拟南芥花药发育相关基因MPS1和AMS功能的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纺锤体是细胞分裂过程中形成的由微管、摩托蛋白以及其他一系列复合物所组成的一个纺锤形的结构,它均等地将染色体分配到子代细胞中,从而保证染色体倍数的稳定性。植物细胞分裂中的纺锤体缺乏动物和酵母中的中心体类似物,因此植物中纺锤体形成的机制可能有所不同,但是目前对于植物中纺锤体形成的机制特别是分子机制仍然所知甚少。我们筛选到一株雌雄育性剧烈下降的拟南芥突变体,等位分析和遗传互补证明了At5G57880敲除导致突变表型。细胞学观察发现突变体的花药中形成大量异常的四分体,特别是六分体、五分体和不规则的四分体,这表明突变体的减数分裂可能出现问题。进一步的细胞学分析发现突变体减数分裂中前期与野生型相似,但是在分裂后期染色体分离出现异常,染色体向多个方向分离,或者向两极不均等分离。由于突变体的雌性育性同样剧烈下降,我们又分析了雌性减数分裂的过程,结果在雌性减数分裂的后期也观察到了这种染色体向多个方向分离的现象,说明该基因影响拟南芥雌雄减数分裂的染色体分离。免疫荧光的结果显示减数分裂的纺锤体形状不规则,出现多个聚集的极点,形成多极纺锤体,这个结果说明减数分裂中纺锤体错误的极性建成是突变体染色体不均等分离的根本原因。因此,我们将这一突变体命名为mps1(MultipolarSpindle 1)。MPS1编码一个高等植物特有的未知功能的蛋白,软件预测MPS1含有Coiled-coil结构域,并且在N端有核定位信号区。原位杂交的结果显示MPS1在雄性和雌性减数分裂细胞中都有很强的表达,这一结果与MPS1参与减数分裂的功能相吻合。RT-PCR的结果表明MPS1在各个器官中都有表达,特别在幼苗中表达最高,提示MPS1在营养生长,特别是有丝分裂中可能发挥作用。由于MPS1是高等植物中首次发现的一个特异性的参与细胞减数分裂纺锤体极性建成的基因,该基因的深入功能研究将有助于植物减数分裂中纺锤体极性建成机制的了解。
     绒毡层作为一种独特的分泌细胞,在植物的花粉发育过程中起着非常重要的作用。绒毡层的整个发育过程复杂而有序,牵涉到细胞的分化、物质的分泌以及细胞的凋亡等,通过绒毡层发育的研究可以使我们对植物花药发育有更为深入的认识。通过对T-DNA插入突变体ams-2的研究和分析,进一步地阐明了AMS在花药发育,特别是绒毡层发育中的功能。对ams-2组织切片后发现突变体的绒毡层细胞比已报道的ams突变体空泡化时间提早。从第6期开始绒毡层细胞就开始不断肥大和空泡化,小孢子被挤在药室中央,最后小孢子提前降解。进一步的透射电镜观察发现绒毡层细胞在减数分裂时期并没有转变为分泌型的细胞,小孢子和花粉发育所需要的物质在绒毡层中没有形成。TUNEL assay的结果显示绒毡层细胞自身降解的细胞凋亡机制也没有启动,使得绒毡层细胞在花药发育后期无法按时降解。通过细胞学观察、芯片数据的分析以及Real-time PCR的验证,四分体释放所需要的胼胝质酶和果胶酶的表达水平在突变体花序中剧烈下调,暗示了AMS对这一生理活动的转录调控的功能。原位杂交的结果显示AMS在花药发育的第6、7期的减数分裂细胞和绒毡层细胞中强烈表达。酵母实验和芯片分析的结果说明AMS是一个转录激活因子,在绒毡层发育的过程中调控了大量基因的表达。综上所述,我们在AMS已有研究的基础上进一步地阐述了该基因在绒毡层分化和发育中的功能,加深了我们对这一过程的理解。
The spindle is an array of microtubules, microtubule motor proteins, and a series of other complex, which is essential for segregating chromosomes to generated cells during cell division. The spindle in higher plants is lack of centrosomal-like structures as in animals and yeasts, so the mechanism of spindle organization in higher plants should be different form others. Now the mechanism, especially the molecular mechanism of spindle organization in higher plants is still not well understood. We isolated an Arabidopsis T-DNA mutant with severely reduced male and female fertility, and cloned the mutated gene At5g57880. Cytological analysis showed a large number of abnormal tetrads in mutant anther, especially hexads, pentads and irregular tetrads, which indicated abnormalities in meiosis. Further analysis showed that chromosome segregation was abnormal in both male and female mps1 meiocytes. Most chromosomes separated to three or more directions at anaphase, or showed an uneven separation to two directions. Immunolocalization showed unequal bipolar or multipolar spindles in mps1 meiocytes, which indicated that aberrant spindles resulted in disordered chromosome segregation. The MPS1 protein encodes a 377 amino acid functional unknown protein with putative coiled-coil motifs, and a nuclear localization signal in N terminus. RT-PCR showed MPS1 is expressed in almost all tissues, especially in young seedling. In situ hybridization analysis showed that MPS1 is strongly expressed in both male and female meiocytes. The possible role of MPS1 in meiotic spindle organization is also discussed.
