增龄相关听力损失及卡那霉素致聋大鼠耳蜗TMPRSS3、ENaC-α基因表达的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:跨膜丝氨酸蛋白酶3(TMPRSS3)为Ⅱ型跨膜丝氨酸蛋白酶家族成员,是第一个被发现的致聋的蛋白酶,其基因缺陷是非综合征型常染色体隐性遗传性聋DFNB8/10的遗传学基础,至今已发现该基因14种突变致聋形式,但对于该蛋白酶的功能及其作用机制仍不清楚。
     目的:本研究在增龄相关性听力损失和卡那霉素致聋的SD大鼠模型上,通过检测耳蜗中TMPRSS3基因的表达特点,初步探讨其在增龄相关性听力损失及药物中毒性聋中的作用。
     方法:用于卡那霉素致聋研究的大鼠均为3月龄,随机分为四组:Ⅰ组(对照组):注射生理盐水14天;Ⅱ组(卡那霉素3日组):肌注硫酸卡那霉素,连续3天;Ⅲ组(卡那霉素7日组):肌注硫酸卡那霉素,连续7天;Ⅳ组(卡那霉素14日组):肌注硫酸卡那霉素,连续14天。用于增龄相关性聋的大鼠按月龄分为三组:3月龄组、12月龄组、24月龄组。通过听性脑干反应(ABR)测试确定各组8 kHz和16kHz的听反应阈。应用免疫组化技术检测各组大鼠耳蜗中TMPRSS3蛋白的表达与分布情况。应用Western blot技术检测耳蜗中TMPRSS3蛋白表达水平。应用荧光定量逆转录多聚酶链反应(RT-PCR)对大鼠耳蜗中TMPRSS3基因的mRNA表达水平进行检测。
     结果:1.卡那霉素致聋大鼠:(1)听功能改变:ABR反应阈由高到低依次为:卡那霉素14日组>卡那霉素7日组>卡那霉素3日组,而对照组与注射3日组之间ABR反应阈值无明显差异。(2)免疫组化染色:TMPRSS3蛋白在各组SD大鼠耳蜗中均有表达,随注射时间延长,染色阳性程度变弱。(3)Western blot检测:TMPRSS3蛋白在耳蜗的表达浓度随着注射时间延长而减弱。(4)RT-PCR分析:抽提耳蜗组织总RNA电泳结果OD260/280在1.9-2.0之间。TMPRSS3基因的mRNA表达水平随注射时间延长而逐渐下降。
     2.增龄相关性听力损失大鼠:(1)听功能改变:在16kHz, ABR反应阈由高到低依次为:24月龄组>12月龄组>3月龄组,各组间均有显著差异(P<0.01)。在8kHz,24月龄组较3月龄及12月龄组大鼠阈值增高,而3月龄和12月龄组之间无显著差异;(2)免疫组化染色:随月龄增长,TMPRSS3蛋白耳蜗染色阳性程度变弱。(3)Western blot检测:大鼠耳蜗中TMPRSS3蛋白.表达浓度随年龄增长而减弱。(4)RT-PCR分析:TMPRSS3 mRNA表达水平随月龄增长而减弱,各组间均有显著差异。
     结论:TMPRSS3在SD大鼠耳蜗螺旋器和螺旋神经节细胞均有表达。SD大鼠耳蜗中TMPRSS3蛋白和mRNA表达水平随注射硫酸卡那霉素时间增长和月龄增长而逐渐降低。各实验组TMPRSS3蛋白和mRNA表达水平与听功能保存程度基本一致。上述结果提示TMPRSS3可能在药物中毒和老年性聋的发生中起作用。
     研究背景:表皮钠通道蛋白(ENaC)属于ENaC/Deg家族,是由3个同源亚基α、β、γ组成的多聚体,分布于肾小管、结肠、呼吸道上皮细胞表面及耳蜗等处,在耳蜗其主要作用是维持内淋巴的低钠浓度。2002年Guipponi等利用体外爪蟾卵表达系统,证实了TMPRSS3能催化激活ENaC。也有研究发现TMPRSS3致聋的突变体无法激活ENaC。但目前对于ENaC在调节内耳内淋巴代谢、维持内耳正常功能方面的机制尚不清楚。
     目的:本研究在对增龄相关性听力损失和卡那霉素致聋的SD大鼠,通过检测耳蜗中ENaC-α基因的表达特点,初步探讨其在老年性聋及药物性听力损失中的作用,及与TMPRSS3的关系。
     方法:动物分组处理同第一部分,应用免疫组化技术,检测各组SD大鼠耳蜗中ENaC-α蛋白的表达与分布情况。应用Western blot技术,检测两类致聋模型大鼠耳蜗中ENaC-α的蛋白表达水平。应用荧光定量逆转录多聚酶链反应(RT-PCR),对大鼠耳蜗中ENaC-α基因的mRNA表达水平进行检测。
     结果:1.卡那霉素致聋大鼠:(1)免疫组化染色:ENaC-α蛋白在各组SD大鼠耳蜗中均有表达,注射14日组大鼠较注射3日、7日组及对照组的大鼠耳蜗染色明显减弱,但注射3日、7日组及对照组之间无显著差异;(2)Western blot检测:对照组及注射3日、7日的大鼠耳蜗蛋白表达浓度无明显改变,注射14日组较前三组ENaC-α蛋白浓度明显降低。(3)RT-PCR分析:抽提耳蜗组织总RNA电泳结果OD260/280在1.9-2.0之间。注射3日、7日及对照组的大鼠耳蜗mRNA表达水平无明显改变,注射14日组ENaC-αmRNA表达水平较前三组减弱,有统计学显著差异。
     2.增龄相关听力损失大鼠:(1)免疫组化染色:SD大鼠随月龄增长,耳蜗ENaC-α蛋白染色阳性程度减弱。(2)Western blot检测:ENaC-α蛋白表达浓度随大鼠月龄增长而降低。(3)RT-PCR分析:大鼠耳蜗ENaC-αmRNA表达水平随月龄增长逐渐减弱,有显著差异。
     结论:ENaC-α在SD大鼠耳蜗Corti's器和螺旋神经节细胞均有表达。卡那霉素致聋大鼠耳蜗中ENaC-α蛋白和mRNA表达水平在给药后期明显降低;增龄相关听力损失大鼠随月龄增大而降低。ENaC-α的变化与TMPRSS3有相关性,提示TMPRSS3可能通过调节ENaC-α而起作用。
Backgrounds TMPRSS3 (transmembrane protease serine 3) is a member of transmembraneⅡserine proteases(TTSPs). TMPRSS3 is the first-found protease that its mutation could lead to deafness and is mutated in non-syndromic autosomal recessive deafness(DFNB8/10).The 14 pathogenic changes are found to date. However, it is not clear about the function of TMPRSS3.
