周期性微结构的制备及其修饰光纤的技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由介质构成的三维周期性结构具有光子带隙特性,金属/介质构成的二维周期性结构能够被激发形成表面等离激元模式,这些特性可以用于生物、化学传感。本文提出在光纤的端面用自组装方法制备蛋白石(Opal)、反Opal和复合三维光子晶体,形成三维光子晶体传感应用的平台,进一步研究有潜力形成微结构光纤传感器。将这一设计推广到二维周期性结构,用自组装法在光纤端面和侧表面制备单层微球阵列和单层复合微球阵列,通过对微球阵列的形貌修改和沉积金属薄层,在光纤端面和侧表面能够形成多种形貌的亚微米尺度的二维周期性金属/介质结构,这种方法简便,可靠,成本低,可规模化生产。本文还研究在毛细管内壁制备高质量的空心圆柱形反Opal光子晶体,为制备反Opal光子晶体光波导提供一种可行方案。
     研究用溶胶凝胶协同自组装法制备单层复合微球有序阵列,并采用反应离子刻蚀等技术改变微球阵列的形貌,得到多种形貌的二维周期性结构;研究了结构参数和Ag膜厚度对二维周期性结构反射光谱的影响,实验测试了几种二维周期性结构的反射光谱与入射光角度和偏振之间的关系;研究岛型二维周期性介质/金属复合结构用于液体折射率测量和用作SERS基底的特性。
     研究用垂直沉积法和溶胶凝胶协同自组装法在光纤端面制备Opal、反Opal光子晶体和复合光子晶体的实验装置和参数,设计采用了两种光纤结构:光纤束和光纤-毛细管结构,实现光纤端面高质量多种周期尺寸的三维光子晶体沉积;表征了实验样品的微观形貌,测试了样品的反射光谱,分析光纤端面光子晶体的厚度对反射光谱的影响,测试分析光纤束中光子晶体薄膜的反射光谱的分布特性;实验测试Opal、反Opal、复合光子晶体的相对湿度传感特性及液体折射率传感特性。
     研究在光纤端面制备单层PS微球和单层复合微球阵列的试验参数,以PS微球作为掩膜板在光纤端面形成二维周期性金属Ag的图案;对单层复合微球阵列进行形貌刻蚀修改,并沉积金属Ag,在单模光纤端面得到多种形貌的金属/介质周期性阵列。
     研究在毛细管外壁、内壁制备高质量的反Opal光子晶体的试验参数,测试了制备的空心圆柱形反Opal光子晶体的透射光谱;在毛细管内制备实心反Opal光子晶体圆柱,分析其内部结构,测试其端面和侧表面的反射光谱。研究在光纤侧表面用溶胶凝胶法制备单层复合微球阵列的实验参数。
Three dimensional periodical structures composed of dielectric materials possess a photonic band gap while two dimensional periodic metal/dielectric materials can support the surface plasmon polariton modes, both of the two kinds of periodic structures with unique optical properties can be the good candidate for biological and chemical sensors with miniature size. In this thesis, we proposed to assemble opal, inverse opal, and composite photonic crystals on optical fiber end facets to form a platform to realize practical sensing applications and some other. The prposed scheme may potentially form a serial of microstructure optical fiber sensors with further development. Due to the low cost but high productivity technique used in these structure fabrication, the proposed photonic crystals based optical fibers are adaptable for industry manufacture. Furthermore, two dimensional periodic metal/dielectric structures with variable morphologies and structure parameters which are formed by modification of monolayer close packed spheres can also be fabricated on end facets of optical fibers as well as their side surfaces. In addition, a method to produce high quality hollow cylindrical inverse opal films is proposed and demonstrated, which affords a possible option to fabricate inverse opal waveguides.
     Sol-Gel co-assembly parameters as well as morphology modification conditions of the monolayer composite Polystyrene (PS) microsphere arrays are investigated, and several two dimensional periodic arrays with different morphologies are obtained in large area with few defects. Followed by sputtering a layer of Ag film on these structures, optical reflection spectra of the two dimensional metal/dielectric structures which depend both on the Ag film thickness and the structure parameters are measured and analyzed. Moreover, dependence of reflection spectra of these structures on varied incident light angles and polarization are also investigated. Performance of island like two dimensional metal/dielectric structures which used as liquid refractive index sensor and surface enhanced Raman scattering (SERS) substrate is analyzed.