     In Arabidopsis, the tapetum plays important roles in anther development, providing enzymes for callose dissolution and materials for pollen wall formation, and supplying nutrients for pollen development. Tapetum development is a complicated and precise process contains cell differentiation, material secretary, programmed cell death. Here we report the identification and characterization of a T-DNA mutant ams-2, and further elucidate novel functions of AMS in tapetum development. Cytological analysis showed that tapetum vaculation in ams-2 was earlier than the ams mutant had been published. The tapetal cell became hypertrophy and vaculation before tetrad releasing. Transmission Electron Microscopy (TEM) examination further revealed tapetum didn't differentiate into secretary- type cell at stage 6. There is no material required for microspore and pollen development in tapetal cell. TUNEL assay showed that there was no signal of PCD in tapetum, which results in aborted tapetum degradation at later stages. Callose staining and gene expression analysis suggested that AMS may be a crucial component in controlling callose dissolution. In situ hybridization analysis revealed that AMS is highly expressed in tapetum and meiocytes during anther development. AMS encodes a bHLH transcription factor, it showed transactivating ability in yeast experiment, and the activation domain was in N terminal. In conclusion, our results showed that AMS plays a vital role in tapetal differentiation and development.
引文
Albertson, D. G. and Thomson, J. N. (1993). Segregation of holocentric chromosomes at meiosis in the nematode, Caenorhabditis elegans. Chrom. Res. 1, 15-26.
    Ambrose, J.C., Li, W.X., Marcus, A., Ma, H., Richard, C.(2005) A Minus-End-directed Kinesin with Plus-End Tracking Protein Activity Is Involved in Spindle Morphogenesis. Mol Biol Cell 16: 1584-1592.
    Azumi Y, Liu DH, Zhao DZ, Li WX, Wang GF, Hu L and Ma H. (2002). Homolog interaction during meiotic prophase Ⅰ in Arabidopsis requires the SOLO DANCERS gene encoding a novel cyclin-like protein. The EMBO Journal, 21: 3081-3095.
    Azumi, Y., Liu, D., Zhao, D., Li, W., Wang, G., Hu, Y., Ma, H. (2002) Homolog interaction during meiotic prophase I in Arabidopsis requires the SOLO DANCERS gene encoding a novel cyclin-like protein. EMBO J 21: 3081-3095.
    Bai XF, Peisrson BN, Dong FG, et al. (1999). Isolation and characterization of SYN1, a RAD21-like gene essential for meiosis in Arabidopsis. Plant Cell, 11: 417-430.
    Bai, X., Peirsion, B., Dong, F., Cai, X., Makaroff, C.A. (1999) Isolation and characterization of SYN1, a RAD21-!ike gene essential for meiosis in Arabidopsis. Plant Cell 11:417-430.
    Baskin, T. I. and Cande, W. Z. (1990). The structure and function of themitotic spindle in flowering plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 277-315.
    Bhatt, A.M., Lister, C, Page, T., Fransz, P., Findlay, K., Jones, GH., Dickinson, H.G., Dean, C. (1999) The DIF1 gene of Arabidopsis is required for meiotic chromosome segregation and belongs to the REC8/RAD21 cohesin gene family. Plant J 19:463-472.
