命科学仪器,2008,6:3-7.
    [50]S. Raymond, L. Weintraub. Acrylamide Gel as a Supporting Medium for Zone Electrophoresis[J]. Science,1959,130(3377):711-711.
    [51]L. Ornstein, N. Y. Ann. Disk Electrophoresis I. Background and theory[J]. Ann. N. Y. Acad. Sci.,1964,121(2):321-349.
    [52]B. J. Davis, N. Y. Ann. Disk electrophoresis Ⅱ. Method and Application to Human Serum Proteins[J]. Ann. N. Y. Acad. Sci.,1964,121(2):404-427.
    [53]何忠效,张树政.电泳[M].北京:科学出版社,1999:139.
    [54]何忠效,张树政.电泳[M].北京:科学出版社,1999:140.
    [55]O. Gabriel, D. M. Gersten. Staining for Enzymatic Activity after Gel Electrophoresis, I[J]. Anal. Biochem.,1992,203(1):1-21.
    [56]P. Lambin, J. M. Fine. Molecular Weight Estimation of Proteins by Electrophoresis in Linear Polyacrylamide Gradient Gels in the Absence of Denaturing Agents. Anal. Biochem.,1979,98(1):160-168.
    [57]G. M. Rothe, H. Purkhanbaba. Determination of Molecular Weights and Stokes' Radii of Non-Denatured Proteins by Polyacrylamide Gradient Gel Electrophoresis.1. An Equation Relating Total Polymer Concentration, the Molecular Weight of Proteins in the Range of 104-106, and Duration of Electrophoresis [J]. Electrophoresis,1982,3(1):33-42.
    [58]郭尧君.蛋白质电泳实验技术[M].北京:科学出版社,2005:194.
    [59]G. M. Huang, Y. J. Zhang, J. Ouyang, et al. Application of Carbon Nanotube-Matrix Assistant Native Polyacrylamide Gel Electrophoresis to the Separation of Apolipoprotein A-I and Complement C3[J]. Anal. Chim. Acta, 2006,557(1-2):137-145.
    [60]R. Strickland, T. R. Podleski, F. T. Gurule, M. L. Freeman, W A. Childs, Dye-Binding Capacities of Eleven Electrophoretically Separated Serum Proteins[J]. Anal. Chem.,1959,31(8):1408-1410.
    [61]R. Mcmaster-kaye, J.S. Kaye. Staining of histones on polyacrylamide gels with amido black and fast green[J]. Anal. Biochem.,1974,61(l):120-132.
    [62]W. N. Fishbein. Quantitative Densitometry of 1-50 Al Protein in Acrylamide Gel Slabs with Coomassie Blue[J]. Anal. Biochem.,1972,46(2):388-401.
    [63]R. H. Davis, J. H. Copenhaver, M. J. Carver. Quantitation of stained proteins in polyacrylamide gels[J], Anal. Biochem.,1974,58(2):615-622.
    [64]R. C. Switer., C. R. Merril, S. Shifrin. A Highly Sensitive Silver Stain for Detecting Proteins and Peptides in Polyacrylamide Gels[J]. Anal Biochem., 1979,98(1):231-237.
    [65]K. Ohsawa, N. Ebata. Silver stain for detecting 10-femtogram quantities of protein after polyacrylamide gel electrophoresis [J]. Anal Biochem.,1983, 135(2):409-415.
    [66]C. Winkler, K. Denker, A. Sickmann. Silver-and Coomassie-Staining Protocols: Detection Limits and Compatibility with ESI MS[J]. Electrophoresis,2007, 28(12):2095-2099.
    [67]W. L. Ragland, J. L. Pace, D. L. Kemper. Fluorometric Scanning of Fluorescamine-labeled Proteins in Polyacrylamide Gels[J]. Anal. Biochem., 1974,59(1):24-33.
    [68]B.O. Barger, F. C. White, J. L. Pace, D. L. Kemper, W. L. Ragland. Estimation of Molecular Weight by Polyacrylamide Gel Electrophoresis Using Heat Stable Fluorophors[J]. Anal. Biochem.1976,70(2):327-335.
    [69]N. Na, L. Liu, Y. E. C. Taes, et al. Direct CdTe Quantum-Dot-Based Fluorescence Imaging of Human Serum Proteins[J]. Small,2010,6(15): 1589-1592.
    [70]刘宣兵,庞玉芳,侯玉泽,彩鸿翔,李彬彬,任守金.沙丁胺醇的毒副作用及其残留检测[J].上海畜牧兽医通讯,2008,(4):83-85.