     Two kinds of fiber structures, optical fiber bundles and fiber-capillary structures, are designed to deposite high quality opal, inverse opal, and composite photonic crystals by self-assembly method. A home-made setup and the corresponding experiment conditions are developed to perform the experiments. As a result, after scanning electron microscope examination and optical reflection spectra testing, three kinds of photonic crystals in high quality with different length of periodicity can be formed on end facets of both optical fiber bundles and fiber-capillary structures. By analyzing the experimental data, features of reflection spectra on thickness of photonic crystal films as well as the distribution of reflection peak wavelength of fibers in a bundle are plotted, which agree well with simulation results. Moreover, relative humidity and liquid refractive index sensing performance of the three kinds photonic crystal films were demonstrated.
     Monolayer of close packed PS microsphere arrays and composite PS microspheres films are deposited on optical fiber end facets and their side surfaces by vertical assembly and sol-gel co-assembly method with modified experimntal parameters. A layer of two dimensional periodic Ag film is deposited on fiber end facets by using monolayer PS microsphere arrays as deposition mask. Similarly, according to the above mentioned fabrication technique, two dimensional periodic metal/dielectric structures with different morphologies are also produced on optical fiber end facets and their side surfaces.
     High quality hollow cylindrical inverse opal films produced on outer and inner surface of a capillary by sol-gel co-assembly method is demonstrated. Optical transmission spectra in different positions along the cylindrical axial directions were measured. Also, an inverse opal column embedded in a capillary was fabricated, and its inner structure as well as the optical reflection spectra perpendicular to its top and side surface was explored.
引文
[1]Asadi R, Mohammad MM, Tavassoly MT. Fabrication of Metal Nanocomposite Photonic Crystal for Switching. IEEE Photonics Technology Letters.2011;23(20):1436-8.
    [2]Lawrie BJ, Evans PG, Pooser RC. Extraordinary Optical Transmission of Multimode Quantum Correlations via Localized Surface Plasmons. Physical Review Letters. 2013;110:156802.
    [3]Zhang J, Yu TB, Liu NH, et al. High transmitting and coupling characteristics of light at the surface of a photonic crystal with a triangular lattice of air holes. Journal of the Optical Society of America B-Optical Physics.2012;29(4):748-52.
    [4]Shen X, Cui TJ, Zhao J, et al. Polarization-independent wide-angle triple-band metamaterial absorber. Optics Express.2011;19(10):9401-7.
    [5]Ning HL, Mihi A, Geddes JB, et al. Radiative Lifetime Modification of LaF3:Nd Nanoparticles Embedded in 3D Silicon Photonic Crystals. Advanced Materials. 2012;24(23):OP153-OP8.
    [6]Xiao SH, Mortensen NA. Surface-plasmon-polariton-induced suppressed transmission through ultrathin metal disk arrays. Optics Letters.2011;36:37-9.
    [7]Cai Z, Xiong Z, Lu X, et al. In situ gold-loaded titania photonic crystals with enhanced photocatalytic activity. Journal of Materials Chemistry A.2014;2(2):545-53.
    [8]Escobedo C, Chou YW, Rahman M. et al. Quantification of ovarian cancer markers with integrated microfluidic concentration gradient and imaging nanohole surface plasmon resonance. Analyst.2013;138(5):1450-8.
    [9]Yang H, Jiang P, Jiang B. Vapor detection enabled by self-assembled colloidal photonic crystals. Journal of Colloid and Interface Science.2012;370(1):11-8.
    [10]Kurt H, Erim MN, Erim N. Various photonic crystal bio-sensor configurations based on optical surface modes. Sensors and Actuators B-Chemical.2012;165(1):68-75.
    [11]Dixit CK, Kaushik A. Nano-structured arrays for multiplex analyses and Lab-on-a-Chip applications. Biochemical and Biophysical Research Communications. 2012;419(2):316-20.
    [12]Yablonovitch E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters.1987;58:2059.
    [13]John S. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters.1987;58:2486.
    [14]Yablonovitch E, Gmitter TJ, Leung KM. Photonic band structure:The face-centered-cubic case employing nonspherical atoms. Physical Review Letters. 1991;67(17):2295-8.
    [15]Guo W, Wang M, Xia W, et al. Two Substrate-Confined Sol-Gel Coassembled Ordered Macroporous Silica Structures with an Open Surface. Langmuir.2013.
    [16]Yang L, Wang J, Zhang Y, et al. In Situ Optical Microspectroscopy Monitoring of Binary Colloidal Crystal Growth Dynamics via Evaporation-Induced Cooperative Self-Assembly. Langmuir.2012;28(9):4160-7.
    [17]Zhang X, Zhang J, Zhu D, et al. A Universal Approach To Fabricate Ordered Colloidal Crystals Arrays Based on Electrostatic Self-Assembly. Langmuir.2010;26(23):17936-42.
    [18]Karuturi SK, Liu L, Su LT, et al. Gradient inverse opal photonic crystals via spatially controlled template replication of self-assembled opals. Nanoscale.2011;3(12):4951-4.
