几类非线性发展方程(组)的时空估计方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用时空估计方法处理几类非线性方程(组)的适定性问题。众所周知,对于线性方程,一旦基于振荡积分建立起L~p-L~q(L~p-L~(p′))估计,就能利用TT~*方法得到时空估计。在论文的开头,我们简要回顾三类经典方程(Schr(o|¨)dinger方程、波动方程及Klein-Gordon方程)的p-p′估计以及时空估计,它们是进行下一步研究必不可少的工具。
     具备Yukawa相互作用的Klein-Gordon-Schr(o|¨)dinger耦合方程组是描述复核子(nucleon)场与实质子(meson)场的相互作用的经典模型,其中u表示复核子场,v表示实质子场,实数μ表示质子的质量。对方程组(0.1)适定性的研究,已有一些结果[2,23,32,63]。在[27]和[28]这两篇文章中,J.Ginibre和G.Velo分别考虑非线性Klein-Gordon方程和非线性Schr(o|¨)dinger方程在能量空间的适定性。他们通过假定非线性项满足适当的基本假设,利用Galerkin方法得到弱解的整体存在性。在非线性项满足更强的基本假设的前提下,利用时空估计以及非线性估计证明了前面得到的弱解是唯一的,这样就得到方程的适定性。受他们的启发,我们萌生了用这种方法处理非线性K-G-S方程组的念头。同时,我们也面临着这样的问题:如何把(0.1)的非线性项推广到一般情形?如何对非线性项附加基本假设才能确保方程组弱解的整体存在性?该方法唯一性的证明过程依赖于时空估计,而两类方程的时空容许对却截然不同,该如何选取合适的时空容许对呢?在[28]中对非线性项的增长指标有一个很不自然的限制条件,我们是否可以去掉这个条件呢?所有的这些问题都随着研究的深入逐一得到回答。
     在论文的第一部分,我们考虑非线性K-G-S方程组
In this thesis, we use time-space estimate method to deal with several kinds of nonlinear evolution equation(s). It's well-known that once L~p - L~q(L~p- L~p') estimate is constructed on the basis of oscillation integral, we can obtain time-space estimate by TT~* method for linear equation. Firstly, we recall p - p' estimates and time-space estimates of three classical equations (Schrodinger equation, wave equation and Klein-Gordon equation), which are necessary tools to continue our research.
    Klein-Gorden-schrodinger equations
    describe a classical model of Yukawa's interaction of conversed complex nucleon field with neutral real meson field. Here u represents a complex scalar nucleon field and v a real scalar meson field. The real constant μ describes the mass of a meson.
    For well-posedness of (0.1), one may refer readers to [2, 23, 32, 63]. In 1985, J. Ginibre & G. Velo considered the well-posedness in energy-space of pure Klein-Gordon and pure Schrodinger equations in their papers [27, 28]. Through imposing assumptions on nonlinearity f, they obtained the global existence of weak solutions by Galerkin method. Under stronger assumptions, they obtain the uniqueness of those solutions by usage of Strichartz estimates and estimates for nonlinearity. Inspired by this approach, we beginning to consider K-G-S equations. At the same time, we are confronted with several questions. How to generalize the nonlinearities of (0.1)? How to impose assumptions on nonlinearities to ensure the global existence of weak solutions? The method depends on Strichartz estimate while the admissible pairs of two kinds of equations are different, how to choose the admissible pairs? Can we remove the unnatural restriction on the growth exponent of nonlinearities? All of these questions are to be answered one by one with our further research.
    In the first part of this thesis, we consider well-posedness of generalized nonlinear K-G-S
引文
[1] A. Bachelot, Problem de Cauchy pour des systems hyperboliques semi-lineaires; Ann. Inst. Henri Poincare, Analyse non lineaire 1 (1984),453-478
    
    [2] J. B. Baillon & J. M. Chadam, The Cauchy problem for the coupled Schrodinger-Klein-Gordon equations; Contemporary Development in Continuum Mechanics and PDE, North-Holland, Amsterdam-New York-Oxford (1978), 37-44
    
    [3] H. Bellout & A. Fridman, Blow-up estimates for a nonlinear hypobolic heat equation; Math. Z. 145 (1975), 251-254
    
    [4] J. Bergh & J. Lofstrom, Interpolation space; Springer-Verlag, New York (1976)
    