     Objective On the basis of researching rats with age-related and kanamycin-induced hearing loss, to investigate the expression of TMPRSS3 in the SD rats cochlea, and to explore the roles of TMPRSS3 in sensorineural deafness.
     Methods SD rats which were used for kanamycin-induced hearing loss were 3-month-old and were divided into four groups in this study. GroupⅠ(control), treated with normal saline for 14 days. GroupⅡ(KN3d), treated with kanamycin sulfate for 3 days. GroupⅢ(KN7d), treated with kanamycin sulfate for 7 days. GroupⅣ(KN14d), treated with kanamycin sulfate for 14 days. Rats used for age-related hearing loss were divided into three groups:3-、12- and 24- month-old. The auditory function was evaluated by evoked auditory brainstem responses (ABR). Paraffin-embedded immunohistochemistry was used for evaluation of TMPRSS3 expression in the cochlea. The protein was extracted from the cochlea tissues, and TMPRSS3 protein levels in the cochlea were detected by Western blot assay. The RNA was extracted from the cochlea tissues and TMPRSS3 mRNA levels in the cochlea were measured by reverse transcription-polymase chain reaction (RT-PCR).
     Results 1. Rats with kanamycin-induced hearing loss:(1) Auditory function:The order of the ABR thresholds from high to low was KN14d > KN7d> KN3d. (2) Immunohistochemistry:A positive reaction for TMPRSS3 staining was found in the cochlea of each group. The expression of TMPRSS3 immunoreactivity prominently decreased following the increase of injection days. (3) Western blot assay showed that the levels of TMPRSS3 in the cochlea of SD rats decreased with injection days. (4) RT-PCR assay:RT-PCR demonstrated that the mRNA expression of TMPRSS3 decreased with injection days.
     2. Rats with. age-related hearing loss:(1) Auditory function:ABR thresholds increased with aging at 16 kHz. There were significant differences between each two groups. At 8 kHz, ABR thresholds of 24-month-old rats were higher than 3-and 12-month-old rats, there wasn't significant differences between 3-and 12-month-old rats. (2) Immunohistochemistry:The expression of TMPRSS3 immunoreactivity prominently decreased following age increase. (3) Western blot assay: TMPRSS3 protein in the cochlea of SD rats decreased with aging. (4) RT-PCR assay:RT-PCR demonstrated that the mRNA expression of TMPRSS3 decreased with aging.
     Conclusions Positive reaction for TMPRSS3 staining was found in the cochlea of normal SD rats, mainly observed in the spiral ganglion and organ of Corti. The protein and mRNA of TMPRSS3 decreased with kanamycin administration and aging, and were basically consistant with the auditory function. These results indicated that TMPRSS3 may take part in the processes of hearing loss.
     Backgrouds ENaC (epithelial sodium channel) is a member of ENaC/Deg, and hasα、β、γ.subunits. ENaC is expressed in the distal nephron、colon、lung、cochlea and so on. In the Xenopus oocyte expression system, proteolytic processing of TMPRSS3 was associated with increased ENaC mediated currents. TMPRSS3 mutants failed to undergo proteolytic cleavage and activate ENaC. However, it is not clear about ENaC protein's function in regulating the metabolism of endolymph and maintenance of normal hearing.
     Objective To investigate the expression of ENaC-αin the SD rats with age-related and kanamycin-induced hearing loss, and to explore the roles of ENaC-a in the two kinds of hearing loss, whether it has correlation with TMPRSS3.
     Methods Group dividing is as same as PartⅠ. Paraffin-embedded immunohistochemistry was used for evaluation of ENaC-a expression in the cochlea. The protein was extracted from the cochlea tissues, and ENaC-a protein levels in the cochlea were detected by Western blot assay. The RNA was extracted from the cochlea tissues and ENaC-a mRNA levels in the cochlea were measured by reverse transcription-polymase chain reaction (RT-PCR).
     Results 1. Rats with kanamycin-induced hearing loss: (1)Immunohistochemistry:A positive reaction for ENaC-a staining was found in the cochlea of each group. The expression of ENaC-a immunoreactivity prominently decreased in the KN14d group compared with KN6d、KN3d and control groups, but there wasn't significant differences among KN6d、KN3d and control groups. (2)Western blot assay showed that the levels of ENaC-a protein decreased in the KN14d group compared with KN3d、KN7d and control groups, but there wasn't significant differences among KN3d、KN7d and control groups. (3)RT-PCR assay:There wasn't significant differences among KN3d、KN7d and control groups, ENaC-a decreased in the KN14d group compared with KN3d、KN7d and control groups.
     2. Rats with age-related hearing loss:(1)Immunohistochemistry:The expression of ENaC-a immunoreactivity prominently decreased following age increase. (2)Western blot assay showed that ENaC-a protein in the cochlea of SD rats decreased with aging. (3)RT-PCR assay: RT-PCR demonstrated that the mRNA expression of ENaC-a in the cochlea of SD rats decreased with aging.
     Conclusions Positive reaction for ENaC-αstaining was found in the cochlea of normal SD rats, mainly observed in the the spiral ganglion and organ of Corti. The protein and mRNA of ENaC-αdecreased with injection days and aging. These results has some correlation with TMPRSS3 and indicated that TMPRSS3 may regulate the expression of ENaC.