    [19]Ge D, Yang L, Fan Z, et al. Effect of templates on inverse opals fabricated through annular self-assembly/sol-gel method. Materials Chemistry and Physics.2011;130(1-2):59-62.
    [20]Prosser JH, Brugarolas T, Lee S, et al. Avoiding Cracks in Nanoparticle Films. Nano Letters.2012.
    [21]Oh JR., Moon JH, Yoon S, et al. Fabrication of wafer-scale polystyrene photonic crystal multilayers via the layer-by-layer scooping transfer technique. Journal of Materials Chemistry.2011;21(37):14167-72.
    [22]Yang H, Jiang P. Large-Scale Colloidal Self-Assembly by Doctor Blade Coating. Langmuir.2010;26(16):13173-82.
    [23]Huang Y, Zhou J, Su B, et al. Colloidal Photonic Crystals with Narrow Stopbands Assembled from Low-Adhesive Superhydrophobic Substrates. Journal of the American Chemical Society.2012.
    [24]Deng H-D, Li G-C, Liu H-Y, et al. Assembling of three-dimensional crystals by optical depletion force induced by a single focused laser beam. Optics Express. 2012;20(9):9616-23.
    [25]Cai ZY, Teng JH, Xiong ZG, et al. Fabrication of TiO2 Binary Inverse Opals without Overlayers via the Sandwich-Vacuum Infiltration of Precursor. Langmuir. 2011;27(8):5157-64.
    [26]Zheng Z, Gao K, Luo Y, et al. Rapidly Infrared-Assisted Cooperatively Self-Assembled Highly Ordered Multiscale Porous Materials. Journal of the American Chemical Society.2008;130(30):9785-9.
    [27]Hatton B, Mishchenko L, Davis S, et al. Assembly of large-area, highly ordered, crack-free inverse opal films. Proceedings of the National Academy of Sciences of the United States of America.2010;107(23):10354-9.
    [28]Mishchenko L, Hatton B, Kolle M, et al. Patterning Hierarchy in Direct and Inverse Opal Crystals. Small.2012:n/a-n/a.
    [29]Dimitrov AS, Nagayama K. Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces. Langmuir.1996;12(5):1303-11.
    [30]Jiang P, Bertone JF, Hwang KS, et al. Single-Crystal Colloidal Multilayers of Controlled Thickness. Chemistry of Materials.1999; 11(8):2132-40.
    [31]Ko YG, Shin DH. Effects of Liquid Bridge between Colloidal Spheres and Evaporation Temperature on Fabrication of Colloidal Multilayers. The Journal of Physical Chemistry B.2007; 111(7):1545-51.
    [32]Moon JH, Yang S. Chemical Aspects of Three-Dimensional Photonic Crystals. Chemical Reviews.2010;110(1):547-74.
    [33]Shimamoto N, Tanaka Y, Mitomo H, et al. Nanopattern Fabrication of Gold on Hydrogels and Application to Tunable Photonic Crystal. Advanced Materials.2012:n/a-n/a.
    [34]Hu HB, Chen QW, Cheng K, et al. Visually readable and highly stable self-display photonic humidity sensor. Journal of Materials Chemistry.2012;22(3):1021-7.
    [35]Yuan YX, Li ZL, Liu Y, et al. Hydrogel Photonic Sensor for the Detection of 3-Pyridinecarboxamide. Chemistry-a European Journal.2012;18(1):303-9.
    [36]Shin J, Han SG, Lee W. Dually tunable inverse opal hydrogel colorimetric sensor with fast and reversible color changes. Sensors and Actuators B-Chemical.2012;168:20-6.
    [37]Hong W, Li H, Hu X, et al. Independent multifunctional detection by wettability controlled inverse opal hydrogels. Chemical Communications.2012;48(38):4609-11.
    [38]Burgess IB, Mishchenko L, Hatton BD, et al. Encoding Complex Wettability Patterns in Chemically Functionalized 3D Photonic Crystals. Journal of the American Chemical Society.2011;133(32):12430-2.
    [39]Cai Z, Liu YJ, Lu X, et al. In Situ "Doping" Inverse Silica Opals with Size-Controllable Gold Nanoparticles for Refractive Index Sensing. The Journal of Physical Chemistry C.2013;117(18):9440-5.
    [40]Hawkeye MM, Brett MJ. Optimized Colorimetric Photonic-Crystal Humidity Sensor Fabricated Using Glancing Angle Deposition. Advanced Functional Materials. 2011;21(19):3652-8.
    [41]Arunbabu D, Sannigrahi A, Jana T. Photonic crystal hydrogel material for the sensing of toxic mercury ions (Hg2+) in water. Soft Matter.2011;7(6):2592-9.