    Bleuyard JY, White CI. (2004)The Arabidopsis homologue of Xrcc3 plays an essential role in meiosis.EMBO J. 23(2):439-49.
    Campbell, N.A., Jane, B.R. (2005) Biology, 7th Edition. San Francisco: Benjamin
    K??Cummings, 221-224.
    Chan, A., Cande, W.Z. (1998) Maize meiotic spindles assemble around chromatin and do not require paired chromosomes. J Cell Sci 111: 3507-3515.
    Chen, C.B., Adam, M., Li, W.X., Hu, Yi., Vielle-Calzada, J.P. (2002) The Arabidopsis ATK1 gene is required for spindle morphogenesis in male meiosis. Development 129: 2401-2409.
    Clayton, L., Lloyd, C.W. (1984) The relationship between the division plane and spindle geometry in Allium cells treated with CIPC or griseofulvin: an anti-tubulin study. Eur J Cell Biol 34:248-253.
    Clough, S.J., Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743.
    Cnudde F, Hedatale V, de Jong H, Pierson ES, Rainey DY, et al. (2006) Changes in gene expression during male meiosis in Petunia hybrida. Chromosome Res 14: 919-932.
    Combet, C., Blanchet, C., Geourjon, C., Deleage, G. (2000) NPS@: Network protein sequence analysis. Trends Biochem Sci 25: 147-150.
    Compton, D.A. (2000) Spindle assembly in animal cells. Ann Rev Biochem 69: 95-114.
    Couteau, F., Belzile, F., Horlow,C., Grandjean, O., Vezon, D., Doutriaux, M.P. (1999) Random chromosome segregation without meiotic arrest in both male and female meiocytes of a dmcl mutant of Arabidopsis. Plant Cell 11:1623-1634.
    Crick, F.H. (1952) Is alpha-keratin a coiled coil? Nature 22: 882-883.
    Dawe, R.K. (1998) Meiotic chromosome organization and segregation in plants. Annu Rev Plant Physiol Plant Mol Biol 49: 371-395.
    Delattre, M., Leidel, S., Wani, K., Baumer, K., Bamat, J., Schnabel, H., Feichtinger, R., Schnabel, R., Gonczy, P. (2004) Centriolar SAS-5 is required for centrosome duplication in C. elegans. Nat Cell Biol. 6(7):573-575.
    Eijpe, M., Heyting, C., Gross, B., Jessberger, R. (2000) Association of mammalian SMC1 and SMC3 proteins with meiotic chromosomes and synaptonemal complexes. J Cell Sci 113: 673-682.
    Endow, S.A., Chandra, R., Komma, D.J., Yamamoto, A.H., Salmon, E.D. (1994) Mutants of the Drosophila ncd microtubule motor protein cause centrosomal and spindle pole defects in mitosis. J Cell Sci 107: 859-867.
    Grelon M, Vezon D, Gendrot G, Pelletier G. (2001) AtSPO11-1 is necessary for efficient meiotic recombination in plants.EMBO J. 20(3):589-600.
    Grelon, M., Gendrot, G., Vezon, D., Pelletier, G. (2003) The Arabidopsis MEI1 gene encodes a protein with five BRCT domains that is involved in meiosis-specific DNA repair events independent of SPO11 -induced DSBs. Plant J 35: 465-475.
    Heald, R., Tournebize, R., Blank, T., Sandaltzopoulos, R., Becker, P.,Hyman, A. and Karsenti, E. (1996). Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420-425.
    Hoyt, M.A., Geiser, J.R. (1996) Genetic analysis of the mitotic spindle. Annu Rev Genet 30: 7-33.
    Hyams, J. (1996). Look Ma, no chromosomes! Nature 382, 397-398.
    Hyman, A. A. and Karsenti, E. (1996). Morphogenetic properties of microtubules and mitotic spindle assembly. Cell 84, 401-410.
    Jasperson, S.L., Winey, M. (2004) The budding yeast spindle pole body: structure, duplication, and function. Annu Rev Dev Biol 20:1-28.
    Kirschner, M. and Mitchison, T. (1986). Beyond self-assembly: from microtubules to morphogenesis. Cell 45, 329-342.
    Landschulz,, W.H., Johnson, P.F., McKnight, S.L. (1988) The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240:1759-1764.