引文
[1]FDA consumer magazine, May-June 2005 Issue
    [2]Scott HS,. Kudoh J, Wattenhofer M, et al. Insertion of beta-satellite repeats identifies a transmembrane protease causing both congenital and childhood onset autosomal recessive deafness. Nat Genet.2001,27(1):59-63
    [3]谢鼎华,杨伟炎.耳聋的基础与临床[M].第1版,2004,116-117
    [4]曹菊阳,白琳娜,冀飞,等.15例氨基糖甙类抗生素致聋家系报道中国听力语言康复科学,2004,6:15-17
    [5]曹菊阳,张忻,康东洋,等.氨基糖甙类抗生素致聋家系粒体DNAA1555G突变分析[J].中国听力语言康复科学,2004,6:18-20
    [6]费文彬,江洋,吴展元,等.顺铂耳毒性的研究[J].听力学及言语疾病杂志,2007,15:505-508
    [7]Htuchin T, Haworth I, Higashi K, et al. A molecular basis for human hypersensitivity to aminoglycoside antibiotics[J]. Nucleic Acids Res,1993, 21:4174-4179
    [8]Weinstein BF. Geriatric Audiology. New York:Thieme,2000,12-18
    [9]Willott JF. Central physiological correlates of aging and presbycusis in mice. Acta Otolaryngol Suppl,1991,476:153-156
    [10]Schuknecth H, Gacek M. Cochlear pathology in presbycusis. Ann Otol Rhinol Laryngol,1993,102:1-16
    [11]Welsh LW, Welsh JJ, Healy MP, et al. Centralpresbycusis. Laryngoscope.1985, 95(2):128-36
    [12]Wu WJ, Sha SH, John D, et al. Aminoglycoside ototoxicity in adult CBA, C57BL and BALB mice and the Sprague-Dawley rat. Hearing Research,2001, 158:165-178
    [13]施新猷.医用实验动物学.北京:人民军医出版社,1999:388
    [14]Rawlings ND, Barrett AJ. Families of serine peptidases. Methods Enzymol. 1994,244:19-61
    [15]Rawlings ND, Morton FR, Barrett AJ. MEROPS:the peptidase database. Nucleic Acids Res.2006,34(Database issue):D270-2
    [16]Ahmed ZM, Li XC, Powell SD, et al. Characterization of a new full length TMPRSS3 isoform and identification of mutant alleles responsible for nonsyndromic recessive deafness in Newfoundland and Pakistan. BMC Med Genet.2004,5:24
    [17]Guipponi M, Vuagniaux G, Wattenhofer M, et al. The transmembrane serine protease (TMPRSS3) mutated indeafness DFNB8/10 activates the epithelial . sodium channel(ENaC) in vitro. Hum Mol Genet.2002,11(23):2829-36
    [18]Masmoudi S, Antonarakis S E, Schwede T, et al. Novel missense mutations of TMPRSS3 in two consanguineous Tunisian families with non-syndromic autosomal recessive deafness. Hum Mutat,2001,18(2):101-108
    [19]Wattenhofer M, Di Iorio M V, Rabionet R, et al. Mutations in the TMPRSS3 gene are a rare cause of childhood nonsyndromic deafness in Caucasian patients. J Mol Med,2002,80(2):124-131
    [20]Ben-Yosef T, Wattenhofer M, Riazuddin S, et al. Novel mutations of TMPRSS3 in four DFNB8/B10 families segregating congenital autosomal recessive deafness. J Med Genet,2001,38(6):396-400
    [21]Lee Y J, Park D, Kim S Y, et al. Pathogenic mutations but not polymorphisms in congenital and childhood onset autosomal recessive deafness disrupt the proteolytic activity of TMPRSS3. J Med Genet,2003,40(8):629-631
    [22]Wattenhofer M, Sahin-Calapoglu N, Andreasen D, et al. A novel TMPRSS3 missense mutation in a DFNB8/10 family prevents proteolytic activation of the protein. Hum Genet,2005,117 (6):528-535
    [23]Elbracht M, Senderek J, Eggermann T, et al. Autosomal recessive postlingual hearing loss (DFNB8):compound heterozygosity for two novel TMPRSS3 mutations in German siblings. J Med Genet,2007,44(6):e81
    [24]Guipponi M, Toh M Y, Tan J, et al. An integrated genetic and functional analysis of the role of type Ⅱ transmembrane serine proteases (TMPRSSs) in hearing loss. Hum Mutat,2008,29 (1):130-141
    [25]Guipponi M, Antonarakis S E, Scott H S. TMPRSS3, a type Ⅱ transmembrane serine protease mutated in non-syndromic autosomal recessive deafness. Front Biosci,2008,13:1557-1567
    [26]Guipponi M, Tan J, Ping ZFC, et al. Mice deficient for the type Ⅱ transmembrane serine protease, TMPRSS1/hepsin, exhibit profound hearing loss. Am J Pathol, 2007,171(2):608-616
    [27]陈瑗,周枚.自由基医学基础与病理生理1北京:人民卫生出版社,2002,1652801
    [28]Kosari F, Sheng S, Li J, et al. Subunit stoichiometry of the epithelial sodium channel[J]. J Biol Chem.1998,273:13469-13474
    [29]Snyder PM, Cheng C, Prince LS, et al. Electrophysiological and biochemical evidence the DEG/ENaC cation channels are composed of nine subunits[J]. J Biol Chem.1998,273:681-684
    [30]Linguelia E, Voilley N, Waldmann R, et al. Expression cloning of an. epithelial amiloride-sensitive Na+ channel. A new channel type with homologies to caenorhabitis elegans degenerins. FEBS Lett.1993,318:95-99
    [31]Canessa CM, Schild L, Bueu G, et al. Amiloride-sensitive Na+ channel is made of three homologus subunits[J]. Nature.1994,367:463-467
    [32]Mcdonald FJ, Synder PM, McCray Jr PB, et al. Cloning, expression, and tissue distribution of a human amiloride-sensitive Na+ channel [J]. Am J Physiol. 1994,266:L788-L734
    [33]Rossier BC, Canessa CM, Schild L et al. Epithelial sodium channels[J].Curr Opin Nephrol Hypertens.1994,3:487-496
    [34]Alvarez de la Rosa D, Canessa CM, Fyfe GK, et al. Structure and regulation of amiloride-sensitive sodium channels. Ann Rev Physiol,2000,62:573-94