    [42]Liu C, Gao G, Zhang Y, et al. The Naked-Eye Detection of NH3-HC1 by Polyaniline-Infiltrated TiO2 Inverse Opal Photonic Crystals. Macromolecular Rapid Communications.2012:n/a-n/a.
    [43]Li C, Lotsch BV. Stimuli-responsive 2D polyelectrolyte photonic crystals for optically encoded pH sensing. Chemical Communications.2012;48(49):6169-71.
    [44]Griffete N, Frederich H, Maitre A, et al. Inverse Opals of Molecularly Imprinted Hydrogels for the Detection of Bisphenol A and pH Sensing. Langmuir. 2011;28(1):1005-12.
    [45]Griffete N, Frederich H, Maitre A, et al. Photonic crystal pH sensor containing a planar defect for fast and enhanced response. Journal of Materials Chemistry.2011;21(34).
    [46]Shin J, Braun PV, Lee W. Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal. Sensors and Actuators B:Chemical. 2010;150(1):183-90.
    [47]Pan Z, Ma J, Yan J, et al. Response of inverse-opal hydrogels to alcohols. Journal of Materials Chemistry.2012;22(5):2018-25.
    [48]Mouchet S, Deparis O, Vigneron JP. Unexplained high sensitivity of the reflectance of porous natural photonic structures to the presence of gases and vapours in the atmosphere. In:Andrews DL, Nunzi JM, Ostendorf A, editors. Nanophotonics Iv. Bellingham:Spie-Int Soc Optical Engineering; 2012.
    [49]Guo C, Zhou C, Sai N, et al. Detection of bisphenol A using an opal photonic crystal sensor. Sensors and Actuators B:Chemical.2012; 166-167(0):17-23.
    [50]Cychosz KA, Guo X, Fan W, et al. Characterization of the Pore Structure of Three-Dimensionally Ordered Mesoporous Carbons Using High Resolution Gas Sorption. Langmuir.2012;28(34):12647-54.
    [51]King BH, Wong T, Sailor MJ. Detection of Pure Chemical Vapors in a Thermally Cycled Porous Silica Photonic Crystal. Langmuir.2011;27(13):8576-85.
    [52]Kim H-N, Yoo H, Moon JH. Graphene-embedded 3D TiO2 inverse opal electrodes for highly efficient dye-sensitized solar cells:morphological characteristics and photocurrent enhancement. Nanoscale.2013;5(10):4200-4.
    [53]Staude I, von Freymann G, Wegener M. Spectral tuning of a three-dimensional photonic-bandgap waveguide signature by silica atomic-layer deposition. Optics Material Express.2012;2(5):629-35.
    [54]Sam-Giao D, Neel D, Sergent S, et al. High quality factor AlN nanocavities embedded in a photonic crystal waveguide. Applied Physics Letters.2012;100(19):191104-3.
    [55]Ren H, Qin Y, Wen H, et al. Photonic Crystal Three-Port Channel Drop Filter Based on One-Way Waveguide. Photonics Technology Letters, IEEE.2012;24(5):332-4.
    [56]Lotfi H, Granpayeh N, Schulz SA. Photonic crystal waveguides with ultra-low group velocity. Optics Communications.2012;285(10-11):2743-5.
    [57]Ishikura N, Hosoi R, Hayakawa R, et al. Photonic crystal tunable slow light device integrated with multi-heaters. Applied Physics Letters.2012;100(22):221110-3.
    [58]Grgic J, Ott JR, Wang FW, et al. Fundamental Limitations to Gain Enhancement in Periodic Media and Waveguides. Physical Review Letters.2012; 108(18).
    [59]Hoi S-K, Chen X, Kumar VS, et al. A Microfluidic Chip with Integrated Colloidal Crystal for Online Optical Analysis. Advanced Functional Materials.2011;21(15):2847-53.
    [60]Gallego-Gomez F, Ibisate M. Golmayo D, et al. Light Emission from Nanocrystalline Si Inverse Opals and Controlled Passivation by Atomic Layer Deposited Al2O3. Advanced Materials.2011;23(44):5219-23.
    [61]Nakamoto K, Kurita R, Niwa O. Electrochemical Surface Plasmon Resonance Measurement Based on Gold Nanohole Array Fabricated by Nanoimprinting Technique. Analytical Chemistry.2012;84(7):3187-91.
    [62]Lindquist NC. Johnson TW. Jose J, et al. Ultrasmooth metallic films with buried nanostructures for backside reflection-mode plasmonic biosensing. Annalen Der Physik. 2012;524(11):687-96.