    [71]S. Nelson, N. Engl. Beta-adrenergic Bronchodilators[J]. J. Med.,1995,333(8): 499-506.
    [72]J.Torphy. β-Adrenoreceptors, cAMP and Airway Smooth Muscle Relaxation: Challenges to Dogma[J]. Trends Pharmacol. Sci.,1994,15(10):370-374.
    [73]I. P. Hall. Second Messengers, Ion Channels and Pharmacology of Airway Smooth Muscle[J]. Eur. Respir. J.,2000,15(6):1120-1127.
    [74]M. Nishikawa, J. C. W. Mak, P. J. Barne. Effect of Short-and Long-Acting B2-Adrenoceptor Agonists on Pulmonary B2-Adrenoceptor Expression in Human Lung[J]. Eur. J. Pharmacol.,1996,318(1):123-129.
    [75]R.J. Hoffman, et al. Clenbuterol Ingestion Causing Prolonged Tachycardia, Hypokalemia, and Hypophosphatemia with Confirmation by Quantitative Levels[J[. J. Toxicol., Clin. Toxicol.,2001,39(4):339-344.
    [76]陈于平,丁利敏.p-兴奋剂的应用探讨[J].兽药与饲料添加剂,1998,3(3):15-16.
    [77]International Olymic Committee, Prohibited Classes of Substances and Prohibited Methods. Olympic movement Anti-doping Code Appendix A,2003: 3.
    [78]国家药典委员会.中华人民共和国药典:二部[M].北京:化学工业出版社,2000:871.
    [79]T. S. Zhou, Q. Hu, H. Yu, et al. Separation and Determination of B-Agonists in Serum by Capillary Zone Electrophoresis with Amperometric Detection[J]. Anal. Chim. Acta,2001,441(1):23-28.
    [80]刘欣,张亦中,张长久.人尿中沙丁胺醇的测定[J].药学学报,1994,29(6):454-458.
    [81]S. Joshi, C. Bhatia, C. S. Bal, et al.Simultaneous Analysis of Phenylephrine Hydrochloride, Guaiphenesin, Ambroxol Hydrochloride, and Salbutamol (as Salbutamol Sulphate) by Use of a Validated High-Performance Liquid Chromatographic Method[J]. Acta Chromatographica,2011,23(1):109-119.
    [82]J. D. Huang, Q. Lin, X. M. Zhang, et al. Electrochemical Immunosensor Based on Polyaniline/Poly (Acrylic Acid) and Au-Hybrid Graphene Nanocomposite for Sensitivity Enhanced Detection of Salbutamol [J]. Food Res. Int.,2011,44(1): 92-97.
    [83]C. H. Qu, X. L. Li, L. Zhang, et al. Simultaneous Determination of Cimaterol, Salbutamol, Terbutaline and Ractopamine in Feed by SPE Coupled to UPLC[J]. Chromatographia,2011,73(3-4):243-249.
    [84]C. Karuwan, A. Wisitsoraat, A. Sappat, et al.Vertically Aligned Carbon Nanotube Based Electrochemcial Sensor for Salbutamol Detection[J]. Sensor Letters,2010,8(4):645-650.
    [85]Y. Y. Wu, W. X. Shi, S. Q. Chen.Determination of Beta-Estradiol, Bisphenol A, Diethylstilbestrol and Salbutamol in Human Urine By GC/MS[J]. Zhejiang Da Xue Xue Bao Yi Xue Ban,2009,38(3):235-41.
    [86]S. Sirichai, P. Khanatharana. Rapid Analysis of Clenbuterol, Salbutamol, Procaterol, and Fenoterol in Pharmaceuticals and Human Urine by Capillary Electrophoresis[J]. Talanta,2008,76(5):1194-1198.
    [87]M. R. Ganjali, P. Norouzi, M. Ghorbani, et al. Fourier Transform Cyclic Voltammetric Technique for Monitoring Ultratrace Amounts of Salbutamol at Gold Ultra Microelectrode on Flowing Solutions[J]. Talanta,2005,66(5): 1225-1233.
    [88]孙克.微流控芯片技术在生命科学领域的研究进展[J].当代医学,2009,15(16):20-21.
    [89]慈天元.电泳在蛋白质分离及定量分析中的应用[J].中国煤炭工业医学杂志,2009,12(3):504-506.