    [35]Palmer LG. Ion selectivity of the apical membrane Na channel in the toad urinary bladder. J Member Biol,1982,67:91-98
    [36]Benos DJ. Amiloride:a molecular probe of sodium transport in tissues and cells. Am J Physiol Cell Physiol,1982,242:C131-C145
    [37]Hansson JH, Nelson-Williams C, Suzuki H, et al. Hypertension caused by a truncated epithelial sodium channel gamma subunit:genetic heterogeneity of Liddle syndrome. Nat Genet,1995, 11(1):76-82
    [38]Inoue J, Iwaoka T, Tokunaga H, et al. A family with Liddle's syndrome caused by a new missense mutation in the beta subunit of the epithelial sodium channel. J Clin Endocrinol Metab,1998,83(6):2210-2213
    [39]Strautnieks SS, Thompson RJ, Gardiner RM, et al. A novel splice-site mutation in the gamma subunit of the epithelial sodium channel gene in three pseudohypoaldosteronism type 1 families. Nat Genet,1996,13(2):248-25
    [40]Vincent C, Michel F, Sabri D, et al. Location and function of the epithelial Na channel in the cochlea. Am J Physiol Renal Physiol,2001,280:F214-F222
    [41]Couloigner V, Fay M, Djelidi S, et al. Location and function of the epithelial Na channel in the cochlea. Am J Physiol Renal Physiol,2001,280:F214-F222
    [42]Salt AN, Konishi T. Functional importance of sodium and potassium in the guinea pig cochlea studied with amiloride and tetramethylammonium. Jpn J Physiol,1982,32:219-230
    [43]Ferrary E, Bernard C, Oudar O, et al. Sodium transfer from endolymph through a luminal amiloridesensitive channel. Am J Physiol Renal Fluid Electrolyte Physiol, 1989,257:F182-F1.89
    [44]Wangemann P. Comparison of ion transport mechanisms between vestibular dark cells and strial marginal cells. Hear Res,1995,90:149-157
    [45]Anniko M, Sobin A, Wroblewski R. X-ray microanalysis of inner ear fluids in the embryonic and newborn guinea pig. Arch Otorhinolaryngol,1982,234:125-130
    [46]Raphael Y, Ohmura M, Kanoh N, et al. Prenatal maturation of endocochlear potential and electrolyte composition of inner ear fluids in guinea pigs. Arch Otorhinolaryngol,1983,237:147-152
    [47]Hummler E, Barker P, Gatzy J, et al. Early death due to defective neonatal lung liquid clearance in alpha-ENaC-deficient mice. Nat Genet,1996,12:325-338
    [48]Talbot CL, Bosworth DG, Briley EL, et al. Quantitation and localization of ENaC subunit expression in fetal, newborn, and aduld mouse lung. Am J Respir Cell Mol Biol,1999,20(3):398-406
    [49]McDonald FJ, Yang B, Hrstka RF, et al. Disruption of the beta subunit of the epithelial Na+ channel in mice:hyperkalemia and neonatal death associated with a pseudohyposteronism phenotype. Proc Natl Acad Sci USA,1999, 96(4):1727-1931
    [50]Rush A, Hummler E. Mechano-electrical transduction in mice lacking the alpha-subunit of the epithelial sodium channel. Hear Res,1999,131:170-176
    [51]Brouard M, Casado M, Djelidi S, et al. Epithelial sodium channel in human epidermal keratinocytes:expression of its subunits and relation to sodium transport and differentiation. J Cell Sci,1999,112:3343-3352
    [52]Oh Y, Warnock DG. Expression of the amiloride-sensitive sodium channel beta subunit gene in human B lymphocytes. J Am Soc Nephrol,1997,8:126-129
    [53]Mirshahi M, Nicolas C, Mirshahi S, et al. Immunochemical analysis of the sodium channel in rodent and human eye. Exp Eye Res,1999,69:21-32
    [54]Sakaguchi N, Crouch JJ, Lytle C, et al. Na-K-Cl cotransporter expression in the developing and senescent gerbil cochlea. Hear Res,1998,118:114-122
    [55]Spicer SS, Schulte BA. The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency. Hear Res,1996,100:80-100
    [56]Garty H, Palmer LG. epithelial sodium channel:function, structure, and regulation. Physiol Rev,1997,77:359-396
    [57]Snyder PM, Olson DR, Kabra R, et al. cAMP and serum and glucocorticoid-inducible kinase (SKG) regulate the epithelial Na+ channel through convergent phosphorylation of Nedd4-2[J]. J Biol Chem.2004, 279:45753-45758
    1. Hooper J D, Clements J A, Quigley J P, et al. Type Ⅱ transmembrane serine proteases. Insights into an emerging class of cell surface proteolytic enzymes. J Biol Chem,2001,276:857-860
    2. Szabo R, Wu Q, Dickson RB, Netzel-Arnett S, et al. Type Ⅱ transmembrane serineproteases. Thromb Haemost,2003,90(2),185-93.
    3. Puente X S, Sanchez L M, Overall C M, et al. Human and mouse proteases:a comparative genomic approach. Nat Rev Genet,2003,4(7):544-558
    4. Szabo R, Netzel-Arnett S, Hobson J P, et al. Matriptase-3 is a novel phylogenetically preserved membrane-anchored serine protease with broad serpin reactivity. Biochem J,2005,390(Pt 1):231-242
    5. Underwood LJ, Shigemasa K, Tanimoto H, et al. Ovarian tumor cells express a novel multi-domain cell surface serine protease. Biochim Biophys Acta. 2000,1502(3):337-50.