    [63]Clark AW, Cooper JM. Nanogap Ring Antennae as Plasmonically Coupled SERRS Substrates. Small.2011;7(1):119-25.
    [64]Lou F, Wang Z, Dai D, et al. Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides. Applied Physics Letters. 2012;100(24):241105-4.
    [65]Lee SH, Johnson TW, Lindquist NC, et al. Linewidth-Optimized Extraordinary Optical Transmission in Water with Template-Stripped Metallic Nanohole Arrays. Advanced Functional Materials.2012;22(21):4439-46.
    [66]Correia-Ledo D, Gibson KF, Dhawan A, et al. Assessing the Location of Surface Plasmons Over Nanotriangle and Nanohole Arrays of Different Size and Periodicity. Journal of Physical Chemistry C.2012;116(12):6884-92.
    [67]Li W-D, Hu J, Chou SY. Extraordinary light transmission through opaque thin metal film with subwavelength holes blocked by metal disks. Optics Express. 2011;19(21):21098-108.
    [68]Ding L, Wang KJ, Wang W, et al. Experimental verification and investigation of disks scattering slab modes in metal-dielectric heterostructures. Scientific Reports.2013;3.
    [69]Schmidt MA. Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability. Nature Communication. 2012;3:1102.
    [70]Pan J, Chen Z, Chen J, et al. Low-threshold plasmonic lasing based on high-Q dipole void mode in a metallic nanoshell. Optics Letters.2012;37(7):1181-3.
    [71]Barcelo SJ, Kim A, Wu W, icset al. Fabrication of Deterministic Nanostructure Assemblies with Sub-nanometer Spacing Using a Nanoimprinting Transfer Technique. ACS Nano.2012;6(7):6446-52.
    [72]Antosiewicz TJ. Oscillatory Optical Response of an Amorphous Two-Dimensional Array of Gold Nanoparticles. Physical Review Letters.2012;109:247401.
    [73]Wang KJ. Theoretical and experimental research on designer surface plasmons in a metamaterial with double sets of circular holes. Optics Express.2011;19:11375-80.
    [74]Min Huang F, Sinha JK, Gibbons N, et al. Direct assembly of three-dimensional mesh plasmonic rolls. Applied Physics Letters.2012;100(19):193107-4.
    [75]McMullan JM, Wagner NJ. Directed Self-Assembly of Colloidal Crystals by Dielectrophoretic Ordering. Langmuir.2012;28(9):4123-30.
    [76]Lu Z, Zhou M. Fabrication of large scale two-dimensional colloidal crystal of polystyrene particles by an interfacial self-ordering process. Journal of Colloid and Interface Science.2011;361(2):429-35.
    [77]Yu J, Yan QF, Shen DZ. Co-Self-Assembly of Binary Colloidal Crystals at the Air-Water Interface. Acs Applied Materials & Interfaces.2010;2(7):1922-6.
    [78]Kim JJ, Li Y, Lee EJ, et al. Fabrication of Size-Controllable Hexagonal Non-Close-Packed Colloidal Crystals and Binary Colloidal Crystals by Pyrolysis Combined with Plasma-Electron Coirradiation of Polystyrene Colloidal Monolayer. Langmuir.2011;27(6):2334-9.
    [79]Robbiano V, Giordano M, Martella C, et al. Hybrid Plasmonic-Photonic Nanostructures:Gold Nanocrescents Over Opals. Advanced Optical Materials. 2013:n/a-n/a.
    [80]Halpern AR, Corn RM. Lithographically Patterned Electrodeposition of Gold, Silver, and Nickel Nanoring Arrays with Widely Tunable Near-Infrared Plasmonic Resonances. ACS Nano.2013;7(2):1755-62.
    [81]Zhu D, Huang H, Zhang G, et al. Fabrication of Heterogeneous Double-Ring-Like Structure Arrays by Combination of Colloidal Lithography and Controllable Dewetting. Langmuir.2012;28(5):2873-80.
    [82]Yi L, Lunardi LM, Muth JF. Fabrication of Nanoshell Arrays Using Directed Assembly of Nanospheres. Sensors Journal, IEEE.2010;10(3):617-20.
    [83]Tan KW, Saba SA, Arora H, et al. Colloidal Self-Assembly-Directed Laser-Induced Non-Close-Packed Crystalline Silicon Nanostructures. ACS Nano.2011;5(10):7960-6.
    [84]Junesch J, Sannomiya T, Dahlin AB. Optical Properties of Nanohole Arrays in Metal-Dielectric Double Films Prepared by Mask-on-Metal Colloidal Lithography. ACS Nano.2012;6(11):10405-15.
    [85]Zhang XM, Ye SS, Zhang X, et al. Panchromatic plasmonic color patterns:from embedded Ag nanohole arrays to elevated Ag nanohole arrays. Journal of Materials Chemistry C.2013;1(5):933-40.