    [5] J. L. Bona & R. L. Sachs, Global existence of smooth solutions and stability of solitary waves for a generalized Bossinesq equation; Commun. Math. Phys. 118 (1988), 15-29
    
    [6] J. Bourgain, Refinements of Strichartz' inequality and applications to 2D-NLS with critical non-linearity; Int. Math. Research Notice 5 (1998), 253-283
    
    [7] J. Bourgain, Scattering in the energy space and below for 3D-NLS; J. d'Analyse Math. 75 (1998), 267-297
    
    [8] M. J. Boussinesq, Essai sur la theorie des eaux courantes; Academic des Sciences Inst. France (series) 23 (1877)
    
    [9] P. Brenner, On scattering and everywhere defined scattering operators for nonlinear Klein-Gordon equations; J. D. E. 56 (1985), 310-344
    
    [10] P. Brenner & W. Wahl, Global classical solutions of nonlinear wave equations; Math. Z 176 (1981), 87-121
    
    [11] H. Brezis &: T. Gallout, Nonlinear Schrodinger evolution equations; J. Nonlinear Anal. 4 (1980), 677-681
    
    [12] H. Brezis & S. Wainger, A note on limiting cases of Sobolev embedding; Comm. PDE. 5(7) (1980), 773-789
    [13] G. W. Chen & S. B. Wang, Cauchy problem for generalized IMBq equation; in "Proceddings of the Conference on Nonlinear Partial Differential Equations and Applications" (Guo Boling and Yang Dadi, Eds), World Scientific, Singgaproe (1998)
    [14] G. W. Chen & S. B. Wang, Existence and nonexistence of global solutions for generaliaed IMBq equation; Nonlinear Anal. 36 (1999), 961-980
    [15] G. W. Chen & S. B. Wang, Small amplitude solutions of the generalized IMBq equation; J. Math. Anal. Appl. 274 (2002), 846-866
    [16] G. W. Chen, J. Xing & Z. Yang, Cauchy problem for generalized IMBq equation with several variables; Nonlinear Anal. 26 (1996), 1255-1270
    [17] Y. Cho & T. Ozawa, Remarks on modified improved Boussinesq equations in one space dimension; Proceedings of the Royal Society A. 462 (2006), 1949-1963
    [18] F. M. Christ & M. I. Weinstein, Dispersion of small amplitude solution of the generalized KdV equation; J. Func. Anal. 100 (1991),87-109
    [19] A. Clarkson, R. J. Leveque & R. Saxton, Solitary-wave interaceions in elastic rods; Studies in Appl. Math. 75 (1986), 95-122
    [20] A. Constantin & L. Molinet, The initial value problem for a generalized Boussinesq equation; Diff. Int. Eqns. 15 (2002), 1061-1072
    [21] H. Fujita, On the blowing up of solutions of the Cauchy problem for u_t-Δu=u~(1-α); J. Fac. Sci. Univ. Tokyo Sec 1 13 (1966), 109-124
    [22] I. Fukuda & M. Tsutsumi, On coupled K-G-S equations Ⅰ; Bull. Sci. Engg. Res. Lab. Waseda Univ. 69 (1975), 51-62
    [23] I. Fukuda & M. Tsutsumi, On coupled K-G-S equations Ⅱ; Math. Anal. Appl. 66 (1978), 358-378
    [24] I. Fukuda & M. Tsutsumi, On coupled K-G-S equations Ⅲ; Math. Japonica 24 (1979), 307-321
    [25] I. Fukuda & M. Tsutsumi, On the Yukawa-coupled K-G-S equations in three dimensions; Proc. Japan Acad. 51 (1975), 402-405
    [26] T. Gallay & G. Raugel, Scaling variables and asymptotic expansions in damped wave equations; J. D. E. 150 (1998), 42-97
    [27] J. Ginibre & G. Velo, The global Cauchy problem for the non-linear Klein-Gordon equation Ⅰ; Math. Z. 189 (1985), 487-505
    [28] J. Ginibre & G. Velo, The global Cauchy problem for the non-linear Schrodinger equation revisited; Ann. Inst. Henri Poincare, Vol 2(4) (1985), 309-327
    [29] R. T. Glassey, On the symptotic behavior of nonlinear wave equation; Trans. A. M. S. 182 (1975), 187-200
    [30] B. L. Guo & C. X. Miao, Global existence and asymptotic of solutions for the couplied K-G-S equations; Science in China Set. A 38: 12 (1995), 1444-1456
    [31] P. Hartman, Ordinary differential equations; Birkhauser, Boston-Basel-Stuttgart(1982)
    [32] N. Hayashi & W. Wahl, On the global strong solutions of coupled K-G-S equations; J. Math. Soc. Japan 39 (1987), 489-497
    [33] T. Hosono & T. Ogawa, Large time behavior and L~p-L~q estimate of solutions of 2-dimensional nonlinear damped wave equations; J. D. E. 203 (2004), 82-118
    [34] R. Ikehata, A remark on a critical exponent for the semilinear dissipative wave equation in the one dimensional half space; Diff. Integral Equations 16 (2003), 727-736
    [35] R. Ikehata, Y. Miyaoka & T. Nakatake, Decay estimate of solutions for dissipative wave equation in R~n with lower power nonlinearities; J. Math. Soc. Japan 56(2) (2004), 365-374
    [36] R. Ikehata & M. Ohta, Critical exponents for semilinear dissipative wave equations in R~n; J. Math. Anal. Appl. 269(1) (2002), 87-97
    [37] T. Kano, T.Nishida. A mathematical justification for Korteweg-de Vries equation and Boussinesq equation of water surface waves; Osaka J. Math 23 (1986), 389-413
    