    6. Iacobuzio-Donahue CA., Ashfaq R, Maitra A, et al. Highly expressed genes in pancreatic ductal adenocarcinomas:a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies. Cancer Res.2003,63(24):8614-22
    7. Sawasaki T, Shigemasa K, Gu L, et al. The transmembrane protease serine(TMPRSS3/TADG-12) D variant:a potential candidate for diagnosis and therapeutic intervention in ovarian cancer.Tumour Biol.2004,25(3):141-8
    8. Carlsson H, Petersson S, Enerback C. Cluster analysis of S100 gene expression and genes correlating to psoriasin (S100A7) expression at different stages of breast cancer development. Int J Oncol.2005,27(6):1473-81
    9. Scott HS, Kudoh J, Wattenhofer M, et al. Insertion of beta-satellite repeats identifies a transmembrane protease causing both congenital and childhood onset autosomal recessive deafness. Nat Genet.2001,27(1):59-63
    10. Bonne-Tamir B, DeStefano AL, Briggs CE, et al. Linkage of congenital recessive deafness (gene DFNB10) to chromosome 21q22.3. Am J Hum Genet.1996,58 (6):1254-9
    11. Veske A, Oehlmann R, Younus F, et al. Autosomal recessive non-syndromic deafness locus (DFNB8) maps on chromosome 21q22 in a large consanguineous kindred from Pakistan. Hum Mol Genet.1996,5(1):165-8
    12. Scott HS, Antonarakis SE, Mittaz L, et al. Refined genetic mapping of the autosomal recessive nonsyndromic deafness locus DFNB8 on human chromosome 21q22.3. Adv Otorhinolaryngol.2000,56:158-63
    13. Berry A, Scott HS, Kudoh J, et al. Bonne-Tamir:Refined localization of autosomal recessive nonsyndromic deafness DFNB10 locus using 34 novel microsatellite markers, genomic structure, and exclusion of six known genes in the region. Genomics.2000,68(1),22-9
    14. Ahmed ZM, Li XC, Powell SD, et al. Characterization of a new full length TMPRSS3 isoform and identification of mutant alleles responsible for nonsyndromic recessive deafness in Newfoundland and Pakistan. BMC Med Genet.2004,5:24
    15. Guipponi M, Vuagniaux G, Wattenhofer M, et al. The transmembrane serine protease (TMPRSS3) mutated indeafness DFNB8/10 activates the epithelial sodium channel(ENaC) in vitro. Hum Mol Genet.2002,11(23):2829-36
    16.葛圣雷,陈主初,肖志强,等。分泌性蛋白质的研究策略.生命的化学,2005,25(6):476-477
    17. Wu Q.Type Ⅱ transmembrane serine proteases. CurrTop Dev Biol.2003,54: 167-206
    18. Netzel-Arnett S, Hooper JD, Szabo R, et al. Membrane anchored serine proteases: a rapidly expanding group of cell surface proteolytic enzymes with potential roles in cancer. Cancer Metastasis Rev.2003,22(2-3):237-58
    19. Sudhof TC, Goldstein JL, Brown MS, et al. The LDL receptor gene:a mosaic of exons shared with different proteins. Science.1985,228(4701):815-22
    20. Driel IR, Goldstein JL, Sudhof TC, et al. First cysteine-rich repeat in ligand-binding domain of low density lipoprotein receptor binds Ca2+ and monoclonal antibodies, but not lipoproteins. J Biol Chem.1987,262(36):17443-9
    21. Mahley RW. Apolipoprotein E:cholesterol transport protein with expanding role in cell biology. Science.1988,240(4852):622-30
    22. Resnick D, Pearson A, Krieger M. The SRCR superfamily:a family reminiscent of the Ig superfamily. Trends Biochem Sci.1994,19(1):5-8
    23. Rawlings ND, Barrett AJ. Families of serine peptidases. Methods Enzymol. 1994,244:19-61
    24. Rawlings ND, Morton FR, Barrett AJ. MEROPS:the peptidase database. Nucleic Acids Res.2006,34(Database issue):D270-2
    25. Wattenhofer M, Sahin-Calapoglu N, Andreasen D, et al. A novel TMPRSS3
    missense mutation in a DFNB8/10 family prevents proteolytic activation of the protein. Hum Genet.2005,117(6):528-35
    26. Hooper JD, Clements JA, Quigley JP, et al. Type Ⅱ transmembrane serine proteases. Insights into an emerging class of cell surface proteolytic enzymes. J Biol Chem.2001,276(2):857-60
    27. Wattenhofer M, Di Iorio MV, Rabionet R, et al. Mutations in the TMPRSS3 gene are a rare cause of childhood nonsyndromic deafness in Caucasian patients. J Mol Med.2002,80(2):124-31
    28. Ben-Yosef T, Wattenhofer M, Riazuddin S, et al. Novel mutations of TMPRSS3 in four DFNB8/B10 families segregating congenital autosomal recessive deafness. J Med Genet.2001,38(6):396-400
    29. Hutchin T, Coy NN, Conlon H, et al. Assessment of the genetic causes of recessive childhood non-syndromic deafness in the UK-implications for genetic testing. Clin Genet.2005,68(6):506-12
    30. Masmoudi S, Antonarakis SE, Schwede T, et al. Novel missense mutations of TMPRSS3 in two consanguineous Tunisian families with non-syndromic autosomal recessive deafness. Hum Mutat.2001,18(2):101-8
    31. Walsh T, Abu Rayan A, Abu Sa'ed J, et al. Genomic analysis of a heterogeneous Mendelian phenotype:multiple novel alleles for inherited hearing loss in the Palestinian population. Hum Genomics.2006,2(4):203-11
    32. Guipponi M, Toh MY, Tan J, et al. An integrated genetic and functional analysis of the role of the type Ⅱ transmembrane serine proteases (TMPRSSs) in hearing loss. Hum Mutant,2008,13:1557-1567
    33. Guipponi M, Tan J, Ping ZFC, et al. Mice deficient for the type Ⅱ transmembrane serine protease, TMPRSS1/hepsin, exhibit profound hearing loss. Am J Pathol, 2007,171(2):608-616
