感应电机全阶磁链观测器和转速估算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁链观测器与转速估算的理论与方法以及实现中关键技术的研究与探讨一直是感应电机无速度传感器控制技术的热点问题,受到工程界高度关注。作者在查阅大量中外文献和前人研究工作的基础上,围绕感应电机磁链观测及转速估算问题,以全阶磁链观测器和基于全阶磁链观测器的转速估算方法为主要内容进行了比较深入的研究。
     论文较全面地综述了无速度传感器控制技术的发展现状,重点阐述了基于全阶磁链观测器的转速估算方法的若干关键技术的研究现状。在感应电机状态空间模型基础上,推导了电机极点的解析表达式,分析了电机极点轨迹与转子转速的关系;在全阶观测器理论基础上建立了感应电机的全阶磁链观测器模型,阐述了基于全阶磁链观测器的模型参考自适应转速估算方法。
     全阶磁链观测器的离散化设计是其数字化实现的关键技术,而离散全阶磁链观测器的观测精度和稳定性是关系磁链观测器设计成败的关键问题。本文建立了基于前向欧拉法和梯形法的两种离散全阶磁链观测器模型,采用矩阵2-范数分析了两种离散模型的精确解与近似解之间的误差,提出一种不同速段下分段离散化策略。对离散全阶磁链观测器进行稳定性分析,提出保证离散观测器稳定的极点配置约束条件;针对高速区域的稳定性,研究了现有极点配置方法的局限性,提出了一种反馈矩阵设计方法,给出了反馈矩阵设计模型。
     磁链观测的准确性与电机参数密切相关,本文分别对基于电压模型、基于电流模型以及全阶的转子磁链观测器对电机参数的敏感性进行了研究。通过采用估算磁链矢量与实际磁链矢量的比值函数作为评价依据,在频域内采用理论分析和图解相结合的方法,对比了各种磁链观测器的性能,给出了反映电机参数敏感性的比值函数的频率特性和对比结果一览表。
     分析了基于全阶磁链观测器的转速估算系统的全局稳定性,分别采用波波夫超稳定性理论和李雅普诺夫稳定理论推导了转速自适应律,并给出了保证系统稳定性的假设条件。分析了系统低速不稳定原因,给出保证系统全局稳定的约束条件和反馈矩阵设计准则。
     基于全阶磁链观测器的自适应转速估算系统性能取决于反馈矩阵设计和PI自适应律参数的优化。分析了自适应律参数与转速估算系统性能之间的关系,基于频域法给出了自适应律参数的选择原则,结合遗传算法在参数寻优方面的优势,对自适应律PI参数的自寻优方法进行了研究,提出了一种预设定遗传算法的自适应律参数离线优化方法。
     作者搭建了基于Saber的仿真平台,对本文提出的算法进行了大量仿真试验,验证了算法的可行性及有效性,并以TMS320F2407控制器为核心,建立了基于转子磁场定向的矢量控制系统实验平台,在该平台上应用全阶磁链观测器和基于全阶磁链观测器的转速估算系统分别对转子磁链和转子转速进行了估计,采用估算转速实现了无速度矢量控制系统,并进行了空载和带载试验。大量的试验结果证明了本文研究结论和方法的正确性,为进一步研究和工程实现基于全阶磁链观测器的无速度矢量控制和弱磁控制技术奠定了基础。
The theory and the implementation method of the flux observer and the speed estimation are the necessary issues of the speed sensorless control of the induction motor and received a lot of attention in the past research works. Basic on the review of the past research works, this paper focus on the study of the full-order adaptive flux observer which estimates the rotor speed from the current error.
     The past research works of the speed sensorless technology are reviewed, especially the foil-order adaptive flux observer. The poles locus of the induction motor are derived and analyzed. The foil-order adaptive flux observer is established basic on the observer theory. The speed estimation using the foil-order adaptive flux observer is described.