    Lee YR, Liu B. (2004) Cytoskeletal motors in Arabidopsis. Sixty-one kinesins and seventeen myosins.Plant Physiol.136(4): 3877-3883.
    Li WX, Chen CB, Ullrich M.M., et al. (2004). The Arabidopsis AtRAD51 gene is dispensable for vegetative development but required for meiosis. PNAS, 101: 10596-10601.
    Liu, B., Cyr, R.J., Palevitz, B.A. (1996) A kinesin-like protein, KatAp, in the cells of Arabidopsis and other plants. Plant Cell 8:119-132.
    Liu, Y.G., Mitsukawa, N., Oosumi, T., Whittier, R.F. (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8: 457-463.
    Ma H. (2005)Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants.Annu Rev Plant Biol. 56:393-434
    Marcus AI, Li W, Ma H, Cyr RJ.(2003) A kinesin mutant with an atypical bipolar spindle undergoes normal mitosis.Mol Biol Cell 14(4): 1717-1726.
    McKim, K. S. and Hawley, R. S. (1995). Chromosomal control of meiotic cell division. Science 270, 1595-1601.
    Mercier R, Grelon M. ( 2008 ) Meiosis in plants: ten years of gene discovery.Cytogenet Genome Res. 120(3-4):281-290.
    Mitsui, H., Yamaguchi-Shinozaki, K., Shinozaki, K., Nishikawa, K., and Takahashi, H. (1993) Identification of a gene family (kat) encoding kinesin-like proteins in Arabidopsis thaliana and the characterization of secondary structure of KatA. Mol Gen Genet 238: 362-368.
    Moitra, J., Szilak, L., Krylov, D., Vinson, C. (1997) Leucine is the most stabilizing aliphatic amino acid in the d position of a dimeric leucine zipper coiled coil. Biochemistry 36:22567-22573.
    Motamayor J.C., Vezon D, Bajon C, et al. (2000). Switch (swil), an Arabidopsis thaliana mutant affected in the female meiotic switch. Sex Plant Reprod, 12:209-218.
    Nonomura K, Nakano M, Fukuda T, Eiguchi M, Miyao A, Hirochika H, Kurata N. (2004) The novel gene HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS1 of rice encodes a putative coiled-coil protein required for homologous chromosome pairing in meiosis.Plant Cell. 16(4): 1008-20.
    Pastuglia M., Azimzadeh J., Goussot M., Camilleri C., Belcram K., Evrard J.L., Schmit A.C., Guerche P., Bouchez D. (2006) Gamma-tubulin is essential for microtubule organization and development in Arabidopsis. Plant Cell. 18(6):1412-25
    Pawlowski WP, Golubovskaya IN, Timofejeva L, Meeley RB, et al. (2004) Coordination of meiotic recombination, pairing, and synapsis by PHS1. Science 303: 89-92.
    Petronczki, Mark; Siomos, Maria F. & Nasmyth, Kim (2003). "Un M(?)nage (?) Quatre The Molecular Biology of Chromosome Segregation in Meiosis", Cell 112 (4): 423-440. John Wiley and Sons, Inc.(2006) Principles of Genetics, Fourth Edition.
    Puizina J, Siroky J, Mokros P, Schweizer D, Riha K. (2004) Mrell deficiency in Arabidopsis is associated with chromosomal instability in somatic cells and Spo 11-dependent genome fragmentation during meiosis.Plant Cell. 16(8): 1968-78
    Qin, G., Kang, D., Dong, Y., Shen, Y., Zhang, L., Deng, X., Zhang, Y., Li, S., Chen, N., Niu, W. (2003) Obtaining and analysis of flanking sequences from T-DNA transformants in Arabidopsis. Plant Science 165: 941-949.
    Quan L, Xiao R, Li W, Oh SA, Kong H, Ambrose JC, Malcos JL, Cyr R, Twell D, Ma H. (2008) Functional divergence of the duplicated AtKINHa andAtKIN14b genes: critical roles in Arabidopsis meiosis and gametophyte development. Plant J 53:1013-1026.
    Raven, Peter H.; Johnson, George B.; Mason, Kenneth A.; Losos, Jonathan & Singer, Susan. (2007) Biology, Eighth Edition.
