基于再生制动的电动汽车制动系统的轻量化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在传统汽车工业所引发的石油资源渐趋匮乏、空气质量日益恶化的严峻形势下,具有明显节能和环保优势的电动汽车近年来成为了各大汽车厂商和科研机构竞相开发的热点。电动汽车被认为是解决能源短缺问题和环境污染问题的有效途径之一。再生制动则是电动汽车相对于传统燃油汽车的巨大节能优势。利用再生制动,可以将制动过程中的动能转化为电能储存到电池当中,以备驱动时使用,提高整车的能量利用率。目前,如何协调控制摩擦制动和再生制动之间的分配比例,在保证制动稳定性前提下,尽可能多地回收制动能量,成为再生制动控制研究的关键问题之一。
     与传统汽车制动不同,电动汽车的制动是由摩擦制动和再生制动共同完成的。制动时由于电机再生制动转矩承担了制动总需求转矩的一部分,要求传统摩擦制动器提供的制动转矩相应地减少了。而且,由于制动能量的一部份通过电机发电转变为了电能,由摩擦制动器承担的制动能量耗散任务相应地减小了,对制动器承载热负荷的要求也会降低。因此摩擦制动器的尺寸和重量是可以减小的。
     本文首先对城市工况下汽车的制动能量进行了分析,显示了制动能量回收的巨大潜力,介绍了电动汽车的再生制动系统的工作原理和基本结构,对影响再生制动回收能量的主要因素进行了分析。
     然后在研究传统汽车制动理论中前后制动器制动力分配对汽车制动稳定性的影响基础上,建立电动汽车再生制动时的制动力分配模型。在考虑电机工作特性和电池充电能力限制的情况下,建立了电机的力学模型,从而确定电机能够提供的最大再生制动力。在前面理论分析的基础上,提出了基于ECE法规的再生制动控制策略,在制动力分配时向驱动轴倾斜,同时根据电机能够提供的最大再生制动力,优先利用再生制动,动态分配摩擦制动和再生制动比例。
     随后,利用ADVISOR仿真软件对本文再生制动控制策略进行了建模,在NEDC和UDDS行驶循环工况下进行了仿真试验,并和ADVISOR再生制动策略作了对比。结果表明本文控制策略充分发挥了电机的再生制动能力,回收制动能量的效果较好,优于ADVISOR再生制动控制策略。
     最后,利用ADVISOR软件,进行特定制动工况仿真试验以确定有电机再生制动参与下研究车型前轮盘式制动器的一些性能要求,在盘式制动器设计理论的指导下利用遗传优化算法对原车前轮钳盘式制动器进行了轻量化设计。
In the condition that petroleum source is to be scarce and air quality is deteriorating, EV(electric vehicle) which has great advantage of economizing energy and protecting environment has becoming the focus that big car manufacturers and research institutions develop. EV is regarded as one of ways that resolve the energy sources shortage and environment pollution problems. Regenerative braking is EV's great advantage over traditional cars. Kinetic energy in the course of braking can be transformed to electricity energy into battery by regenerative braking and can be utilized again when driving, so the vehicle's energy efficiency is improved. Now, how to coordinate and control the assignment proportion between friction brake and regenerative brake and recycle braking energy as more as possible given the precondition that brake security is ensured, has become one of regenerative braking system's key questions.
     Unlike traditional car's brake, EV's brake is completed by friction brake and regenerative brake collectively. Because motor's regenerative brake torque bears part of total brake torque demand, brake torque supposed to be supplied by traditional friction brake is reduced accordingly. Moreover, some of brake energy is transformed to electricity by generator, the request to brake bear hot load is reduced.So the size and mass of friction brake can be reduced.
     This paper firstly analyses car's brake energy in the city drive condition and shows the great potentiality of brake energy recycling. It introduces the working principle and basic structure of EV's regenerative braking system and analyses main factors that influence regenerative braking recycling energy.