    [38] G. Karch, Selfsimilar profiles in large time asymptotics of solutions to damped wave equation; Studia Math. 143 (2000), 175-197
    
    [39] T. Kato & G. Ponce, Commutator estimates and the Euller and Navier-Storkes equations; Comm. Pure Appl. Math. 41 (1998), 891-907
    
    [40] S. Kawashima, M. Nakao & K. Ono, On the decay property of solutions to the Cauchy problem of the semilinear wave equation with a dissipative term;J. Math. Soc. Japan 47 (1995), 617-653
    
    [41] T. T. Li, Nonlinear heat conduction with finite speed of propagation, Proceedings of the China-Japan Symposium on Reaction-Diffusion Equations and their Applications on Computational Aspect, Shanghai, 1994, World Scitific Publishing. River Edge, NJ (1997), 81-91
    
    [42] T. T. Li & Y. Chen, Global classical solutions for Nonlinear evolution equations; in "Pitman Mongraphs and Surveys in Pure and Applied Mathenatics" 45 Longman Scientific & Technical, New York. (1992)
    
    [43] T. T. Li & Y. Zhou, Break down of solutions to □u + u_t = u~(α+1); Discrete Contin. Dynam. Systems 1 (1995), 503-520
    
    [44] F. Linares, Global existence of small solutions for a generalized Boussinesq equation; J. D. E. 106 (1993), 257-293
    
    [45] F. Linares & M. Scialom, Asymptotic behavior of solutions of a generalized Boussinesq type equation; Nonliear Anal. 25 (1995), 1147-1158
    
    [46] J. L. Lions, Quelques methodes de resolution des problemes aux limites nonlineaires; Dunod. Paris (1969)
    
    [47] Y. Liu, Decay and scattering of small solutions of a generalized Boussinesq equation; J. Funct. Anal. 147 (1997), 51-68
    [48] Y. Liu, Strong instability of solitary-wave solutions of a generalized Boussinesq equation; J. D. E. 164 (2000), 223-239
    
    [49] M. A. Manna & V. Merle. Modified KdV hierarchiesin multiple-time variables and the solutions of modified Boussinesq equations; Proc. R. Soc. Lond. A 454 (1998), 1445-1456
    
    [50] P. Marcati & K. Nishihara, The L~p-L~q estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow theough porous media; J. D. E. 191 (2003), 445-469
    
    [51] V. G. Markhankov, Dynamics of classical solitons (in non-integrable systems); Physics Reports, Phys. Lett. C, 35(1) (1978), 1-128
    
    [52] A. Matsumura, On the asymptotic behavior of solution of semilinear wave equation; Publ. Res. Inst. Math. Sci. 12 (1976), 169-189
    
    [53] C. X. Miao &. G. X. Xu, Global solutions of the K-G-S system with rough data in R~(2+1); to appear in J. D. E.
    