    Reddy T.V., Kaur J, Agashe B, Sundaresan V and Siddiqi I. (2003). The DUET gene is necessary for chromosome organization and progression during male meiosis in Arabidopsis and encodes a PHD finger protein. Development, 130:5975-5987.
    Ross, Fransz and Jones. (1996). A light microscopic atlas of meiosis in Arabidopsis thaliana. Chromosome Research, 4: 507-516.
    Ross, K.J., Fransz, P., Jones, GH. (1996) A light microscopic atlas of meiosis in Arabidopsis thaliana. Chromosome Res 4: 507-516.
    Sanchez-Moran E, Mercier R, Higgins JD, Armstrong SJ, Jones GH, Franklin FC (2005) A strategy to investigate the plant meiotic proteome. Cytogenet Genome Res 109: 181-189.
    Sanders, P.M., Bui, A.Q., Weterings, K., McIntire, K.N., Hsu, Y.C., Lee, P.Y., Truong, M.T., Beals, T.P. and Goldberg, R.B. (1999) Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod 11: 297-322.
    Sauer, M., Paciorek, T., Benkova, E., Friml, J. (2006) Immunocytochemical techniques for whole-mount in situ protein localization in plants. Nature Protoc. 1: 98-103.
    Schommer C, Beven A, Lawrenson T, Shaw P and Sablowski R. (2003). AHP2 is required for bivalent formation and for segregation of homologus chromosomes in Arabidopsis meiosis. The Plant Journal, 36: 1-11.
    Seriukova EG, Dorogova NV, Zharkov NA, Shamina NV. (2003) Aberrations in prometaphase leading to the formation of restitution nuclei in cereal wide hybrids. Tsitologiya. 45:244-248.
    Shamina NV, Dorogova NV, Trunova SA. (2000a) Radial spindle and the phenotype of the maize meiotic mutant, dv. Cell Biol Internatl. 24:729-736.
    Shamina NV, Dorogova NV, Perelman PL. (2000b) Disruption of male meiosis in Pisum sativum L. induced by mutation ms3. Tsitologiya. 42:404-411.
    Shamina, N.V. (2005) Formation of division spindles in higher plant meiosis. Cell Biology International Cell Biol Int 29(4):307-318.
    Shamina, N.V., Silkova, O.G, Seriukova, E.G (2003) Monopolar spindles in meiosis of intergeneric cereal hybrids. Cell Biol Int. 27(8):657-664.
    Smirnova, E. A. and Bajer, A. S. (1994). Microtubule converging centers and reorganization of the interphase cytoskeleton and the mitotic spindle in higher plant Haemanthus. Cell Motil. Cytoskel. 27, 219-233.
    Smirnova, E.A., Bajer, A.S. (1992) Spindle poles in higher plant mitosis. Cell Motil. Cytoskeleton 23: 1-7.
    Sou(?)s, S. and Adams, I.R. (1998) SPC72: a spindle pole component required for spindle orientation in the yeast Saccharomyces cerevisiae. J Cell Sci. 111:2809-2818.
    Steffen, W., Fuge, H., Dietz, R., Blastmeyer, M., and Muller, G (1986). Aster free spindle poles in insect spermatocytes: evidence for chromosomeinduced spindle formation? J. Cell Biol. 102, 1679-1687.
    Stevens R, Grelon M, Vezon, D, et al. (2003). A CDC45 Homolog in Arabidopsis Is Essential for Meiosis, as Shown by RNA Interference-Induced Gene Silencing. The Plant Cell, 16:99-113.
    Theurkauf, W. E. and Hawley, R. S. (1992). Meiotic spindle assembly in Drosophila females: behavior of nonexchange chromosomes and the effects of mutations in the nod kinesin-like protein. J. Cell Biol. 116, 1167-1180.
    Vernos, I. and Karsenti, E. (1995). Chromosomes take the lead in spindle assembly. Trends Cell Biol. 5, 297-301.
    Wang Y, Magnard JL, McCormick S, Yang M. (2004) Progression through meiosis Ⅰ and meiosis Ⅱ in Arabidopsis anthers is regulated by an A-type cyclin predominately expressed in prophase Ⅰ.Plant Physiol. 136(4):4127-35
    Wilson EB. (1928) The cell in development and heredity, 3rd ed. NY: Macmillan.
    Wu X, Palazzo RE. (1999) Differential regulation of maternal vs. paternal centrosomes. Proc Natl Acad Sci 96(4): 1397-1402.