    34. Lee YJ, Park D, Kim SY, et al. Pathogenic mutations but not polymorphisms in congenital and childhood onset autosomal recessive deafness disrupt the proteolytic activity of TMPRSS3. J Med Genet,2003,40(8):629-31
    35. Weischenfeldt J, Lykke-Andersen J, Porse B. Messenger RNA surveillance: neutralizing natural nonsense. Curr Biol.2005,15(14):R559-62
    36. Vallet, V, Chraibi A, Gaeggeler H P, et al. An epithelial serine protease activates the amiloride-sensitive sodium channel. Nature,1997,389:607-610
    37. Peters TA, Levtchenko E, Cremers CW, et al. No evidence of hearing loss in type 1 patients. Acta Otolaryngol.2006,126(3):237-9
    38.葛圣雷,易彦,谢鼎华.跨膜丝氨酸蛋白酶TMPRSS3与遗传性耳聋生物化学与生物物理进展,2008,35(8):859-866
    1. Duc C, Farman N, Canessa CM, et al. Cell-specific expression of epithelial sodium channel alpha, beta and gamma subunits in aldosterone-responsive epithelia from the rat:localization by in situ hybridization and immunocytochemistry. J Cell Biol,1994,127(6 Pt 2):1907-1921
    2. Renard S, Voilley N, Bassilana F, et al. Localization and regulation by steroids of the alpha, beta, and gamma subunits of the amiloride-sensitive Na+ channel in colon, lung and kidney. Pflugers Arch,1995,430(3):299-307
    3. Ludwing M, BolkeniusV, Wickert L, et al. Structural organization of the gene encoding the alpha-subunit of the human amiloride-sensitive epithelial sodium channel[J].Hum Genet.1998,102:576-581
    4. Voilley IV, Bassilana F, Mignon C, et al. Cloning, Chromosomal localization and physical linkage of the beta and gamma subunits (SCNNIB and SCNNIG) of the human amiloride-sensitive epithelial sodium channel[J]. Genomics.1995, 8:560-565
    5. Tomas CP, Loftus RW, Liu KZ, et al. Genomic organization of the 5'end of humanβ-ENaC and preliminary characterization of its promoter [J]. Am J Physiol Renal Physiol.2002,282:F898-F909
    6. Linguelia E, Voilley N, Waldmann R, et al. Expression cloning of an epithelial amiloride-sensitive Na+ channel. A new channel type with homologies to caenorhabitis elegans degenerins. FEBS Lett.1993,318:95-99
    7. Canessa CM, Schild L, Bueu G, et al. Amiloride-sensitive Na+ channel is made of three homologus subunits[J]. Nature.1994,367:463-467
    8. Mcdonald FJ, Synder PM, McCray Jr PB, et al. Cloning, expression, and tissue distribution of a human amiloride-sensitive Na+ channel[J]. Am J Physiol. 1994,266:L788-L734
    9. Kosari F, Sheng S, Li J, et al. Subunit stoichiometry of the epithelial sodium channel[J]. J Biol Chem.1998,273:13469-13474
    10. Snyder PM, Cheng C, Prince LS, et al. Electrophysiological and biochemical evidence the DEG/ENaC cation channels are composed of nine subunits[J]. J Biol Chem.1998,273:681-684
    11. Staruschenko A, Medina JL, Patel P, et al. Fluorescence resonance energy transfer analysis of subunit stoichiometry of the epithelial Na+channel [J]. J Biol Chem.2004,279:27729-27734
    12. McNicholas CM, Canessa CM. Diversity of channels generated by different combinations of epithelial sodium channel subunits. J Gen Physiol,1997, 109(6):681-692
    13. Palmer LG. Epithelial Na channels.Why all the subunits? J Gen Physiol,1997, 109:675-676
    14. Waldmann R, Champing G, Bassilina F, et al. Molecular cloning and functional expression of a novel amiloride-sensitive Na+ channel[J]. J Biol Chem.1995, 270:27411-27414
    15. Rossier BC, Canessa CM, Schild L et al. Epithelial sodium channels[J].Curr Opin Nephrol Hypertens.1994,3:487-496
    16. Chang SS, Grunder S, Hanukoglu A, et al. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1.1996,12:248-253
    17. Grunder S, Jaeger NF, Gautschi I, et al. Identification of a highly conserved sequence at the N-terminus of the epithelial Na+ channel alpha subunit involved in gating. Pflugers Arch,1999,438:709-715
    18. Grunder S, Firsov D, Chang SS, et al. A mutation causing pseudohypoaldosteronism type 1 identifies a conserved glycine that is involved in the gating of the epithelial sodium channel. EMBO J,1997,16(5):899-907
    19. Staub O, Gautshi I, Ishikawa T, et al. Regulation of stability and function of the epithelial Na+ channel(ENaC) by ubiquitination[J].EMBO J.1997,16:6:6325-6336
    20. Adams CM, Snyder PM, Welsh MJ. Interaction between subunits of the human epithelial sodium channel[J]. J Biol Chem.1997,272:27295-27300
    21. Furuhashi M, Kitamura K, Mdachi M, et al. Liddle's syndrome caused by a noval mutation in the praline-rich PY motif of the epithelial sodium channel beta-subunit[J]. J Clin Endocrinol Metab.2005,90:340-344
    22. Yamashita Y, Koga M, Tokeda Y, et al. Two sporadic case of Liddle's syndrome caused by De novo ENaC mutation[J].Am J Kidney Dis.2001,37:499-504
    23. Rotin D, Kanelis V, Schild L. Trafficking and cell surface stability of ENaC[J]. Am J Physiol.2001,281:F391-F399
    24. Volk KA, Snyder PM, Stokes JB. Regulation of epithelial sodium channel activity through a region of the carboxyl terminus of the alpha-subunit. Evidence for intracellular kinase-mediated reaction[J]. J Biol Chem.2001, 276:43887-43893