    [90]D. R. Reyes, D. Iossifidis, P. A. Auroux, A. Manz. Micro Total Analysis Systems. 1. Introduction, Theory, and Technology [J]. Anal. Chem.,2002,74(12): 2623-2636.
    [91]P. A. Auroux, D. Iossifidis, D. R. Reyes, et al. Micro Total Analysis Systems.2. Analytical Standard Operations and Applications[J]. Anal. Chem.,2002,74(12): 2637-2652.
    [92]A. Manz, J. Harrison, E. M. Verpoorte, J. C. Fettinger, A. Paulus, H. Ludi, H. M. Widmer. Planar Chips Technology for Miniaturization and Integration of Separation Techniques into Monitoring Systems:Capillary Electrophoresis on A Chip[J]. J. Chromatogr. A,1992,593(1-2):253-258.
    [93]A. Manz, N. Graber, H. M. Widemer. Miniaturized Total Chemical Analysis Systems:A Novel Concept for Chemical Sensing[J]. Sens. Actuators, B,1990, 1(1-6):244-248.
    [94]董娅妮,方群.微流控芯片毛细管电泳在蛋白质分离分析中的应用研究进展[J].色谱,2008,26(3):269-273.
    [95]何晨光,杨春江,王馨.微流控芯片技术的研究进展[J].中国国境卫生检疫杂志,2010,10(33):357-360.
    [96]D. J. Harrison, K. Fluri, A. Manz. Micromaching a Miniaturized Capillary Electrophoresis Based Chemical Analysis System on a Chip[J]. Science,1993, 261(5123):895-897.
    [97]陈海峰,金文睿,全如翔.毛细管区带电泳的电渗流[J].分析科学学报,1998,14(3):257-262.
    [98]赵新颖,任占军,孙杰,谷学新.毛细管电泳技术及其应用进展[J].上海工程技术大学学报,2006,20(2):140-143.
    [99]P. G. Wen, K. E. Lau, Y. S. Fung. Microfluidic Chip-Capillary Electrophoresis for Two Orders Extension of Adjustable Upper Working Range for Profiling of Inorganic Andorganic Anions in Urine[J]. Electrophoresis,2010,31(18): 3044-3052.
    [100]L. Martynova, L. E. Locascio, M. Gaitan, G. W. Kramer, R. G. Christensen, W. A. MacCrehan. Fabrication of Plastic Microfluid Channels by Imprinting Methods[J]. Anal. Chem.,1997,69(23):4783-4789.
    [101]A. Manz, E. Verpoorte, C. S. Effenhauser, N. Burggraf, D. E. Raymond, D. J. Harrison, H. M. Widmer. Miniaturization of Separation Techniques Using Planar Chip Technology [J]. J. High Resolut. Chromatogr.,1993,16(7): 433-436.
    [102]R. M. McCormick, R. J. Nelson, M. G. Alonso-Amigo, D. J. Benvegnu, H. H. Hooper. Microchannel Electrophoretic Separations of DNA in Injection-Molded Plastic Substrates[J]. Anal. Chem.,1997,69(14):2619-2869.
    [103]D. C. Duffy, J. C. McDonald, O. J. A. Schueller, G M. Whitesides. Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane)[J]. Anal. Chem., 1998,70(23):4974-4984.
    [104]N. Burggraf, A. Manz, C. S. Effenhauser, E. Verpoorte, N. F. de Rooij, H. M. Widmer. Synchronized Cyclic Capillary Electrophoresis——a Novel Approach to Ion Separations in Solution[J]. Miniaturization of Separation Techniques Using Planar Chip Technology [J]. J. High Resolut. Chromatogr.,1993,16(10): 565-628.
    [105]A. T. Woolley, G. F. Sensabaugh, R. A. Mathies. High-Speed DNA Genotyping Using Microfabricated Capillary Array Electrophoresis Chips[J]. Anal. Chem., 1997,69(11):2181-2186.
    [106]P. C. H. Li, D. J. Harrison. Transport, Manipulation, and Reaction of Biological Cells On-Chip Using Electrokinetic Effects[J]. Anal. Chem.,1997,69(8): 1564-1568.
    [107]S. C. Jacobson, L. B. Koutny, R. Hergenroeder, A.W. Moore Jr., J. M. Ramsey. Microchip Capillary Electrophoresis with an Integrated Postcolumn Reactor [J]. Anal. Chem.,1994,66(20):3472-3476.