    Yang X, Makaroff CA, Ma H. (2003) The Arabidopsis MALE MEIOCYTE DEATH 1 gene encodes a PHD-fmger protein that is required for male meiosis.Plant Cell.5(6):1281-95.
    Yang, M. and Ma, H. (2001) Male Meiotic Spindle Lengths in Normal and Mutant Arabidopsis Cells. Plant Physiol 126: 622-630.
    Zhang, D. and Nicklas, R. B. (1995). The impact of chromosomes and centrosomes on spindle assembly as observed in living cells. J. Cell Biol. 129, 1287-1300.
    Zhang, Z.B., Zhu, J., Gao, J.F., Wang, C, Li, H., Li, H., Zhang, H.Q., Zhang, S., Wang, D.M., Wang, Q.X., Huang, H., Xia, H.J. and Yang, Z.N. (2007) Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis. Plant J 52: 528-538.
    Zhao DZ, Han TF, Risseeuw E,. Crosby W.L. and Ma H. (2003). Conservation and divergence of ASK1 and ASK2 gene functions during male meiosis in Arabidopsis thaliana. Plant Molecular Biology, 53: 163-173.
    Albrecht, C., Russinova, E., Hecht, V., Baaijens, E. and de Vries, S. (2005) The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES1 and 2 control male sporogenesis. Plant Cell 17, 3337-3349.
    Bedinger P, 1992. The remarkable biology of pollen. Plant Cell, 4: 879-889.
    Bowman JL, Smyth DR, Meyerowitz EM .(1991).Genetic interactions among floral homeotic genes of Arabidopsis. Development, 112:1-20.
    Bucciaglia, P.A. and Smith, A.G. (1994) Cloning and characterization of Tagl, a tobacco anther b-l,3-glucanase expressed during tetrad dissolution. Plant Mol. Biol. 24, 903-914.
    Canales, C., Bhatt, A.M., Scott, R. and Dickinson, H. (2002) EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr. Biol. 12, 1718-1727.
    Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743.
    Colcombet, J., Boisson-Dernier, A., Ros-Palau, R., Vera, C.E. and Schroeder, J.I. (2005) Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES1 and 2 are essential for tapetum development and microspore maturation. Plant Cell 17, 3350-3361.
    Doxey AC, Yaish MW, Moffatt BA, Griffith M, McConkey BJ. (2007) Functional divergence in the Arabidopsis beta-1, 3-glucanase gene family inferred by phylogenetic reconstruction of expression states. Mol Biol Evol. 24(4):1045-1055
    Esau K , (1977). Anatomy of Seed Plants(New York: John Wiley).
    Frankel, R., Izhar, S. and Nitsan, J. (1969) Timing of callase activity and cytoplasmic male sterility in Petunia. Biochem. Genet. 3, 451-455.
    Francis KE, Lam SY, Copenhaver GP. (2006) Separation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methylesterase gene.Plant Physiol.l42(3):1004-1013.
    Goldberg, R.B., Beals, T.P. and Sanders, P.M. (1993) Anther development: basic principles and practical applications. Plant Cell 5,1217-1229.
    Heslop-Harrison, J. and Mackenzie, A. (1967) Autoradiography of soluble [2-I4C] thymidine derivatives during meiosis and microsporogenesis in Lilium anthers. J. Cell Sci. 2,387-400.
    Higginson, T., Li, S.F. and Parish, R.W. (2003) AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana. Plant J. 35, 177-192.
    Hird, D.L., Worrall, D., Hodge, R., Smartt, S., Paul, W. and Scott, R. (1993) The anther-specific protein encoded by the Brassica napus and Arabidopsis thaliana A6 gene displays similarity toβ-l,3-glucanase. Plant J. 4,1023-1033.
    Ito, T., Nagata, N., Yoshiba, Y., Ohme-Takagi, M., Ma, H. and Shinozaki, K. (2007) Arabidopsis MALE STERILITY1 encodes a PHD-type transcription factor and regulates pollen and tapetum development. Plant Cell 19,3549-3562.
    Koltunow AM, Truettner J, Cox KH, et al.1990. Different temporal and spatial gene expression patterns occur during anther development. Plant Cell, 2: 1201-1224.