    25. Sheng S, Li J, Manalty KA, et al. Characterization of the selectivity filter of the epithelial sodium channel[J]. J Biol Chem.2000,275:8572-8581
    26. Rotin D, Bar-Sagi O, O'Brodorich H, et al. An SH3 binding region in the epithelial Na+ channel(alpha ENaC) mediates its localization. at the apical membrane[J]. EMBO J B.1994,13:4440-4450
    27. Canessa CM, Merillat A-M, Rossier BC. Membrane topology of the epithelial sodium channel in intact cell[J].Am J Physiol.1994,272:C1682-C1690
    28. Snyder PM, Mcdonald FJ, Stokes JB, et al. Membrane topology of the amiloride-sensitive Epithelial sodium channel[J]. J Biol Chem.1994, 269:24379-24383
    29. Firsov D, Robert-Nicoud M, Gruender S, et al. Mutational analysis of cysteines essential for channel expression at the cell surface [J]. J Biol Chem. 1999,274:2743-2749
    30. Ismailor II, Kieber-Emmons T, Lin C, et al. Identification of an amiloride binding domain within the alpha-subunit of the epithelial Na+ channel [J]. J Biol Chem. 1997,274:21075-21083
    31. Kellenberger S, Gautschi I, Schild L. A single point mutation in the pore region of the epithelial Na+ channel changes ion selectivity by modifying molecular sieving. Proc Natl Acad Sci USA,1999,96(7):4170-4175
    32. Kellenberger S, Auberson M, Gautschi I, et al. Permeability properties of ENaC selecticity filter mutants. J Gen Physiol,2001,118:679-692
    33. Palmer LG, Frindt G. Amiloride-sensitive Na channels from the apical membrane of the rat cortical collecting tubule. Proc Natl Acad Sci USA,1986,83:2727-2770
    34. Palmer LG, Frindt G. Gating of Na channels in the rat cortical collecting tubule: effects of voltage and membrane strech. J Gen Physiol,1996,107:35-45
    35. Kellenberger S, Schild L. epithelial sodium channel/degenerin family of ion channels:a variety of functions for a shared structure. Physiol Rev,2002, 82(3):735-767
    36. Garty H, Palmer LG. epithelial sodium channel:function, structure, and regulation. Physiol Rev,1997,77:359-396
    37. Staub O, Kamynina E. Concerted action of ENaC, Nedd-2, and Sgkl in trans epithelial Na transport[J].Am J Physiol Renal Physiol.2002,283:F377-F387
    38. Chen SY, Bhargava A, Mastroberardino L, et al. Epithelial sodium channel regulated by aldosterone-induced protein sgk. Proc Nat Acad Sci USA.1999, 96:2514-2519
    39. Naray-Fejes-Toth A, Canessa C, Cleaveland ES, et al. Sgk is an aldosterone-induced kinase in the renal collecting duct. Effects on epithelial Na+ channels[J]. J Biol Chem.1999,274:16973-16978
    40. Alvarez de la Rosa D, Zhang P, Naray-Fejes-Toth A, et al. The serum and glucocorticoid-regulated kinase sgk increases the abundance of epithelial sodium channels in the plasma membrane of Xenopus oocytes[J]. J Biol Chem.1999, 274:37834-37839
    41. Volk KA, Sigmund RD, Snyder PM, et al. yENaC is the predominant Na+ channel in the apical membrane of the rat renal inner medullary collecting duct. J Clin Invest,1995,96(6):2748-2757
    42. Asher C, Wald H, Rossier BC, et al. Aldosterone-induced increase in the abundance of Na+ channel subunits. Am J Physiol,1996,271(2 Pt 1):C605-C611
    43. Escoubet B, Coureau C, Bonvalet JP, et al. Noncoordinate regulation of epithelial Na+ channel and Na pump subunit mRNAs in kidney and colon by aldosterone. Am J Physiol,1997,272(5 Pt 1):C1482-C1491
    44. Stokes JB, Sigmund RD. Regulation of yENaC mRNA by dietary NaCl and steroids:organ, tissue, and steroid heterogeneity. Am J Physiol,1998,274(6 Pt 1):C1699-C1707
    45. Ausiello DA, Skorecki KL, Verkman AS, et al. Vasopressin signaling in kidney cells. Kidney Int,1987,31:521-529
    46. Handler JS, Orloff J. Antidiuretic hormone. Annu Rev Physiol,1981,43:611-624
    47. Snyder PM, Olson DR, Kabra R, et al. cAMP and serum and glucocorticoid-inducible kinase (SKG) regulate the epithelial Na+ channel through convergent phosphorylation of Nedd4-2[J]. J Biol Chem.2004, 279:45753-45758
    48. Stutts MJ, Rossier BC, Boucher RC. Cystic fibrosis transmembrane conductance regulator inverts protein kinase A-mediated regulation of epithelial sodium channel single channel kinetics. J Biol Chem,1997,272:14037-14040
    49. Stutts MJ, Canessa CM, Olsen JC, et al. CFTR as a cAMP-dependent regulator of sodium channels. Science,1995,269:847-850
    50. Chrabi A, Vallet VP, Firsov D, et al. Protease Modulation of the Activity of the Epithelial Sodium Channel Expressed in Xenopus Oocytes[J]. J Gen Physiol, 1998,111:127-138
    51. Picard N, Eladari D, Moghrabi SE, et al. Defective ENaC Processing and Function in Tissue Kallikrein-deficienst Mice[J]. J Biol Chem,200,283:4602-4611
    52. Tong Z, Illek B, Bhagwandin VJ, et al. Prostasin, A Membrane-anchored.Serine Peptidase, Regulates Sodium Currents in JME/CF15 Cells, a Cystic Fibrosis Airway Epithelial Cell Line [J]. Am J Physiol Lung Cell Mol Physiol,2004, 287:928-935
    53. Vallet V, Chraibi A, Gaeggeler HP, et al. An Epithelial Serine Protease Activates the Amiloride-sensitive Sodium Channel [J].Nature,1997,389:607-609