    [108]J. Liu, T. Pan, A. T. Woolley, M. L. Lee. Surface-Modified Poly(methyl methacrylate) Capillary Electrophoresis Microchips for Protein and Peptide Analysis[J]. Anal. Chem.,2004,76 (23),6948-6955.
    [109]Y. Song, M. Chan, C. Celio, S. R. Tannenbaum, J. S. Wishnok and Jongyoon Han. Free-Flow Zone Electrophoresis of Peptides and Proteins in PDMS Microchip for Narrow pi Range Sample Prefractionation Coupled with Mass Spectrometry[J]. Anal. Chem.,2010,82 (6):2317-2325.
    [110]P. Nandi, D. P. Desai, S. M. Lunte. Development of a PDMS-Based Microchip Electrophoresis Device for Continuous Online in Vivo Monitoring of Microdialysis Samples[J]. Electrophoresis,2010,31(8):1414-1422.
    [11]Y. N. Shi, P. C. Simpson, J. R. Scherer, et al. Radial Capillary Away Electrophoresis Microplate and Scanner for High Performance Nucleic Acid Analysis[J]. Anal. Chem.,1999,71(23):5354-5361.
    [112]S. C. Jacobson, J. M. Ramsey. Integrated Microdevice for DNA Restriction Fragment Anlysis[J].Anal.Chem.,1996,68(5):720-723.
    [113]J. Zhang, K. L. Tan, H. Q. Gong. Characterization of the Polymerization of SU-8 Photoresist and Its Applications in Micro Electro Mechanical Systems (M EMS)[J]. Polym. Test.,2001,20(6):693-701.
    [114]S. M. Shameli, C. Elbuken, J. Ou, et al. Fully Integrated PDMS/SU-8/Quartz Microfluidic Chip with a Novel Macroporous Poly Dimethylsiloxane (PDMS) Membrane for Isoelectric Focusing of Proteins Using Whole-Channel Imaging Detection[J]. Electrophoresis,2011,32(3-4):333-339.
    [115]T. Sikanen, S. K. Wiedmer, L. Heikkila, et al. Dynamic Coating of SU-8 Microfluidic Chips with Phospholipid Disks[J]. Electrophoresis,2010,31(15): 2566-2574.
    [116]R. Vilares, C. Hunter, I. Ugarte, et al. Fabrication and Testing of a SU-8 Thermal Flow Sensor[J]. Sens. Actuators, B,2010,147(2):411-417.
    [117]F. Perdigones, J. M. Moreno, A. Luque, et al. Characterisation of the Fabrication Process of Freestanding SU-8 Microstructures Integrated in Printing Circuit Board in Microelectromechanical Systems[J]. Micro & Nano Letters,2010,5(1): 7-13.
    [118]M. Castano-Alvarez, M. T. Fernandez-Abedul, A. Costa-Garcia, et al. Fabrication of SU-8 Based Microchip Electrophoresis with Integrated Electrochemical Detection for Neurotransmitters[J]. Talanta,2009,80(1):24-30.
    [119]A. R. Jr., T. Y. Liu, B. M. Abraham. On-Site Detection of Polycyclic Aromatic Hydrocarbons in Contaminated Soils by Thermal Desorption Gas Chromatography/Mass Spectrometry[J]. Anal. Chem.,1992,64(13): 1477-1483.
    [120]J. C. Fister, III, S. C. Jacobson, L. M. Davis, and J. M. Ramsey. Counting Single Chromophore Molecules for Ultrasensitive Analysis and Separations on Microchip Devices[J]. Anal. Chem.,1998,70(3):431-661.
    [121]S. C. Jacobson, R. Hergenroder, A. W. Jr. Moore, J. M. Ramsey. Precolumn Reactions with Electrophoretic Analysis Integrated on a Microchip[J]. Anal. Chem.,1994,66(23):4127-1132.
    [122]K. Seiler, Z. H. Fan, K. Fluri, D. J. Harrison. Electroosmotic Pumping and Valveless Control of Fluid Flow within a Manifold of Capillaries on a Glass Chip[J]. Anal. Chem.,1994,66(20):3485-3491.
    [123]J. J. Ou, T. Glawdel, C. L. Ren, et al. Fabrication of a hybrid PDMS/SU-8/quartz microfluidic chip for enhancing UV absorption whole-channel imaging detection sensitivity and application for isoelectric focusing of proteins[J]. Lab Chip,2009,9(13):1926-1932.
    [124]E. Rodrigues, R. Lapa. CMOS Arrays as Chemiluminescence Detectors on Microfluidic Devices[J]. Anal. Bioanal. Chem.,2010,397(1):381-388.