     The discretation of the foil-order flux observer is an important technology for the impletation of it in practical. The precision and the stability are crucial for the discrete foil-order flux observer. The discrate models of the observer using the simple forward Euler discretization and the trapezia discretization are presented. The discrete errors are analyzed by means of the norm 2. A new discretation strategy is proposed, which apply different discretation according to the rotor speed. The stability of the discrete foil-order flux observer is also analyzed and the limitations for the placement of the observer's poles are presented. As to the unstability in field-weakened region, a new feedback matrix is proposed to improve the stability of the discrete obsever.
     The foil-order flux observer is sensitive to the motor parameters. The parameters sensitivity of three kinds of flux observer are studied, which includes the voltage-model-based observer, the current-model-based observer and the foil-order observer. The comparative study of three observers is done by means of a ratio fuction of the estimated flux and the practical flux. A clear comparative result is presented in a table.
     The global stability of the speed estimation system is studied in the paper. The PI adaptation law is derived using the Popov's hyperstability criterion and the Lyapunov's stability theorem. The hypothesis of the PI adaptation law is pointed out. The unstability at low speed is analyzed and the design guidelines of the feedback matrix are proposed.
     The performance of the speed estmation system based on the foil-order flux observer is decided by the selection of the feedback matrix and the parameters of the PI adaptation law. Therefore, the relationship between the performance of the speed estmation system and the parameters of the PI adaptation law is studied. The principle of the selection of the parameters of the PI adaptation law is presented based on the analysis in the frequency domain. The self-optimization of the PI parameters is also studied in the paper. A new off-line optimization method based on the presetting Genetic Algorithm is proposed.
     The simulation system is established with the Saber software to verify the study results in the paper. An indirect field oriented control system of the induction motor is also established using the DSP TMS320F2407. A lot of experiments are carried out to verify the full-order flux observer and the speed estimation system, which are valuable to the further study of the speed sensorless control based on the full-order flux observer.
引文
[1] Blaschke F. A new method for the structure decoupling of AC induction machines. 2nd IFAC on multivariable tec. Control system, 1971,11-13
    [2] Depenbrock M. Direct self-control of inverter-fed induction machine. IEEE Trans. On Power Electronics, 1988, 4:420-429
    [3] Takahashi I. A new quick-response and high-efficiency control strategy of an induction motor, IEEE Trans. On Industry Applications, 1986, 22(5):820-827
    [4] Abbondanti, Brennen M. B. Variable speed induction motor drives use electronic slip calculator based on motor voltages and currents. IEEE Transactions on Industry Applications, 1975IA-11 (5): 483-488
    [5] Ohtani T., Takada N., Tanaka K. Vector control of induction motor without shaft encoder. IEEE Transactions on Industry Applications, 1992, 28(1): 157-164
    [6] Ilas C., Bettini A., Ferraris L., et al. Comparison of different schemes without shaft sensors for field oriented control drives. IECON'94. Sensorless control of AC motor drives, 1994, 30-39
    [7] Ohyama K., Asher G. M., Summer M. Comparative experimental assessment for high-performance sensorless induction motor drives, in: Proceedings of the IEEE International Symposium on Industrial Electronics, 1999. 386-391
    [8] Holtz J. Sensorless control of induction motor drives. Proceedings of the IEEE, 2002, 90(8): 1359-1394
    [9] Joetten R., Maeder G. Control method for good dynamic performance induction motor drives based on current and voltage as measured quantities. IEEE Transactions on Industry Applications, 1983, 10(6): 436-442
    [10] 喻辉洁,东伟,李永东等.无速度传感器交流调速系统速度估计策略分析.电工电能新技术.1997,(2):23-27
    [11] 陈杰,李永东.异步电动机控制策略及无速度传感器系统综述.中国EACS第9届学术年会论文集,1998.29-40
    [12] 杨耕,陈伯时.交流感应电动机无速度传感器的高动态性能控制方法综述.电气传动,2001(3):3-8