    54. Vallet V, Pfister C, Loffing J, et al. Cell-surface Expression of the Channel Activating Protease xCAP-1 Is Required for Activation of ENaC in the Xenopus Oocyte[J]. J Am Soc Nephrol,2002,13:588-594
    55. Andreasen D, Vuagniaux G, Fowler-Jaeger N, et al. Activation of Epithelial Sodium Channels by Mouse Channel Activating Proteases (mCAP) Expressed in Xenopus Oocytes Requires Catalytic Activity of mCAP3 and mCAP2 but not mCAP1[J]. J Am Soc Nephrol,2006,17:968-976
    56. Itani OA, Auerbach SD, Husted RF, et al. Glucocorticoid-stimulated lung epithelial Na transports is associated with regulated ENaC and sgkl expression[J]. Am J Physiol Lung Cell Mol Physiol.2002,282:2631-2641
    57. Away da MS. Regulation of the epithelial Na+ channel by intracellular Na+[J]. Am J Physiol.1999,277:C216-C244
    58. Hansson JH, Nelson-Williams C, Suzuki H, et al. Hypertension caused by a truncated epithelial sodium channel gamma subunit:genetic heterogeneity of Liddle syndrome. Nat Genet,1995, 11(1):76-82
    59. Inoue J, Iwaoka T, Tokunaga H, et al. A family with Liddle's syndrome caused by a new missense mutation in the beta subunit of the epithelial sodium channel. J Clin Endocrinol Metab,1998,83(6):2210-2213
    60. Strautnieks SS, Thompson RJ, Gardiner RM, et al. A novel splice-site mutation in the gamma subunit of the epithelial sodium channel gene in three pseudohypoaldosteronism type 1 families. Nat Genet,1996,13(2):248-250
    61. Vincent C, Michel F, Sabri D, et al. Location and function of the epithelial Na channel in the cochlea. Am J Physiol Renal Physiol,2001,280:F214-F222
    62. Brouard M, Casado M, Djelidi S, et al. Epithelial sodium channel in human epidermal keratinocytes:expression of its subunits and relation to sodium transport and differentiation. J Cell Sci,1999,112:3343-3352
    63. Oh Y, Warnock DG. Expression of the amiloride-sensitive sodium channel beta subunit gene in human B lymphocytes. J Am Soc Nephrol,1997,8:126-129
    64. Mirshahi M, Nicolas C, Mirshahi.S, et al. Immunochemical analysis of the sodium channel in rodent and human eye. Exp Eye Res,1999,69:21-32
    65. Sakaguchi N, Crouch JJ, Lytle C, et al. Na-K-Cl cotransporter expression in the developing and senescent gerbil cochlea. Hear Res,1998,118:114-122
    66. Spicer SS, Schulte BA. The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency. Hear Res,1996,100:80-100
    67. Lingueglia E, Champigny G, Lazdunski M, et al. Cloning of the miloride-sensitive FMRFamide peptide-gated sodium channel. Nature,1995, 378:730-733
    68. Canessa CM, Schild L, Buell G, et al. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature,1994,367:463-467
    69. Marcus DC, Chiba T. K+ and Na+ absorption by outer sulcus epithelial cells. Hear Res,1999,134:48-56
    70. Merchant SN, Rauch SD, Nadol JB. Meniere's disease. Eur Arch Otorhinolaryngol,1995,252:63-75
    71. Bond BR, Ng LL, Schulte BA. Identification of mRNA transcripts and immunohistochemical localization of Na/H exchanger isoforms in gerbil inner ear. Hear Res,1998,123:1-9
    72. Salt AN, Konishi T. Functional importance of sodium and potassium in the guinea pig cochlea studied with amiloride and tetramethylammonium. Jpn J Physiol,1982,32:219-230
    73. Ferrary E, Bernard C, Oudar O, et al. Sodium transfer from endolymph through a luminal amiloridesensitive channel. Am J Physiol Renal Fluid Electrolyte Physiol, 1989,257:F182-F189
    74. Wangemann P. Comparison of ion transport mechanisms between vestibular dark cells and strial marginal cells. Hear Res,1995,90:149-157
    75. Rusch A, Kros CJ, Richardson GP. Block by amiloride and its derivatives of mechano-electrical transduction in outer hair cells of mouse cochlear cultures. J Physiol (Lond),1994,474:75-86
    76. Kleyman TR, Cragoe EJ. Amiloride and its analogs as tools in the study of ion transport. J Membr Biol,1988,105:1-21
    77. Anniko M, Sobin A, Wroblewski R. X-ray microanalysis of inner ear fluids in the embryonic and newborn guinea pig. Arch Otorhinolaryngol,1982,234:125-130
    78. Raphael Y, Ohmura M, Kanoh N, et al. Prenatal maturation of endocochlear potential and electrolyte composition.of inner ear fluids in guinea pigs. Arch Otorhinolaryngol,1983,237:147-152
    79. Hummler E, Barker P, Gatzy J, et al. Early death due to defective neonatal lung liquid clearance in alpha-ENaC-deficient mice. Nat Genet,1996,12:325-338
    80. Talbot CL, Bosworth DG, Briley EL, et al. Quantitation and localization of ENaC subunit expression in fetal, newborn, and aduld mouse lung. Am J Respir Cell Mol Biol,1999,20(3):398-406
    81. McDonald FJ, Yang B, Hrstka RF, et al. Disruption of the beta subunit of the epithelial Na+ channel in mice:hyperkalemia and neonatal death associated with a pseudohyposteronism phenotype. Proc Natl Acad Sci USA,1999, 96(4):1727-1931
    82. Bosher SK, Warren RL. Observation on the electrochemistry of the cochlear endolymph of the rat:a quantitative study of its electrical potential and ionic composition as determined by means of flame spectrophotometry. Proc R Soc Lond B Biol Sci,1968,171:227-247