    [54] C. X. Miao & B. Zhang, H~s-global well-posedness for semilinear wave equations; J. M. A. A. 283 (2003), 645-666
    
    [55] C. X. Miao, B. Zhang & D. Y. Fang, Global well-posedness for the Klein-Gordon equation below the energy norm; J. P. D. E 17 (2004), 97-121
    
    [56] M. Nakao & K. Ono, Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations; Math. Z. 214 (1993), 325-342
    
    [57] T. Narazaki, L~p - L~q estimates for damped wave equation and their applications to semilinear problem; J. Math. Soc. Japan 56(2) (2004), 585-626
    
    [58] L. Nirenberg, On elliptic partial differential equations; Ann. Scuola Norm. Sup. Pisa 13 (1959), 115-162
    
    [59] K. Nishihara, Asymptotic behavior of solutions of quasilinear hypobolic equations with linear damping; J. D. E. 137 (1997), 384-395
    [60] K. Nishihara, L~p-L~q estimates of solutions to the damped wave equation in 3-dimensional space and their application; Math. Z. 244 (2003), 631-649
    
    [61] K. Ono, Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations; Discrete Contin. Dynam. Systems 9 (2003), 651-662
    
    [62] T. Ozawa & Y. Tsutsumi, Asymptotic behaviour of solutions for the coupled K- G-S equations;
    
    [63] H. Pecher, Global solutions of the Klein-Gordon-Schrodinger system with rough data
    
    [64] P. Rosenau, Dynamics of dense lattices; Phys. Rev. 36B (1987), 5868-5876
    
    [65] R. L. Sachs, On the blow up of certain solution of the "good" Boussinesq equation; Appl. Anal. 34 (1990), 145-152
    
    [66] C. D. Sogge, Fourier integral in classical analysis; (1993)
    
    [67] E. M. Stein, Harmonic analysis; Princeton University, Princeton, NJ (1993)
    
    [68] R. Strichartz, A priori estimates for the wave equations and some applications; J. Funct. Anal. 5 (1975),218-235
    
    [69] G. Stuttgart Warnecke, Uber das homogene Dirichlet-problem bei nichtlinearen paritiellen differentialgleichungen vom typ der Boussinesq-Gleichung; Math. Methods. Appl. Sci. 9 (1987) 493-519
    
    [70] G. Todorova &; B. Yordanov, Critical exponent for a nonlinear wave equation with damping; J. D. E. 174 (2000), 464-489
    
    [71] M. Tsutsumi & T. Matahashi, On the Cauchy problem for the Boussinesq type equation; Math. Japonica 26(2) (1991), 371-379
    
    [72] W. Wahl, Analytische Abbildungen und semilineare differentialgleichungen in Ba- nachchraumen; Nachr. Akad. Wiss. Gottingen II: Math. Phys Kl. (1979), 153-200
    [73] W. Wahl, Nichtlineare evolutionsgleichungen; Teubner Tezte zur Mathematik 50 Leipzig (D. D. R.) (1983), 294-302
    [74] W. Wahl, Uber das Verhalten fur t→0 der Losungen nichtlinearer parabolischer Gleichungen, insbesondere der Gleichungen von Navier-Stokes; Bayreuth. Math. Schr. 16 (1984), 151-277
    [75] B. X. Wang, Classical global solutions for non-linear K-G-S equations; Mathematics Methods in Applied Science 20 (1997), 599-616
    [76] S. B. Wang & G. W. Chen, The Cauchy problem for the generalized IMBq equation in W~(s,p)(R~n); J. M. A. A. 266 (2002), 38-54
    [77] G. B. Whitham, Linear and nonlinear waves; Wiley-lnterscience, New York (1975)
    [78] H. Yang & A. Milani, On the diffusion phenomenon of quasilinear hypobolic waves; Bull Sci. Math. 124 (2000), 415-433
    [79] N. J. Zabusky, Nonlinear partical differential equations; Academic, New York(1967)
    [80] Q. Zhang, A blow-up result for a nonlinear wave equation with damping: the critical case; C. R. Acad. Sci. Paris 333 (2001), 109-114
    [81] 苗长兴,调和分析及其在偏微分方程中的应用(第二版);科学出版社(2004)
    [82] 苗长兴,非线性波动方程的现代方法;科学出版社(2005)
    [83] T. Cazenave & F. B. Weissler, Asymptotically self-similar global solutions of the nonlinear Schrodinger and heat equations; Math. Z. 228 (1998), 83-120
    [84] T. Cazenave & F. B. Weissler, More self-similar solutions of the nonlinear Schrodinger equations; Nonlinear P. D. E. and Appl. 5 (1998), 355-365
    [85] T. Cazenave & F. B. Weissler, The Cauchy problem for the critical nonlinear Schrodinger equation in H~s; Nonlinear Anal. 14 (1990), 807-836
    [86] J. Ginibre &; G. Velo, On a class of nonlinear Schrodinger equations I, the Cauchy problem, general case; J. Funct. Anal. 32 (1979), 1-32
    