    [125]S. L. Zhao, X. T. Li, Y. M. Liu, Integrated Microfluidic System with Chemiluminescence Detection for Single Cell Analysis after Intracellular Labeling[J]. Anal. Chem.,2009,81(10):3873-3878.
    [126]H. Shen, Q. Fang, Z. L. Fang. A Microfluidic Chip Based Sequential Injection System with Trapped Droplet Liquid-Liquid Extraction and Chemiluminescence Detection[J]. Lab Chip,2006,6(10):1387-1389.
    [127]A. D. Bani-Yaseen, T. Kawaguchi, A. K. Price, et al. Integrated Microfluidic Device for the Separation and Electrochemical Detection of Catechol Estrogen-Derived DNA Adducts[J]. Anal. Bioanal. Chem.,2011,399(1): 519-524.
    [128]A. Fragoso, D. Latta, N. Laboria, et al. Integrated Microfluidic Platform for the Electrochemical Detection of Breast Cancer Markers in Patient Serum Samples[J]. Lab Chip,2011,11(4):625-631.
    [129]Z. H. Liang, N. Chiem, G. Ocvirk, T. Tang, K. Fluri, and D. J. Harrison. Microfabrication of a Planar Absorbance and Fluorescence Cell for Integrated Capillary Electrophoresis Devices[J]. Anal. Chem.,1996,68(6):1040-1046.
    [130]J. S. Mellors, K. Jorabchi, L. M. Smith, et al. Integrated Microfluidic Device for Automated Single Cell Analysis Using Electrophoretic Separation and Electrospray Ionization Mass Spectrometry[J]. Anal. Chem.,2010,82(3): 967-973.
    [131]D. Ross, J. G. Shackman, J. G. Kralj, et al.2D Separations on a 1D Chip: Gradient Elution Moving Boundary Electrophoresis-Chiral Capillary Zone Electrophoresis[J]. Lab Chip,2010,10(22):3139-3148.
    [132]H. Sun, Z. Nie, Y. S. Fung. Determination of Free Bilirubin and Its Binding Capacity by HSA Using a Microfluidic Chip-Capillary Electrophoresis Device with a Multi-Segment Circular-Ferrofluid-Driven Micromixing Injection[J]. Electrophoresis,2010,31(18):3061-3069.
    [133]Z. R. Xu, N. Li, H. D. Zhang, et al. On-chip Temperature Gradient Capillary Electrophoresis with Thermal Resistance Gradient Heating System for DNA Mutation Detection[J]. Chem. J. Chinese U.,2010,31(4):667-671.
    [134]Y. Xu, J. W. Shen, Cao, MX, et al. Separation and Enrichment of Amino Acids on Micellar Electrokinetic Chromatography-Capillary Zone Electrophoresis Two-dimensional Microfluidic Chip with Double T Switching Interface[J]. Chinese J. Anal. Chem.,2009,37(10):1421-1425.
    [135]Y. Lu, W. W. Shi, J. H. Qin and B. C. Lin. Fabrication and Characterization of Paper-Based Microfluidics Prepared in Nitrocellulose Membrane By Wax Printing[J]. Anal. Chem.,2010,82 (1):329-335.
    [136]C. M. Cheng, A. D. Mazzeo, J. L. Gong, et al. Millimeter-scale contact printing of aqueous solutions using a stamp made out of paper and tape[J]. Lab Chip, 2010,10(23):3201-3205.
    [137]A. W. Martinez, S. T. Phillips, Z. H. Nie, et al. Programmable Diagnostic Devices Made from Paper and Tape[J]. Lab Chip,2010,10(19):2499-2504.
    [138]P. J. Bracher, M. Gupta, G. M. Whitesides. Patterned Paper as a Template for the Delivery of Reactants in the Fabrication of Planar Materials[J]. Soft Matter,2010,6(18):4303-4309.
    [139]A. W. Martinez, S. T. Phillips, B. J. Wiley and M. Gupta and G. M. Whitesides. FLASH:A Rapid Method for Prototyping Paper-based Microfluidic Devices[J]. Lab Chip,2008,8(12):2146-2150.
    [140]K. Abe, K. Suzuki, and D. Citterio. Inkjet-Printed Microfluidic Multianalyte Chemical Sensing Paper[J]. Anal. Chem.,2008,80(18):6928-6934.
    [141]A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides. Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays[J]. Angew. Chem. Int. Ed.,2007,46(8):1318-1320.