    [86]Ta VD, Chen R, Nguyen DM, et al. Application of self-assembled hemispherical microlasers as gas sensors. Applied Physics Letters.2013;102(3):031107-4.
    [87]Steuwe C, Kaminski CF, Baumberg JJ, et al. Surface Enhanced Coherent Anti-Stokes Raman Scattering on Nanostructured Gold Surfaces. Nano Letters.2011;11(12):5339-43.
    [88]Gibson KF, Correia-Ledo D, Couture M, et al. Correlated AFM and SERS imaging of the transition from nanotriangle to nanohole arrays. Chemical Communications. 2011;47(12):3404-6.
    [89]Eisenlohr J, Benick J, Peters M, et al. Hexagonal sphere gratings for enhanced light trapping in crystalline silicon solar cells. Optics Express.2014;22(S1):A111-A9.
    [90]Geng C, Wei T, Wang X, et al. Enhancement of Light Output Power from LEDs Based on Monolayer Colloidal Crystal. Small.2014:n/a-n/a.
    [91]Koo WH, Youn W, Zhu P, et al. Light Extraction of Organic Light Emitting Diodes by Defective Hexagonal-Close-Packed Array. Advanced Functional Materials. 2012;22(16):3454-9.
    [92]Tao C-a, Zhu W, An Q, et al. Coupling of Nanoparticle Plasmons with Colloidal Photonic Crystals as a New Strategy to Efficiently Enhance Fluorescence. The Journal of Physical Chemistry C.2011;115(41):20053-60.
    [93]Wu Y, Zhang C, Yuan Y, et al. Fabrication of Wafer-Size Monolayer Close-Packed Colloidal Crystals via Slope Self-Assembly and Thermal Treatment. Langmuir. 2013;29(46):14017-23.
    [94]Sannomiya T, Scholder O, Jefimovs K, et al. Investigation of Plasmon Resonances in Metal Films with Nanohole Arrays for Biosensing Applications. Small. 2011;7(12):1653-63.
    [95]King NS, Li Y, Ayala-Orozco C, et al. Angle-and Spectral-Dependent Light Scattering from Plasmonic Nanocups. ACS Nano.2011;5(9):7254-62.
    [96]Im H, Bantz KC, Lee SH, et al. Self-Assembled Plasmonic Nanoring Cavity Arrays for SERS and LSPR Biosensing. Advanced Materials.2013;25(19):2678-85.
    [97]Yap FL, Thoniyot P, Krishnan S, et al. Nanoparticle Cluster Arrays for High-Performance SERS through Directed Self-Assembly on Flat Substrates and on Optical Fibers. ACS Nano.2012;6(3):2056-70.
    [98]Timothy AK, Wataru H, Paul HO, et al. Mapping gigahertz vibrations in a plasmonic-phononic crystal. New Journal of Physics.2013;15(2):023013.
    [99]Zhang Y, Yong D, Yu X, et al. Amplification of Surface-Enhanced Raman Scattering in Photonic Crystal Fiber Using Offset Launch Method. Plasmonics.2012:1-7.
    [100]Wang T, Wang M, Ni H. Micro-Fabry-Parot Interferometer with High Contrast Based on an In-fiber Ellipsoidal Cavity. Photonics Technology Letters, IEEE.2012;PP(99):l-.
    [101]Tingting W, Ming W, Haibin N. Micro-Fabry-Parot Interferometer With High Contrast Based on an In-Fiber Ellipsoidal Cavity. Photonics Technology Letters, IEEE. 2012;24(11):948-50.
    [102]Stolyarov AM, Gumennik A, McDaniel W, et al. Enhanced chemiluminescent detection scheme for trace vapor sensing in pneumatically-tuned hollow core photonic bandgap fibers. Optics Express.2012;20(11):12407-15.
    [103]Shuai B, Xia L, Zhang Y, et al. A multi-core holey fiber based plasmonic sensor with large detection range and high linearity. Optics Express.2012;20(6):5974-86.
    [104]Sreekanth KV, Zeng S, Shang J, et al. Excitation of surface electromagnetic waves in a graphene-based Bragg grating. Scientific Reports.2012;2.
    [105]Albert J. Tilted Fiber Bragg Gratings as Multi-Sensors. Optics Photonics News. 2011;22(10):28-33.
    [106]Li J, Sun L-P, Gao S, et al. Ultrasensitive refractive-index sensors based on rectangular silica microfibers. Optics Letters.2011;36(18):3593-5.
    [107]Feng S, Darmawi S, Henning T, et al. A Miniaturized Sensor Consisting of Concentric Metallic Nanorings on the End Facet of an Optical Fiber. Small. 2012;8(12):1937-44.