    [13] 李永东,李明才.感应电机高性能无速度传感器控制系统--回顾、现状与展望.电气传动,2004(1):4-10
    [14] 陈伯时,杨耕.无速度传感器高性能交流调速控制的三条思路及其发展建议.电气传动,2006(36):3-8
    [15] **********, 2002.241-243
    [16] Kanmachi T., Takahashi I. Sensor-less speed control of an induction motor with no influence of secondary resistance variation. in: Conference record of the 1993 IEEE, 1993. 408-413
    [17] Hu J., Wu B. New integration algorithms for estimating motor flux over a wide speed range. IEEE Transactions on Power Electronics, 1998,13(5): 969-977
    [18] Hurst D. K., Habetler T. G, Griva G, et al. Zero-speed tacholess IM torque control: simply a matter of stator voltage integration. IEEE Transactions on Industry Applications, 1998, 34(4): 790-795
    [19] Cirrincione M., Pucci M., Cirrincione G, et al. A new adaptive integration methodology for estimating flux in induction machine drives. IEEE Transactions on Industry Applications, 2004, 19(1): 25-34
    [20] Jiang J., Holtz J. Speed sensorless AC drive for high dynamic performance and steady state accuracy. in: Proceedings of the 1995 IEEE IECON 21st International Conference, 1995. 1029-1034
    [21] Lin S. Y., Wu H., Zhou Y. Y. Sensorless control of induction motors with on-line rotor time constant adaptive. IEEE Transactions on Industry Applications, 1998, 10(3): 1593-1598
    [22] Akatsu K., Kawamura A. Sensorless very low-speed and zero-speed estimations with online rotor resistance estimation of induction motor without signal injection. IEEE Transactions on Industry Applications, 1998, 36(3): 764-771
    [23] Hamajima T., Hasegawa M., Doki S., et al. Sensorless vector control of induction motor with stator resistance identification based on augmented error. in: PCC2002. Proceedings of the IEEE, 2002. 504-509
    [24] Yu X., Dunnigan M. W., Williams B. W. Phase voltage estimation of a PWM VSI and its application to vector-controlled induction machine parameter estimation. IEEE Transactions on Industry Applications, 2000, 47(5): 1181-1185
    [25] Kubota H., Matsuse K. The improvement of performance at low speed by offset compensation of stator voltage in sensorless vector controlled induction machines. in: Industry Applications Conference, 1996. Conference Record of the 1996 IEEE, 1996.257-261
    [26] Edelbaher G, Urlep E., Curkovic M., et al. Low speed performance improvement in sensorless drive using measured stator voltages of PWM voltage source inverter. in: Industrial Technology, 2003. IEEE International Conference, 2003. 542-547
    [27] Holtz J., Quan J. T. Dift- and parameter-compensated flux estimator for persistent zero-stator-frequency operation of sensorless-controlled induction motors. IEEE Transactions on Industry Applications, 2003, 39(4): 1052-1060
    [28] Chung D. W., Sul S. K. Analysis and compensation of current measurement error in vector-controlled AC motor drives. IEEE Transactions on Industry Applications, 2003, 39(4): 1052-1060
    [29] Schauder C. Adaptive speed identification for vector control of induction motors without rotational transducers. IEEE Transactions on Industry Applications, 1992, 28(5): 1054-1061
    [30] Peng F. Z., Fukao T. Robust speed identification for speed sensorless vector control of induction motors. IEEE Transactions on Industry Applications, 1994, 30(5): 1234-1240
    [31] Tsuji M., Chen S., Izumi K., et al. A sensorless vector control system for induction motors using q-axis flux with stator resistance identification. IEEE Transactions on Industry Applications, 2001, 48(1): 185-194
    [32] 王文森,李永东,王光辉等.基于PI自适应法的无速度传感器异步电动机矢量控制系统.电工技术学报,2002,17(1):1-6
    [33] 陈硕,吴臻鹏,阮成功.基于变参数PI自适应法的无速度传感器矢量控制系统速度推算方法.福州大学学报(自然科学版),2003,31(1):65-68
    [34] Jemli M., Boussak M., Gossa M., et al. Rotor time constant identification in vector controlled induction motor applied flux model reference adaptive system (MRAS). in: 7th Mediterranean Electrotechnical Conference Proceeding, 1994. 797-800
    [35] Lazhar B. B., Susumu T. Speed control of induction motor without rotational transducers, in: Industry Applications Conference Proceeding, 1998.625-632
    [36] Han W. Y., Kim S. M., Kim S. J., et al. Sensorless vector control of induction motor using improved self-tuning fuzzy PID controller, in: SICE Annual Conference. 2003.3112-3117
    [37] Cirrincione M., Pucci M. An MRAS-based sensorless high-performance induction motor drive with a predictive adaptive model. IEEE Transactions on Industry Applications, 2005, 52(2): 532-551