    [142]D. A. Bruzewicz, M. Reches and G. M. Whitesides. Low-Cost Printing of Poly(Dimethylsiloxane) Barriers to Define Microchannels in Paper[J]. Anal. Chem.,2008,80(9):3387-3392.
    [143]E. Carrilho, A. W. Martinez and G. M. Whitesides. Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics [J] Anal. Chem.,2008,81(16):7091-7095.
    [144]A. K. Ellerbee, S. T. Phillips, A. C. Siegel, K. A. Mirica, A. W. Martinez, P. Striehl, N. Jain, M. Prentiss, and G. M. Whitesides. Quantifying Colorimetric Assays in Paper-Based Microfluidic Devices by Measuring the Transmission of Light through Paper[J]. Anal. Chem.,2009,81(20):8447-8452.
    [145]C. M. Cheng, A. W. Martinez, J. L. Gong, et al. Paper-Based ELISA[J] Angew. Chem. Int. Ed.,2010,49(28):4771-4774.
    [146]Z. H. Nie, C. A. Nijhuis, J. L. Gong, X. Chen, A. Kumachev, A. W. Martinez, M. Narovlyansky and G. M. Whitesides. Electrochemical Sensing in Paper-based Microfluidic Devices[J]. Lab Chip,2010,10(4):477-483.
    [147]J. J. Liu, H. Wang, N. E. Manicke, et al. Development, Characterization, and Application of Paper Spray Ionization[J]. Anal. Chem.,2010,82(6):2463-2471.
    [148]Z. H. Nie, F. Deiss, X. Y. Liu, et al. Integration of Paper-Based Microfluidic Devices with Commercial Electrochemical Readers[J]. Lab Chip,2010,10(22): 3163-3169.
    [149]A. Apilux, W. Dungchai, W. Siangproh, N. Praphairaksit, C. S. Henry, and O. Chailapakul. Lab-on-Paper with Dual Electrochemical/Colorimetric Detection for Simultaneous Determination of Gold and Iron[J]. Anal. Chem.,2010,82(5): 1727-1732.
    [150]A. W. Martinez, S. T. Phillips, E. Carrilho, S. W. Thomas, III, H. Sindi and G. M. Whitesides. Simple Telemedicine for Developing Regions:Camera Phones and Paper-Based Microfluidic Devices for Real-Time, Off-Site Diagnosis[J]. Anal. Chem.,2008,80 (10):3699-3707.
    [151]M. S. Khan, G. Thouas, W. Shen, G. Whyte and G. Gamier. Paper Diagnostic for Instantaneous Blood Typing[J]. Anal. Chem.,2010,82(10):4158-4164.
    [152]D. L. Chen, H. Y. Wang, Z. J. Zhang, et al. Chemiluminescence Determination of Cefotaxime Sodium with Flow-Injection Analysis of Cerium (IV)-Rhodamine 6G System and Its Application to the Binding Study of Cefotaxime Sodium to Protein with On-Line Microdialysis Sampling[J]. Spectrochimica Acta A,2011, 78(1):553-557.
    [153]D. Christodouleas, C. Fotakis, A. Economou, et al.Flow-Based Methods with Chemiluminescence Detection for Food and Environmental Analysis:A Review[J]. Anal. Lett.,2011,44(1-3):176-215.
    [154]Q. F. Xu, J. Liu, Z. K. He, et al. Superquenching Acridinium Ester Chemiluminescence by Gold Nanoparticles for DNA Detection[J]. Chem. Commun.,2010,46(46):8800-8802.
    [155]X. Xiong, J. Ouyang, S. D. Zhai, W. R.G. Baeyens. Chemiluminescence-Based Detection Technologies for Biomolecules, Mainly in Gel Electrophoresis[J]. Trends Anal. Chem.,2009,28(8):961-972.
    [156]M. M. Vdovenko, L. D. Ciana, I. Y. Sakharov. Enhanced Chemiluminescence:A Sensitive Analytical System for Detection of Sweet Potato Peroxidase[J]. Biotechnology Journal,2010,5(8):886-890.
    [157]J. H. Lin, H. Zhang, Z. H. Mei, et al. Chemiluminescence Immunoassay for Simultaneous Detection of alpha-Fetoprotein and Carcinoembryonic Antigen[J]. Chinese J. Anal. Chem.,2010,38(7):924-928.
    [158]I. Rilo, H. Takashi. Direct Determination of Plasma Endothelin-1 by Chemiluminescence Enzyme Immunoassay[J]. Clin. Chem.,1996,42(8): 1155-1158.