    [108]Scheerlinck S, Taillaert D, Van Thourhout D, et al. Flexible metal grating based optical fiber probe for photonic integrated circuits. Applied Physics Letters. 2008;92(3):031104-3.
    [109]Roelkens G, Vermeulen D, Selvaraja S, et al. Grating-Based Optical Fiber Interfaces for Silicon-on-Insulator Photonic Integrated Circuits. Selected Topics in Quantum Electronics, IEEE Journal of.2011;17(3):571-80.
    [110]Consales M, Ricciardi A, Crescitelli A, et al. Lab-on-Fiber Technology:Toward Multifunctional Optical Nanoprobes. ACS Nano.2012;6(4):3163-70.
    [111]Arce CL, De Vos K. Claes T, et al. Silicon-on-Insulator Microring Resonator Sensor Integrated on an Optical Fiber Facet. Photonics Technology Letters, IEEE. 2011;23(13):890-2.
    [112]Shambat G, Provine J, Rivoire K, et al. Optical fiber tips functionalized with semiconductor photonic crystal cavities. Applied Physics Letters.2011;99(19):191102-3.
    [113]Ding H, Cheng Y, Gu H, et al. Tunable fiber Bragg grating based on responsive photonic crystals. Nanoscale.2013;5(23):11572-6.
    [114]Bao Q, Zhang H, Wang B, et al. Broadband graphene polarizer. Nat Photon. 2011;5(7):411-5.
    [115]Yang ZZ, Gao SM, Li W, et al. Three-Dimensional Photonic Crystal Fluorinated Tin Oxide (FTO) Electrodes:Synthesis and Optical and Electrical Properties. Acs Applied Materials & Interfaces.2011;3(4):1101-8.
    [116]Yang H, Jiang P. Macroporous photonic crystal-based vapor detectors created by doctor blade coating. Applied Physics Letters.2011;98(1):011104-3.
    [117]Wang H, Chen Q-W, Yu Y-F, et al. Size- and Solvent-Dependent Magnetically Responsive Optical Diffraction of Carbon-Encapsulated Superparamagnetic Colloidal Photonic Crystals. The Journal of Physical Chemistry C.2011;115(23):11427-34.
    [118]Kohoutek T, Orava J, Strizik L, et al. Large-area inverse opal structures in a bulk chalcogenide glass by spin-coating and thin-film transfer. Optical Materials. (0).
    [119]Nakamoto K, Kurita R, Niwa O, et al. Development of a mass-producible on-chip plasmonic nanohole array biosensor. Nanoscale.2011;3(12):5067-75.
    [120]Gu Y, Li Q, Wang GP. Dielectric supported ring-shaped metal disks on a metal film for ultrasensitive refractive index sensing. Optics Letters.2011;36(17):3326-8.
    [121]Li Y, Pan J, Zhan P, et al. Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array. Optics Express. 2010;18(4):3546-55.
    [122]Weibin C, Wei H, Don CA, et al. Generating cylindrical vector beams with subwavelength concentric metallic gratings fabricated on optical fibers. Journal of Optics. 2011;13(1):015003.
    [123]Tian L, Frisbie S, Bernussi AA, et al. Transmission properties of nanoscale aperture arrays in metallic masks on optical fibers. Journal of Applied Physics. 2007;101(1):014303-4.
    [124]Scheerlinck S, Dubruel P, Bienstman P, et al. Metal Grating Patterning on Fiber Facets by UV-Based Nano Imprint and Transfer Lithography Using Optical Alignment. J Lightwave Technol.2009;27(10):1415-20.
    [125]Heo C-J, Kim S-H, Jang SG, et al. Gold "Nanograils" with Tunable Dipolar Multiple Plasmon Resonances. Advanced Materials.2009;21(17):1726-31.
    [126]Smythe EJ, Dickey MD, Bao J, et al. Optical Antenna Arrays on a Fiber Facet for in Situ Surface-Enhanced Raman Scattering Detection. Nano Letters.2009;9(3):1132-8.
    [127]Kim JH, Moon JH, Lee S-Y, et al. Biologically inspired humidity sensor based on three-dimensional photonic crystals. Applied Physics Letters.2010;97(10):103701-3.
    [128]Kelly TL, Garcia Sega A, Sailor MJ. Identification and Quantification of Organic Vapors by Time-Resolved Diffusion in Stacked Mesoporous Photonic Crystals. Nano Letters.2011;11(8):3169-73.
    [129]Shin J, Han SG, Lee W. Dually tunable inverse opal hydrogel colorimetric sensor with fast and reversible color changes. Sensors and Actuators B:Chemical. 2012;168(0):20-6.