    [87] J. Ginibre & G. Velo, On a class of nonlinear Schrodinger equations II, scattering theory, general case; J. Funct. Anal. 32 (1979), 33-71
    
    [88] J. Ginibre &; G. Velo, Scattering theory in the energy space for a class of nonlinear Schrodinger equations; J. Math. Pure Appl. 64 (1985), 363-401
    
    [89] R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrodinger equations; J. Math. Phys. 18 (1977), 1794-1797
    
    [90] M. G. Grillakis, On nonlinear Schrodinger equations; Comm. P. D. E. 25:9&10 (2000), 1827-1844
    
    [91] T. Kato, On nonlinear Schrodinger equations; Physique Theorique 46:1 (1987), 113-129
    
    [92] J. E. Lin & W. Strauss, Decay and scattering of solutions of a nonlinear Schrodinger equations; J. Funct. Anal. 30 (1987),245-263
    
    [93] F. Ribaud & A. Youssfi, Regular and self-similar solutions of nonlinear Schrodinger equations; J. Math. Pures Appl. 77 (1998), 1065-1079
    
    
    [94] M. I. Weinstein, Nonlinear Schrodinger equations and sharp interpolation estimates; Comm. in Math. Phys. 87 (1983), 567-576
    
    [95] H. Bahouri &. J. Shatah, Decay estimates for the critical semilinear wave equation; Ann. Inst. Henri Poincare 15:6 (1998), 783-789
    
    [96] P. Brenner, On L~p - L~p' estimates for the wave equation; Math. Z. 145 (1975), 251-254
    
    [97] F. E. Browder, On nonlinear wave equations; Math. Z. 80 (1962), 249-264
    
    
    [98] G. Georgiev & P. Popivanov, Global solution to the two-dimensional Klein-Gordon equation; Comm. P. D. E. 16 (1991), 941-995
    [99] J. Ginibre, A. Soffer & G. Velo, The global Cauchy problem for the critical nonlinear wave equation; J. Funct. Anal. 110 (1992), 96-130
    
    [100] J. Ginibre & G. Velo, Generalized strichartz inequalities for the wave equation; J. Funct. Anal. 133 (1995), 50-68
    
    [101] J. Ginibre & G. Velo, Scattering theory in the energy space for a class of nonlinear wave equations; Comm. Math. Phys.123 (1989), 535-573
    
    [102] J. Ginibre & G. Velo, The global Cauchy problem for the nonlinear Klei-Gordon equation II; Ann. Inst. H. Poincare. Anal. Non Lineaire 6 (1989), 15-35
    
    [103] R. Glassey & M. Tsutsumi, On uniqueness of weak solutions to semilinear wave equations; Comm. P. D. E. 7 (1982), 153-195
    
    [104] M. Grillakis, Regularity and asymptotic behavior of the wave equation with a critical nonlinearity; Ann. Math. 132 (1990), 485-505
    
    [105] F. Jhon, Blow-up for quasilinear wave equations in three space dimensions; Comm. Pure Appl. Math. 34 (1981),29-51
    
    [106] F. John, Blow-up of the solutions of nonlinear wave equations in three space dimensions; Manuscript Math. 28 (1979), 235-268
    
    [107] L. Kapitanski, Global and unique weak solutions of nonlinear wave equations; M. R. L. 1 (1994), 211-223
    
    [108] O. Kavian & F. Weissler, Finite energy self-similar solutions of a nonlinear wave equation; Comm. P. D. E. 15 (1990), 1381-1420
    
    [109] S. Klainerman, Global sxistence for nonlinear wave equations; Comm. Pure Appl. Math 33 (1980), 43-101
    
    [110] S. Klainerman, Global existence of small amplitude solutions to nonlinear Klein- Gordon equations in four space-dimensions; Comm. Pure Appl. Math. 38 (1985), 631-641
    [111] S. Klainerman, Remark on the asymptotic behavior of the Klein-Gordon equation in R~(n+1) ; Comm. Pure Appl. Math. 46 (1993), 137-144
    