     On the basis of researching the impact that front and rear brake force distribution makes on car brake stability in the traditional braking theory, this paper has established the model of brake force distribution during EV regenerative braking. Considering motor working character and battery's charge ability, this paper has established the model of motor mechanics and determines the maximum regenerative braking force that motor can supply. On the basis of theoretical analysis before, this paper comes up with regenerative braking control strategy which is based on ECE brake rules. The control strategy inclines to drive axle in brake force distribution and utilizes regenerative brake preferentially according to the maximum regenerative braking force that the motor can supply. It assigns proportions between friction brake and regenerative brake dynamically.
     Then, this paper has established the model of regenerative braking control strategy by ADVISOR software and did simulation experiment in NEDC and UDDS driving cycles, compared to ADVISOR built-in regenerative braking control strategy. The result shows that this paper's regenerative braking control strategy can bring motor's regenerative braking ability into play efficiently and performs better over ADVISOR regenerative braking control strategy in recycling braking energy.
     In the end, on the basis of caliper disc brake design theory, this paper has established its model. It did brake simulation experiment in certain driving cycle to determine performance demand to front disc brake of EV this paper researched. In the guide of disc brake design theory, it did lightweight design aiming at the car's previous front brake by Genetic Algorithm.
引文
[1]耿聪,张欣,张良,刘溧,于勇.混合动力电动公交汽车(HEB)再生制动的控制策略与性能仿真.高技术通讯,2004(8)
    [2]詹迅,秦大同,杨阳,杨亚联,胡建军.轻度混合动力汽车再生制动控制策略与仿真研究.中国机械工程,2006(3)
    [3]蒋励.基于理想制动力分配曲线的复合制动设计.汽车科技,2006(4)
    [4]唐鹏,孙骏.电动汽车驱动系统再生制动特性分析与仿真.移动电源与车辆,2006(4)
    [5]刘博,杜继宏,齐国光.电动汽车制动能量回收控制策略的研究.电子技术应用,2004(1)
    [6]张煜,张春润,资新运,姜大海.电动汽车核心技术及其发展趋势.汽车电器,2004(9)
    [7]吴颖杰,王君艳,贡俊.能量回馈制动在电动汽车中的应用.上海电机学院学报,2006.9(3)
    [8]罗玉涛,俞明,陈炳坤,陈统坚.电动车制动能量再生反馈控制研究.机床与液压,2002(5)
    [9]王保华,张建武,罗永革.并联混合动力客车再生制动仿真研究.汽车工程,2005.27(6)
    [10]张毅.电动汽车能量回馈的整车控制.汽车工程,2005.27(1)
    [11]张林.电动汽车的再生制动控制策略研究及仿真.北京汽车,2006(5)
    [12]王子杰.EV再生制动系统的建模与仿真.武汉理工大学学报,2001.23(4)
    [13]陈清泉.电动汽车技术发展及前景展望.电工技术杂志,1996(6)
    [14]罗玉涛等.EV6600电动客车能量反馈系统设计.公路交通科技,2003.20(3)
    [15]曹正策.串联式混合动力城市客车再生制动控制模式研究.拖拉机与农用运输车,2006.33(2)
    [16]吴峻,李圣怡,潘孟春,陈轶.再生制动的分析与控制.电工技术杂志,2001(12)
    [17]王勇,李建勇,张欣,耿聪.混合动力汽车的控制策略研究.北京汽车,2004.2
    [18]张俊智,卢青春,王丽芳,汽车混合动力传动的能量流动与比较.机械科学与技术,2001(5)
    [19]张靖.混合动力电动汽车再生制动系统的建模与仿真,武汉理工大学学报,2005.27(1)
    [20]陈家新,江建中,江信尧.电动车能量再生控制及其可靠性研究.电气传动自动化,2002.24(6)
    [21]钱劲.电动汽车电制动特点分析及其控制策略研究.上海汽车,2003(2).