    [130]Liu CH, Gao GZ, Zhang YQ, et al. The Naked-Eye Detection of NH3-HC1 by Polyaniline-Infiltrated TiO2 Inverse Opal Photonic Crystals. Macromolecular Rapid Communications.2012;33(5):380-5.
    [131]Ee Y-K, Arif RA, Tansu N, et al. Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays. Applied Physics Letters.2007;91(22):221107-3.
    [132]Li X-H, Zhu P, Liu G, et al. Light Extraction Efficiency Enhancement of III-Nitride Light-Emitting Diodes by Using 2-D Close-Packed TiO2 Microsphere Arrays. J Display Technol.2013;9(5):324-32.
    [133]Galisteo-Lopez JF, Galli M, Patrini M, et al. Effective refractive index and group velocity determination of three-dimensional photonic crystals by means of white light interferometry. Physical Review B.2006;73(12):125103.
    [134]Galisteo-Lopez JF, Palacios-Lidon E, Castillo-Martinez E, et al. Optical study of the pseudogap in thickness and orientation controlled artificial opals. Physical Review B. 2003;68(11):115109.
    [135]Palacios-Lidon E, Juarez BH, Castillo-Martinez E, et al. Optical and morphological study of disorder in opals. Journal of Applied Physics.2005;97(6):063502--7.
    [136]Prass J, Muter D, Erko M, et al. Apparent lattice expansion in ordered nanoporous silica during capillary condensation of fluids. Journal of Applied Crystallography. 2012;45:798-806.
    [137]Monson PA. Understanding adsorption/desorption hysteresis for fluids in mesoporous materials using simple molecular models and classical density functional theory. Microporous and Mesoporous Materials.2012; 160:47-66.
    [138]Gor GY, Rasmussen CJ, Neimark AV. Capillary Condensation Hysteresis in Overlapping Spherical Pores:A Monte Carlo Simulation Study. Langmuir. 2012;28(33):12100-7.
    [139]Mondal SK, Mitra A, Singh N, et al. Ultrafine Fiber Tip Etched in Hydrophobic Polymer Coated Tube for Near-Field Scanning Plasmonic Probe. Photonics Technology Letters, IEEE,2011;23(19):1382-4.
    [140]Malkin DS. An invesitgation of a novel monolithic chromatography column, silica colloidal crystal packed columns. United States -- Arizona:The University of Arizona; 2010.
    [141]Li J, Heman P, Valdivia C, et al. Colloidal photonic crystal cladded optical fibers: Towards a new type of photonic band gap fiber. Optics Express.2005;13(17):6454-9.
    [142]Moon JH, Yi G-R, Yang S-M. Fabrication of hollow colloidal crystal cylinders and their inverted polymeric replicas. Journal of Colloid and Interface Science. 2005;287(1):173-7.
    [143]Lin Y, Herman PR, Valdivia CE, et al. Photonic band structure of colloidal crystal self-assembled in hollow core optical fiber. Applied Physics Letters.2005;86(12):1-3.
    [144]Lin Y, Herman PR, Xu W. In-fiber colloidal photonic crystals and the formed stop band in fiber longitudinal direction. Journal of Applied Physics.2007; 102(7):073106-4.
    [145]Holland BT, Blanford CF, Stein A. Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids. Science.1998;281(5376):538-40.
    [146]Xia Y, Gates B, Yin Y, et al. Monodispersed Colloidal Spheres:Old Materials with New Applications. Advanced Materials.2000;12(10):693-713.
    [147]Hao L, You M, Mo X, et al. Fabrication and characterization of ordered macroporous semiconductors CdS by colloidal crystal template. Materials Research Bulletin. 2003;38(4):723-9.
    [148]Zhao XS, Su F, Yan Q, et al. Templating methods for preparation of porous structures. Journal of Materials Chemistry.2006;16(7):637-48.
    [149]Iwayama Y, Yamanaka J, Takiguchi Y, et al. Optically Tunable Gelled Photonic Crystal Covering Almost the Entire Visible Light Wavelength Region. Langmuir. 2003;19(4):977-80.
    [150]Kamp U, Kitaev V, von Freymann G, et al. Colloidal Crystal Capillary Columns—Towards Optical Chromatography. Advanced Materials.2005;17(4):438-43.
    [151]Reculusa S, Heim M, Gao F, et al. Design of Catalytically Active Cylindrical and Macroporous Gold Microelectrodes. Advanced Functional Materials.2011;21 (4):691-8.
    [152]Wang H, li X, Nakamura H, et al. Continuous Particle Self-Arrangement in a Long Microcapillary. Advanced Materials.2002; 14(22):1662-6.