串联式混合动力电动客车动力系统建模与仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文论述了在“武汉市混合动力电动城市公交大客车”项目中处于关键地位的混合动力系统的概念设计、数学建模和仿真分析过程及结果。
     首先,通过对混合动力系统工作原理的分析,选择应用于城市客车的串联混合动力系统作为研究对象。根据国内外技术现状及发展趋势,对动力系统各个部件进行了型式研究,并进行了概念设计,初步确定了部件的参数,提出了两套动力系统匹配方案。
     然后,在充分研究文献已有模型的基础上,提出了混合动力系统各组成部件的建模方法,并在Matlab/Simulink环境中建立了适合于ADVISOR平台运行的仿真模型,从而保证了模型的实用性和可靠性。在仿真输入过程中,着重解决了发动机、电动机的实验数据到模型数据的转换输入和各项仿真设置问题,从而提高了仿真精度。
     本文对正在试制的样车和构思中的动力系统提出了一套仿真方案。按照这套方案进行的仿真分析,不仅评价了两种控制策略(“恒温器控制模式”和“发动机跟踪器控制模式”)的优劣,而且提供了串联混合动力系统各部件的运行特点,得到了与样车动力性能和燃油经济性较为接近的虚拟样车解决方案,同时也验证了试制样车动力系统匹配方案的合理性。
     最后,以最优的虚拟样车模型为基准,按递增顺序全面模拟了关键参数对整车燃油经济性的影响。仿真结果表明:串联HEB相对同类内燃机动力客车可以节油30%左右,而且动力性能不会降低。这为串联式混合动力大客车的优化设计提供了决策依据,具有很强的应用价值。
The key to the program of hybrid electric bus to achieve the goal is to find the matching drivetrain. In this paper, the percept design, mathematics modeling, simulation analysis and results of the series hybrid drivetrain were described in detail.
    Firstly, based on the theory of hybrid electric vehicle (HEV), the series hybrid drivetrain is selected as the modeling object because it is especially adaptive to the city bus transportation. To find suitable components of the drivetrain, modern and future technologies of HEV were employed. The size of drivetrain components is approximately computed on the basis of the prototype of hybrid electric bus (HEB). And then, two solutions to the drivetrain were proposed.
    Secondly, the methodology and modeling issues of the drivetrain components were described by making reference to the model presented in some paper. Based on Matlab/Simulink modeling environment, the primary components are modularized and can run in the ADVISOR (Advanced Vehicle Simulator), a MATLAB simulation program developed by the U. S. Department of Energy's National Renewable Energy Lab. These ensure the utility and reliability of the model. During the simulation input step, the input of engine map and motor efficiency map are very difficult, so their solutions were given great emphasis. To improve the precision of the simulation, the advanced options of the ADVISOR(such as Grade test and Acceleration Test) were newly set up.
    In the next place, a simulate scheme is presented to simulate the HEB prototype and virtual drivetrain solutions. According to the scheme, the simulation analysis not only evaluates two hybrid control strategies ("Thermostat Control Strategy" and "power follower control strategy "), but also supplies the operation characteristic of the series hybrid drivetrain. These help to decide the final virtual drivetrain solution that its performance is approximately the same as the HEB prototype. At the same time, the rationality of the drivetrain of the HEB prototype was testified by the simulation result.
    Finally, the impact of key parameters to vehicle fuel economy was simulated in the sequence of technology addition pathway. The results show that compared to the conventional bus, the fuel economy of the series HEB can improve about 30% without reduction in its drive performance. This provides the strategy evidence for the optimization design of series HEB, which is extremely valuable in application.
引文
[1] Antoni Szumanowski 著·陈清泉、孙逢春译·混合电动车辆基础·北京:北京理工大学出版社,2001.11
    [2] 熊光楞、王昕.产品制造中的建模和仿真[J].系统仿真学报·1999·11(5):337—340
    [3] 梁龙、张欣等.混合动力电动汽车驱动系统的开发与应用[J].汽车工程,2001(2):113-116
    [4] 宋慧,胡骅.复合动力电动汽车的驱动模式和控制策略[J].世界汽车,2000(7):7-11
    [5] 张学军、谢剑英.混合系统在Matlab环境下的建模、仿真与自动验证[J].系统仿真学报·2001.2
    [6] 王东锋、陈英武.模糊定性仿真系统的设计与实现[J].系统仿真学报·2001.3
    [7] 李士勇·模糊控制.神经网络控制和智能控制.哈尔滨工业大学出版社·1996
    [8] 李伯岳·客车燃油经济性计算软件的开发与运用[J].汽车技术·2001.1:7-9
    [9] 王庆年,何洪文,李幼德,初亮.·并联混合动力汽车传动系参数匹配.吉林工业大学自然科学学报,2000(1):72-75
    [10] 邵杰·电动汽车燃料电池和驱动系统的发展[J].汽车电器,2000(1):3-4
    [11] 宋慧.混合动力源电动车概述[J] ·世界汽车·2001(3).
    [12] 陈小复·PNGV及其概念车[J]·世界汽车·2000(8).
    [13] 商国华·日本对EV和HEV用高性能电池的研究[J]·世界汽车·2000(9).
    [14] 冯樱·大功率混合动力大客车的探讨[J]·客车技术·2001(1).