    [38] R.Blasco-Gimenez, G. M. Asher, M. Sumner, and K. J. Bradley. Dynamic performance limitations for MRAS based sensorless induction motor drives. Part 1: Stability analysis for the closed loop drive. In: IEE Proc.-Electr. Power Appl., 1996, 143(2):113-122
    [39] R.Blasco-Gimenez, G. M. Asher, M. Sumner, and K. J. Bradley. Dynamic performance limitations for MRAS based sensorless induction motor drives. Part 2: Online parameter tuning and dynamic performance studies, in: IEE Proc.-Electr. Power Appl., 1996, 143(2): 123-134
    [40] Shin M. H., Hyun D. S., Cho S. B., et al. An improved stator flux estimation for speed sensorless stator flux orientation control of induction motors. IEEE Transactions on power electronics. 2000, 15(2): 312-318
    [41] Idris N. R. N., Yatim A. H. M. An improved stator flux estimation in steady-state operation for direct torque control of induction machines. IEEE Trans. on Industry Applications. 2002, 38(1): 110-116
    [42] Cirrincione M., Pucci M., Cirrincione G., et al. A new adaptive integration methodology for estimating flux in induction machine drives. IEEE Transactions on Industry Applications, 2004, 19(1): 25-34
    [43] 黎亚元,唐浦华,宋昌林.直接转矩控制中一种磁链估计新方法.中国电机工程学报.2000,20(5):22-29
    [44] D.C. Luenbeger, An introduction to observers, IEEE Trans. Auto Cont., 1971,16: 596-602
    [45] Rajashekara K., Kawamura A., Matsuse K. Sensor-less control of AC motor drives, speed and position sensorless operation. IEEE press, 1996
    [46] Maurizio Cirrincione. Sensorless direct torque control of an induction motor by a TLS-based MRAS observer with adaptive integration. Automatica, 2005, 41: 1843-1854
    [47] Kubota H., Matsuse K. New adaptive flux observer of induction motor for wide speed range motor drives. Conf. Rec. IEEE IECON'90 1990:921-92
    [48] Kubota H., Matsuse K., Nakano T. DSP-based speed adaptive flux observer of induction motor. IEEE Transactions on Industry Applications. 1993, 29(2): 344-348
    [49] Kubota H., Matsuse K. Speed sensorless field-oriented control of induction motor with rotor resistance adaptation. IEEE Transactions on Industry Applications. 1994, 30(5): 1219-1224
    [50] Marchesoni M., Segarichi P., Soressi E. A simple approach to flux and speed observation in induction motor drives. IEEE Transactions on Industry Applications. 1997, 44(4): 528-535
    [51] Lovati T., Marchesoni M., Oberti M. A microcontroller-based sensorless stator flux-oriented asynchronous motor drive for traction application. IEEE Transactions on Power Electronics, 1998, 13(4): 777-784
    [52] Jeong S. Y., Choi Y. O. Application of extended luenberger observer for induction motor control.in: Proceedings of ICPE'98, 1998. 304-309
    [53] Ljung, L, Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems, IEEE Transactions on Automatic Control, 1979, 24(1): 36-50
    [54] Henneberger G., Brunsbach B. J. Field-oriented control of synchronous and asynchronous drives without mechanical sensors using a Kalman filter. In: Proceeding of EPE'91, 1991. 3664-3671
    [55] Kim Y. R., Sul S. K., Park M. H. Speed sensorless vector control of induction motor using an extended Kalman filter. IEEE Transactions on Industry Applications, 1994, 30(5): 1225-1233
    [56] Hilairet M., Auger F., Darengosse C. Two efficient Kalman filters for velocity estimation of induction motors. in: Proceeding of IEEE PESC'2000, 2000. 891-896
    [57] J J E. Slotine, J K Herick, E A Misawa, On sliding observers for nonlinear systems, ASME.J.of Dynamic Systems, Measurement and Control, 1987,109: 245-252
    [58] D.-W. Chung and S.-K. Sul. Analysis and compensation of current measurement error in vector-controlled AC motor drives. IEEE Trans. Ind. Applicat.,1998, 34: 340-345
    [59] J.-W. Choi and S.-K. Sul. Inverter output voltage synthesis using novel dead time compensation. IEEE Trans. Power Electron., 1996,11: 221-224
    [60] J. Holtz and J. Quan. Sensorless vector control of induction motors at very low speed using a nonlinear inverter model and parameter identification. IEEE Trans. Ind. Applicat., 2002, 38: 1087-1095
    [61] Frenzke T., Hoffman F., Langer H. G, Speed sensorless control of traction drives- Experiences on vehicles. In: Proc. 8th Europ. Conf. Power Electronics and Applications (EPE'99), Lausanne, Switzerland, 1999.