    [112] S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equations; Comm. Pure Appl. Math 38 (1985), 321-332
    
    [113] R. Kosecki, The unit condition and global existence for a class of nonlinear Klein- Gordon equations; J. D. E. 100 (1992), 257-268
    
    [114] H. Lindblad, A sharp counterexample to local existence of low regularity solutions to nonlinear wave equations; Duke Math. J. 72 (1993), 503-539
    
    [115] H. Lindblad & C. D. Sogge, On the existence and scattering with minimal regularity for simi-linear wave equation; J. Funct. Anal. 130 (1995), 357-426
    
    [116] H. Lindblad & C. D. Sogge, Restriction theorems and semilinear Klein-Gordonequations in (l+3)-dimensions; Duke Mathematical Journal 85:1 (1996), 227-252
    
    [117] B. Marshall, Mixed norm estimates for the Klein-Gordon equation; Proc. Conf. Harmonic Anal. Chicago, Ward worth (1981),638-652
    
    [118] K. Mochizuki & T. Motai, The scattering theory for the nonlinear wave equation with small data; J. Math. Kyoto Univ. 25 (1985), 703-715
    
    [119] C. Morawetz, Time decay for the nonlinear Klein-Gordon equation; Proc. Roy. Soc. London Ser. A 306 (1968), 291-296
    
    [120] K. Nakanishi, Remarks on the energy scattering for nonlinear Klein-Gordon and Schrodinger equations; Tohoku Math. J. 53 (2001), 285-303
    
    [121] H. Pecher, Nonlinear small data scattering for the wave and Klein-Gordon equation; Math. Z. 185 (1985), 445-457
    
    [122] H. Pecher, Self-similar and asymptotically self-similar solutions of nonlinear wave equation; Math. Ann. 316 (2000), 259-281
    
    [123] G. Ponce & T. C. Sideris, Local regularity of nonlinear wave equations in three space dimensions; Comm. P. D. E. 18:1&2 (1993), 169-177
    [124] F. Ribaud & A. Youssfi, Global solutions and self-similar solutions of semi-linear wave equation; Math. Z. 239 (2002), 231-262
    
    [125] I. Segal, Space-time decay for solutions of wave equations; Adv. Math. 22 (1976), 305-311
    
    [126] J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations; Comm. Pure Appl. Math. 38 (1985), 685-695
    
    [127] J. Shatah & M. Struwe, Regularity results for nonlinear wave equations; Ann. Math. 138 (1993), 503-518
    
    [128] J. Shatah & M. Struwe, Well posedness in the energy space for semilinear wave equations with critical growth; I. M. R. N. 7 (1994), 303-309
    
    [129] T. Sideris, Global behavior of solutions to nonlinear wave equations in three dimensions; Comm. P. D. E 8 (1983), 1291-1323
    
    [130] W. Strauss, Nonlinear invariant wave equations; Lecture Notes in Physics 73 (1987)
    
    [131] W. Strauss, Nonlinear wave equations; Reg. Conf. Ser. in Math, of A. M. S. 73 (1989)
    
    [132] R. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations; Duke Math. J. 44 (1977), 705-714
    
    [133] M. Struwe, Globally regular solutions to the u~5 Klein-Gordon equation; Ann. Scuolar Norm. Sup. Pisa Cl. Sci (4) 15 (1988), 495-513
    
    [134] M. Struwe, Semilinear wave equations; Bull. A. M. S 26 (1992), 53-86
    
    [135] M. Christ, J. Colliander & T. tao, Ill-posedness for nonlinear Schrodinger and wave equations
    
    [136] J. Colliander, M. Keel. G. Staffilani, H. Takaoka & T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrodinger equation
    [137] M. Keel & T. Tao, Small data blow-up for semi-linear Klein-Gordon equations
    
    [138] I. Rodnianski & T. Tao, Global regularity for the Maxwell-Klein-Gordon equation with small critical Soblev norm in high dimensions
    
    [139] T. Tao, An algebra for critical regularity solutions to the free wave equation [140] T. Tao, Existence questions for nonlinear wave equations
    
    [141] T. Tao, Global well-posedness and scattering for the higher-dimensional energy- critical nonlinear Schrodinger equation for radial data
    
    [142] T. Tao, Low regularity semi-linear wave equations
    
    [143] T. Tao, On the astmptotic behavior of large radial data for a focusing nonlinear Schrodinger equation