    [15] 罗玉涛,张益生,黄榕清·HEV6700 电动客车试验分析·华南理工大学学报(自然科学版),2000(6)
    [16] 白木,周艳琼·世界电动车发展现状[J]·世界汽车·2001(3)
    [17] 李东军·李理光·中国典型城市车辆行驶状况的测试统计[J] ·汽车技术·1998(3):13-16
    [18] 万沛霖·《电动汽车的关键技术》·北京:北京理工大学出版·1998.12
    [19] 张志涌·《精通MATLAB5.3》.北京航空航天大学出版社·2000.6
    [20] 范影乐等·《MATLAB 仿真应用详解》·人民邮电出版社·2001.7
    [21] 刘兴堂,吴晓燕编著·《现代系统建模与仿真技术》·西安:西北工业大学出版社,2001.8
    [22] 于长官·《现代控制理论》·哈尔滨工业大学出版·1997.7
    [23] 张俊智、卢青春等·驾驶循环对车辆能量经济性影响的研究·汽车工程·2000.3:320-323
    
    
    [24] 熊建,管华·混合动力电动客车的发展及其产业化·客车技术与研究·2002.3:4-6
    [25] 陈晓东,何仁等·混合动力电动汽车性能仿真软件研究与开发·交通运输工程学报·2002.3:114-117
    [26] Ivan Menjak, Phillipe H. Gow, Dennis A. Corrigan Ovonic Power and Energy Storage Technologies For the Next Generation of Vehicles SAE Paper 2000-01-1590
    [27] Michael Lamperth How Size and Performance of Hybrid Electric Vehicle Components are Influenced by Acceleration Patterns SAE Paper SP-1466
    [28] Jeffrey J. Ronning, Gregory Grant Global Hybrid Electric Vehicle Markets and Missions SAE Paper SP-1466
    [29] Valerie H. Johnson, Keith B. Wipke HEV Control Strategy for Real-Time Optimization of Fuel Economy and Emissions SAE Paper 2000-01-1543
    [30] B. Glenn, Gregory Washington, Giorgio Rizzoni Operation and Control Strategies for Hybrid Electric Automobiles SAE Paper 2000-01-1537
    [31] Wu-Qiang Long, Kenji Morita, Nobuo Iwai Analysis of HEV Components Efficiency on Fuel Economy SAE Paper 2000-01-1542
    [32] Ziaur Rahman, Karen L. Butler, A Study of Design Issues on Electrically Peaking Hybrid Electric Vehicle for Diverse Urban Driving Patterns, SAE Paper SP-1417
    [33] Ziaur Rahman, Karen L. Butler, Mehrdad Ehsani Effect of Extended-Speed, Constant-Power Operation of Electric Drives on the Design and Performance of EV-HEV Propulsion System SAE Paper 2000-01-1557
    [34] Yimin Gao, Mehrdad Ehsani Investigation of the Effectiveness of Regenerative Braking for EV and HEV, SAE Paper SP-1466
    [35] Naotake Kumagai, Akira Motooka, Yuta Susuki, Super HEV System for Super Low Floor City-Bus, SAE Paper SP-1607
    [36] Edward A. Bass, Joseph Johnson, Patrick P. Wildemann A Comparison of HEV EngineOperation and HD Engine Emission Test Cycles, SAE Paper 2000-01-3469
    [37] Herman L. N. Wiegman, A. Vandenput Battery State Control Techniques For Charge Sustaining Applications, SAE Paper 981129
    [38] Douglas J. Nelson, Randall D. Senger, Matthew A. Merkle Validation of ADVISOR as a simulation tool for a series hybrid electric vehicle, SAE Paper 981133
    
    
    [39] Stefan Keppeler, Horst Schulte, H. J. Ecker, The Technical Ramifications of Downsizing HSDI Diesel Technology to the 300 cc Displacement Class, SAE Paper 981916
    [40] Paul B. Koeneman, Load Leveling Device Selection For Hybrid Electric Vehicles, SAE Paper 981130
    [41] Butler Karen L, Ehsani Mehrdad, Kamath Preyas. A Matlab—Based Modeling and Simulation Package for Electric and Hybrid Electric Vehicle Design. IEEE Trans. On Vehi. Tech., 1999, 48(11)
    [42] Lyshevski Sergey Edward. Diesel—Electric Drivetrains for Hybrid—Electric Vehicles: New Challenging Problems in Multivariable Analysis and Control. IEEE Proceedings on Control Applications. 1999
    [43] Imai Sadao, Takeda Nobuaki, Horii Yusuke. Total Efficiency of a Hybrid Electric Vehicle.PCC—Nagaoka. 1997
    [44] Gao Yimin. Parametric Design of the drivetrain of an electrically peaking hybrid vehicle[A][J]. SAE Paper[C]970294, 1997
    [45] Mehrdad Ehsani. Khwaja Rahman M. Propulsion System design of electric and hybrid vehicle[J]. IEEE Transactions on Industrial Electronics, 1997, 44(1).
    [46] ADVISOR. (2002). URL: http://www.ctts.nrel.gov/analysis/.
    [47] 21CT. (December 2000). "Technology Roadmap for the 21st Century Truck Program: A Government-Industry Research Partnership." Report No. 21CT-001. Available on-line: http://www.osti.gov/bridge
    [48] Graham et al., 2001, Comparing the Benefits and Impacts of Hybrid Electric Vehicle Options, 1000349, Electric Power Research Institute, Palo Alto, Calif., July.
    [49] Stodolsky, F., A. Vyas, R. Cuenca, and L. Gaines, 1995b, Life-Cycle Energy Savings Potential from Aluminum-Intensive Vehicles, in Proceedings of the 1995 Total Life Cycle Conference (P-293), SAE International, Warrendale, Pa., Oct.