    [62] Hurst K. D., Habetler T. G. Speed sensorless field-oriented control of induction machines using current harmonic spectral estimation. in: Proc. of IEEE IAS Ann. Mtg., 1994. 601-607
    [63] Briz F., Diez A., Denger M. W. Dynamic operation of carrier signal injection based sensorless direct field oriented AC drives. in: Proc. of IEEE IAS Ann. Mtg., 1999.2313-2320
    [64] Holtz J. Senserless position control of induction motors-An emerging technology. IEEE Transactions on Industry Applications, 1998, 45(11): 840-852
    [65] Ide K, Murokita I, Sawamura M et al. Finite Element Analysis of Sensorless Induction Machine by High Frequency Voltage Injection. In: Proc. of IPEC2, Tokyo, 2000: 1842-1847
    [66] Kozo I. High frequency injection method improved by flux observer for sensorless control of an Induction Motor. In: Proceeding of PCC2002, 2002. 516-521
    [67] Blaschke F., Vander B. J., Vandenput A. Sensorless direct field orientation at zero flux frequency. In: Proceeding of IAS Ann. Mtg, 1996. 189-196
    [68] Pradeep K. Nandam, Paresh C.A Comparative Study of a Luenberger Observer and Adaptive Observer-Based Variable Structure Speed Control System Using a Self-Controlled Synchronous Motor, IEEE Trans. Ind. Electron., 1990, 37(2): 127-132
    [69] Kazuhiro Ohyama, Greg M. Asher, Mark Sumner. Comparative Analysis of Experimental Performance and Stability of Sensorless Induction Motor Drives. IEEE Trans Ind. Electron., 2006, 53(1): 178-186
    [70] Cristian Lascu, Ion Boldea, Frede Blaabjerg. Comparative Study of Adaptive and Inherently Sensorless Observers for Variable-Speed Induction-Motor Drives. IEEE Trans Ind.Electron., 2006, 53(1): 57-65
    [71] R. Krishnan and F. C. Doran. Study of parameter sensitivity in high performance inverter-fed induction motor drive systems. IEEE Trans. Ind. Applicat., 1987, IA-23: 623-635
    [72] P. L. Jansen, R. D. Lorenz. A physically insightful approach to the design and accuracy assessment of flux observers for field oriented induction machine drives. IEEE Trans. Ind. Appl., 1994, 30(1): 101-110
    [73] B. Robyns, F. Berthereau, G Cossart, et al. A methodology to determine gains of induction motor flux observers based on a theoretical parameter sensitivity analysis. IEEE Trans. Power Electron., 2000(15): 983-995
    [74] M. Hinkkanen, J. Luomi. Parameter sensitivity of full-order flux observers for induction motors. IEEE Trans. Ind. Applicat.,2003(39): 1127-1135
    [75] G.F.Franklin, J.D.Powell. Digital control of dynamic systems. Reading, MA: Addison-Wesley, 1980
    [76] K.J.Astrom, B.Wittenmark. Computer controlled systems. Engewood Cliffs, NJ: Prentice Hall, 1984
    [77] G Verghese, S Sanders.Observers for flux estimation in induction machines. IEEE Transactions on Industrial Electronics, 1988, 35:85-94
    [78] A.Bellini, G.Figalli. Analysis and design of a microcomputer-based observer for an induction machine. Automatica, 1988, 24(4): 549-555
    [79] C Bottura, J Silvino, P Resende.A flux observer for induction machines based on a time-variant discrete model. IEEE Transactions on Industry Applications, 1993,29: 349-354