    [159]M. B. Josefina, G. R. Neus. Evaluation of Ciba Corning ACS:180TM Auto-mated Immunoassay System[J]. Clin. Chem.,1994,40(3):407-410.
    [160]A. P. Schaap, H. Akhavan, L. J. Romano. Chemi-Luminescent Substrates for Alkaline-Phosphatase-Application to Ultrasensitive Enzyme-Linked Immunoassays and DNA Probes[J]. Clin. Chem.,1989,35(9):1863-1864.
    [161]R. L. Veazey, T. A. Nieman. Chemiluminescent determination of clinically important organic reductants[J]. Anal. Chem.,1979,51(13):2092-2096.
    [162]周延秀,朱果逸.流动注射化学发光检测法的进展[J].分析化学,1997,25(2):222-226.
    [163]G. M. Huang, J. Ouyang, J. R. Delanghe, et al. Chemiluminescent Image Detection of Haptoglobin Phenotyping after Polyacrylamide Gel Electrophoresis[J]. Anal. Chem.,2004,76(11):2997-3004.
    [164]S. H. Shen, J. Ouyang, W. R. G. Baeyens, et al. Determination of Beta(2)-Agonists by Ion Chromatography with Direct Conductivity Detection[J]. J. Pharm. Biomed. Anal.,2005,38(1):166-172.
    [165]金有豫.药理学(第五版)[M].北京:人民卫生出版社,2001,4-25.
    [166]J. Liu, X. Liu, W. R. G. Baeyens, et al. A Novel Probe Au(III) for Chemiluminescent Image Detection of Protein Blots on Nitrocellulose Membranes[J]. J. Proteome Res.,2008,7(5):1884-1890.
    [167]J. Ouyang, J. Li. Duan, W. R. G. Baeyens, et al. A Simple Method for the Study of Salbutamol Pharmacokinetics by Ion Chromatography with Direct Conductivity Detection[J]. Talanta,2005,65(1):1-6.
    [168]K. J. Reszka, D. W. McGraw, and B. E. Britigan. Peroxidative Metabolism of β2-Agonists Salbutamol and Fenoterol and Their Analogues[J]. Chem. Res. Toxicol,2009,22(6):1137-1150.
    [169]N. Na, J. Ouyang, Y. E. C. Taes, et al. Serum Free Hemoglobin Concentrations in Healthy Individuals Are Related to Haptoglobin Type[J]. Clin. Chem.,2005, 51(9):1754-1755.
    [170]I. Kasvosve, M. M. Speeckaert, R. Speeckaert, et al. Haptoglobin Polymorphism and Infection[J]. Adv. Clin. Chem.,2010,50(50):23-46.
    [171]E. Jahnchen, K. U. Seiler, U. Brennscheidt, et al. Pharmacokinetics of the Analgesic Tilidine in Terminal Renal Failure[J[. Clin. Pharmacol. & Ther.,2001, 69(2):54-54.
    [172]C. Koehler, T. Grobosch, T. Binscheck. Rapid Quantification of Tilidine, Nortilidine, and Bisnortilidine in Urine by Automated Online SPE-LC-MS/MS[J]. Anal. Bioanal. Chem.,2011,400(1):17-23.
    [173]P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam and B. H. Weigl. Microfluidic Diagnostic Technologies for Global Public Health[J]. Nature,2006, 442:412-418.
    [174]O. Tao, Z. Wang, H. P. Zhao, et al. Direct Chemiluminescent Imaging Detection of Human Serum Proteins in Two-Dimensional Polyacrylamide Gel Electrophoresis[J]. Proteomics,2007,7(19):3481-3490.
    [175]Z. Z. Wang, X. Liu, W. R. G. Baeyens, J. R. Delanghe and J. Ouyang. Copper(II)-Alizarin Red S Complex as an Efficient Chemiluminescent Probe for the Detection of Human Serum Proteins after Polyacrylamide Gel Electrophoresis[J]. J. Proteome Res.,2008,7(12):5075-5081.
    [176]K. J. Monty, M. Morrison, E. Ailing, E. Stotz. Electrophoresis of Cationic Proteins on Filter Paper[J]. J. Biol. Chem.,1956,220(1):295-302.
    [177]H. S. Kou, J. J. Lee, C. W. Chen. Optimum Thermal Performance of Microchannel Heat Sink by Adjusting Channel Width and Height[J]. Int. Commun. Heat Mass,2008,35(5):577-582.