    [22]赵辉等.电池供电的永磁电动机系统的再生制动.电机与控制学报,1999.3(4)
    [23]韩晓东.电动机电磁制动对电动车制动及其它性能的影响.汽车技术,1999(3)
    [24]王震坡.电动汽车能耗分配及影响因素分析.北京理工大学学报,2004.24(4)
    [25]王颖.电动汽车电子驱动系统综述.电工技术杂志,1998(7)
    [26]耿聪.EQ6110混合动力电动汽车再生制动控制策略研究.汽车工程,2004.26(3)
    [27]张欣,刘溧,于海生.混合动力电动汽车制动系统回馈特性仿真.中国公路学报,2006.19(3)
    [28]余卓平,熊璐,张立军.电液复合制动匹配研究.汽车工程,2005.27(4)
    [29]李蓬,金达锋,罗禹贡,任勇,许少文.轻度混合动力汽车制动能量回收控制策略研究.汽车工程,2005.27(5)
    [30]张健,雷雨成,卫修敬.领从蹄式鼓式制动器制动力矩计算方法研究.长沙交通学院学报,2001.17(3)
    [31]杨晓明等.盘式制动器的全性能优化设计.中国机械工程,2005.16(7)
    [32]黄其柏,周明刚,王勇.基于遗传算法的鼓式制动器结构参数优化设计.机械制造,2006.44(507)
    [33]米洁,吴欲龙.汽车鼓式制动器多目标优化设计.机械设计与制造,2007(1)
    [34]王良模.鼓式制动器效能因数的计算研究.南京理工大学学报,1999.23(3)
    [35]程军.领从蹄式制动器效能因数及制动力矩计算方法.当代汽车,1991(2)
    [36]喻凡,林逸.汽车系统动力学.机械工业出版社,2005
    [37]余志生.汽车理论.机械工业出版社,2000
    [38]陈家瑞.汽车构造.机械工业出版社,2005
    [39]孙逢春,张承宁,祝嘉光.电动汽车.北京理工大学出版社,1997
    [40]陈清泉,孙逢春译.混合电动车辆基础.北京理工大学出版社,2001
    [41]万沛霖.电动汽车的关键技术.北京理工大学出版社,1998
    [42](美)L.鲁道夫编,张蔚标,陈名智译.汽车制动系统的分析与设计.机械工业出版社,1985
    [43]吉林工业大学汽车教研室.汽车设计.机械工业出版社,1965
    [44]张洪欣.汽车设计.机械工业出版社,1999
    [45]姚俊,马松辉.Simulink建模与仿真.西安电子科技大学出版社,2002
    [46]王沫然.Simulink建模及动态仿真.电子工业出版社,2002
    [47]李海涛,邓樱.MATLAB6.1基础及应用技巧.国防工业出版社,2002
    [48]邱晓林等编著.基于MATLAB的动态模型与系统仿真工具--Simulink3.0/4.X.西安交通大学出版社,2003
    [49]Yimin Gao.Liping Chen,Mehrdad Ehsani.Investigation of the Effectiveness of Regenerative Braking for EV and HEV[J].SAE,1999.29(10):26228.
    [50]Gao Y,Ehsani M.Electronic Braking System of EV Integration of Regenerative Braking,Automatic Braking Force Control and ABS.SAE Paper,2002-01-2478.
    [51]Nakamura E.Development of Electronically Controlled Brake System for Hybrid Vehicle.SAE Paper,2002-01-030.
    [52]Ryan F.Rowe,Jennifer A.Topinka,Ethan K.Brodsky,Julie G.Marshaus andGlenn R.Bower,Design and Optimization of the University of Wisconsin's Parallel Hybrid-Electric Sport Utility Vehicle,SAE2002-01-1211
    [53]Yimin Gao and Mehrdad Ehsani,Electronic Braking System of EV and HEY-Integration of Regenerative Braking,Automatic Braking Force Control and ABS.SAE2001-01-2478
    [54]A.M.Walker,M.U.Lamperth and S.Wilkins.On Friction Braking Demand with Regenerative Braking.SAE2002-01-2581.