    [80] G Griva, P Ferraris, F Profumo,et al. Luenberger observer for high speed induction machine drives based on a new pole placement method.in: Proceeding of the 9th European Conference on Power Electronics and Applications, 2001:1268-1274
    [81] M. Hinkkanen, J. Luomi. Novel full-order flux observer structure for speed sensorless induction motors. in: Proceeding of the 27th Annual Conference of the IEEE Industrial Electronics Society, 2001, 2:1333-1338
    [82] M. Hinkkanen, J. Luomi. Digital implementation of full-order flux observers for induction motors. in: Proceeding of the EPE-PEMC'02, Cavtat and Dubrovnik, Croatia, 2002
    [83] H. Kubota, K. Matsuse, T. Nakano. DSP-based speed adaptive flux observer of induction motor. IEEE Trans. Ind. Appl, 1993, 29(2): 344-348
    [84] G. Yang, T. H. Chin. Adaptive-speed identification scheme for a vector-controlled speed sensorless inverter-induction motor drive. IEEE Trans. Ind. Appl., 1993, 29(4): 820-825
    [85] H. Hofmann, S. Sanders. Speed-sensorless vector torque control of induction machines using a two-time-scale approach. IEEE Trans. Ind. Applicat., 1998, 34: 169-177
    [86] L. Harnefors. Instability phenomena and remedies in sensorless indirect field oriented control. IEEE Trans. Power Electron., 2000,15: 733-743
    [87] H. Kubota, I. Sato, Y. Tamura,et al. Regenerating-mode low-speed operation of sensorless induction motor drive with adaptive observer. IEEE Trans. Ind. Applicat., 2002, 38: 1081-1086
    [88] H. Sugimoto. One improving measures of stability in regeneration operation of speed sensorless vector control induction motor system using adaptive observer of secondary magnetic flux. In: Proc. IPEC-Tokyo,2000, 3: 1069-1074
    [89] S.Suwankawin, S.Sangwongwanich. A speed-sensorless IM drive with decoupling control and stability analysis of speed estimation. IEEE Trans. Ind. Electron.,2002, 49: 444-455
    [90] S.Suwankawin, S.Sangwongwanich. Design strategy of an adaptive full-order observer for speed-sensorless induction-motor drives-tracking performance and stabilization. IEEE Trans. Ind. Electron., 2006, 53,(1): 96-119
    [91] M. Hinkkanen. Analysis and design of full-order flux observers for sensorless induction motors. IEEE Trans. Ind. Electron., 2004, 51: 1033-1040
    [92] H. Tajima, G. Guidi, H. Umida. Consideration about problems and solutions of speed estimation method and parameter tuning for speedsensorless vector control of induction motor drives. IEEE Trans. Ind. Applicat., 2002, 38: 1282-1289
    [93] 王焕钢,徐文立,杨耕.感应电机无速度传感器控制的自适应转速估计.电气传动,2002,1:6-9
    [94] M. Hinkkanen,J. Luomi.Stabilization of regenerating-mode operation in sensorless induction motor drives by full-order flux observer design. IEEE Trans. Ind. Electron., 2004, 51: 1318-1328
    [95] H. Kubota, K. Matsuse, Y. Hori. Behavior of sensorless induction motor drives in regenerating, mode. in: Proceeding of the Power Convers. Conf., Nagaoka, Japan, 1997, 2. 549-552