    [178]H. Noh, S. T. Phillips. Metering the Capillary-Driven Flow of Fluids in Paper-Based Microfluidic Devices[J]. Anal. Chem.,2008,82(10):4181-4187.
    [179]Y. P. Cheng, C. J. Teo And B. C. Khoo. Microchannel Flows with Superhydrophobic Surfaces:Effects of Reynolds Number and Pattern Width to Channel Height Ratio [J]. Phys. Fluids,2009,21(12):122004-1-122004-12.
    [180]X. Liu, L. Y. Huang, W. R. G. Baeyens, J. Ouyang, D. C. He, G. P. Wan and L. Zhang. Development of Sensitive Metalloporphyrin Probes for Chemiluminescent Imaging Detection of Serum Proteins[J]. Electrophoresis, 2009,30(17):3034-3040.
    [181]X. H. Zhang, J. Ouyang, W. R. G. Baeyens, J. R. Delanghe, Z. X. Dai, S. H Shen, G. M. Huang. Direct Chemiluminescent Imaging Detection of Serum Proteins in Polyacrylamide Gels[J]. Anal. Chim. Acta,2003,497(1-2):83-92.
    [182]S. Sam, L. Touahir, J. S.Andresa, P. Allongue, J. N. Chazalviel, A. C. Gouget-Laemmel, C. H. de Villeneuve, A. Moraillon, F. Ozanam, N. Gabouze, S. Djebbar. Semiquantitative Study of the EDC/NHS Activation of Acid Terminal Groups at Modified Porous Silicon Surfaces[J]. Langmuir,2010,26(2): 809-814.
    [183]P. Tengvall, E. Jansson, A. Askendal, P. Thomsen, C. Gretzer. Preparation of Multilayer Plasma Protein Films on Silicon by EDC/NHS Coupling Chemistry[J]. Colloids Surf. B,2003,28(4):261-272.
    [184]S. M. Lee, N. Murthy. Targeted Delivery of Catalase and Superoxide Dismutase to Macrophages Using Folate[J]. Biochem. Biophys. Res. Commun.,2007, 360(1):275-279.
    [185]T. W. Yue, W. C. Chien, S. J. Tseng, S. C. Tang, EDC/NHS-Mediated Heparinization of Small Intestinal Submucosa for Recombinant Adeno-Associated Virus Serotype 2 Binding and Transduction[J]. Biomaterials, 2007,28(14):2350-2357.
    [186]A. J. Kuijpers, G. H. M. Engbers, J. Krijgsveld, S. A. J. Zaat, J. Dankert, J. Feijen. Cross-Linking and Characterization of Gelatin Matrices for Biomedical Applications[J]. J. Biomater. Sci. Polym. Ed.,2000,11(3):225-243.
    [187]H. Makamba, J. H. Kim, K. Lim, N. Park, J. H. Hahn. Surface Modification of Poly(Dimethylsiloxane) Microchannels[J]. Electrophoresis,2003,24(21): 3607-3619.
    [188]Y. Mourzina, D. Kalyagin, A. Steffen, A. Offenhausser. Electrophoretic Separations of Neuromediators on Microfluidic Devices[J]. Talanta,2006,70(3): 489-498.
    [189]A. Gaspar, I. Bacsi. Forced Flow Paper Chromatography:A Simple Tool for Separations in Short Time[J]. Microchem. J.,2009,92(1):83-86.
    [190]G. F. Schneider, B. F. Shaw, A. Lee, E. Carillho, G. M. Whitesides. Pathway for Unfolding of Ubiquitin in Sodium Dodecyl Sulfate, Studied by Capillary Electrophoresis[J]. J. Am. Chem. Soc.,2008,130(51):17384-17393.
    [191]J. V. McLoughlin, et al. An Analysis of Proteins in the Serum of Material and Foetal Sheep and the Lamb by Paper Electrophoresis[J]. Irish J. Med. Sci.,1961, 36(4):174-180.
    [192]Y. D. Guo, L. Y Huang, W. R. G. Baeyens, J. R. Delanghe, D. C. He, J. Ouyang. Novel Application of Carbon Nanotubes for Improving Resolution in Detecting Human Serum Proteinswith Native Polyacrylamide Gel Electrophoresis[J]. Nano Lett.,2009,9(4):1320-1324.
    [193]何忠孝.生物化学实验技术—生物实验室系列[M].化学工业出版社,北京,2004:249.