    [96] F. Hoffmann, S.Koch. Steady state analysis of speed sensorless control of induction machines. In: Proc. IEEE IECON'98, 3, Aachen, Germany. 1626-1631
    [97] R. Ottersten, L. Harnefors. Design and analysis of inherently sensorless rotor-flux-oriented vector control systems. In: Proc. IEEE NORPIE, Stockholm, Sweden, Aug. 2002
    [98] M. Cirrincione, M. Pucci, G. Cirrincione, et al. An adaptive speed observer based on a new total least-squares neuron for induction machine drives. IEEE Trans. Ind. Appl., 2006, 42(1): 89-104
    [99] M. Depenbrock, C. Evers. Model-based speed identification for induction machines in the whole operating range. IEEE Trans. Ind.Electron., 2006, 53(1): 31-40
    [100] M. Cirrincione, M. Pucci, G. Cirrincione,et al. Sensorless control of induction motors by reduced order observer with MCA EXIN + based adaptive speed estimation. IEEE Trans. Ind. Electron.,2007, 54(1): 150-166
    [101] S. Sangwongwanich, S. Suwankawin, S. Po-ngam,et al. A unified speed estimation design framework for sensorless ac motor drives based on positive-real property. In: Proc. PCC, Nagoya, Japan, Apr. 2007:1111-1118
    [102] L. Harnefors, R. Ottersten. Regenerating-mode stabilization of the 'statically compensated voltage model'. IEEE Trans. Ind. Electron.,2007,54(2): 818-824
    [103] J. Holtz. The Representation of AC Machine Dynamics by Complex Signal Flow Graphs, IEEE Trans. Industrial Electronics. 1995, 42(3): 263-271
    [104] 胡寿松.自动控制原理.北京:国防工业出版社,1996.529-530.
    [105] Jang-Hwan Kim,Jong-Woo Choi,Seung-Ki Sul.Novel Rotor-Flux Observer Using Observer Characteristic Function in Complex Vector Space for Field-Oriented Induction Motor Drives.IEEE Trans.Ind.applicat 2002, 38(5): 1334-1343.
    [106] 陈桂兰.交流异步电机无速度传感器矢量控制方法及其在电动汽车中的应用研究.[博士学位论文],中国科学院电工研究所,2006.
    [107] Bose B. K.. Modern power electronics and AC drives. 第1版.北京:机械工业出版社,2005,3
    [108] 胡祖炽,林源渠.数值分析.北京:高等教育出版社,2004.
    [109] 陈伯时,谢鸿鸣.交流传动系统的控制策略.电工技术学报.2000,15(5):11-15
    [110] 高景德,王祥珩,李发海等.交流电机及其系统的分析.北京:清华大学出版社,1993。
    [111] 冯垛生,曾岳南.无速度传感器矢量控制原理与实践.北京:机械工业出版社,1997。
    [112] 陈伯时.电力拖动自动控制系统.北京:机械工业出版社,1992
    [113] 胡崇岳.现代交流调速技术.北京:机械工业出版社,1998
    [114] 赵良炳.现代电力电子技术基础.清华大学出版社,1999
    [115] 李明才.感应电机宽范围无速度传感器矢量控制系统研究.[博士学位论文],清华大学电机系,2003
    [116] 李剑飞.感应电机转速辨识理论、方法及应用.[博士学位论文],华中科技大学控制系,2003.
    [117] 刘军锋.定子磁场定向无速度传感器系统研究与开发.[博士学位论文],华中科技大学控制系,2006.26-44
    [118] 王庆义.交流变频驱动系统关键技术及应用研究.[博士学位论文],华中科技大学控制系,2008.29-52
    [119] M. Montanari, S. M. Peresada, C. Rossi, and A. Tilli. Speed Sensorless Control of Induction Motors Based on a Reduced-Order Adaptive Observer. IEEE Trans. On control system technology, 15(6), 2007:1049-1064
    [120] R. Bojoi, P. Guglielmi and G. M. Pellegrino. Sensorless Direct Field-Oriented Control of Three-Phase Induction Motor Drives for Low-Cost Applications. IEEE Trans. Ind. Applicat. 44(2), 2008:475-481
    [121] M. S. Zaky, M. M. Khater, S. S. Shokralla, and H. A. Yasin. Wide-Speed-Range Estimation with Online Parameter Identification Schemes of Sensorless Induction Motor Drives. IEEE Trans. Ind. Electron. 56(5), 2009.