    Li N, Zhang DS, Liu HS, Yin CS, Li XX, Liang WQ, Yuan Z, Xu B, Chu HW, Wang J, Wen TQ, Huang H, Luo D, Ma H, Zhang DB. (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development.Plant Cel18(11):2999-3014.
    Li, S.F., Higginson, T. and Parish, R.W. (1999) A novel MYB-related gene from Arabidopsis thaliana expressed in development anthers. Plant Cell Physiol. 40, 343-347.
    Lotan, T., Ori, N., Fluhr, R. (1989). Pathogenesis-related proteins are developmentally regulated in tobacco flowers. Plant Cell 1, 881-887.
    Mamun EA, Cantrill LC, Overall RL, Sutton BG. (2005a) Cellular organisation and differentiation of organelles in pre-meiotic rice anthers.Cell Biol Int.29(9):792-802.
    Mamun EA, Cantrill LC, Overall RL, Sutton BG. (2005b) Cellular organisation in meiotic and early post-meiotic rice anthers.Cell Biol Int.29(11):903-913.
    Mariani, C., De Beuckeleer, M., Truettner, J., Leemans, J. and Goldberg, R.B. (1990) Induction of male sterility in plants by achimeric ribonuclease gene. Nature 347,737-741.
    Memelink, J., Linthorst, H.J.M., Schilperoort, R.A., Hoge, J.H.C. (1990). Tobacco genes encoding acidic and basic isoforms of pathogenesis-related proteins display different expression patterns. Plant Mol. Biol. 14,119-126.
    Millar, A.A. and Gubler, F. (2005) The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17, 705-721.
    Ogawa M, Kay P, Wilson S, Swain SM. (2009) ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2, and QUARTET2 Are Polygalacturonases Required for Cell Separation during Reproductive Development in Arabidopsis.Plant Cell.21(l):216-233.
    Pacini, E., Franchi, G.G. and Hesse, M. (1985) The tapetum: Its form, function, and possible phylogeny in Embryophyta. Plant Syst. Evol. 149,155-185.
    Papini A, Mosti S, Brighigna L (1999) Programmed-cell-death events during tapetum development of angiosperms. Protoplasma 207: 213-221
    Piffanelli, P., Ross, J.H.E. and Murphy, D.J. (1998) Biogenesis and function of the lipidic structures of pollen grains. Sex Plant Reprod. 11, 65-80.
    Regan SM, Moffatt BA .(1990). Cytochemical analysis of pollen development in wild-type Arabidopsis and a male-sterile mutant. Plant Cell 2:877-889.
    Rhee SY, Osborne E, Poindexter PD, Somerville CR.(2003 )Microspore separation in the quartet 3 mutants of Arabidopsis is impaired by a defect in a developmentally regulated polygalacturonase required for pollen mother cell wall degradation.Plant Physiol. 133(3): 1170-1180.
    Sanders, P.M., Bui, A.Q., Weterings, K., Mclntire, K.N., Hsu, Y.C., Lee, P.Y., Truong, M.T., Beals, T.P. and Goldberg, R.B. (1999) Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod. 11, 297-322.
    Scott, R.J. (1994) Pollen exine: the sporopollenin enigma and the physics of pattern. In Molecular and Cellular Aspects of Plant Reproduction. (Scott R.J. and Stead M.A., eds). pp. 49-81. Cambridge: UK, University Press.
    Scott, R.J., Spielman, M. and Dickinson, H.G. (2004) Stamen structure and Function. Plant Cell 16, S46-S60.
    Smyth DR, Bowman JL, Meyerowitz EM. (1990).Early flower development in Arabidopsis. Plant Cell ,2:755-767
    Sorensen, A., Krober, S., Unte, U.S., Huijser, P., Dekker, K. and Saedler, H. (2003) The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J. 33,413-423.
    Stanley, R.G. and Linskens, H.F. (1974) Pollen: Biology, Biochemistry, Management. pp. 13-28. New York: Springer-Verlag.
    Steiglitz H. (1977). Role of 13-1,3-glucanase in postmeiotic microspore release. Developmental Biology, 57: 87-97.
    Stieglitz, H. and Stern, H. (1973) Regulation of p-l,3-glucanase activity in developing anthers of Lilium. Devel Biol. 34,169-173.
    Vizcay-Barrena, G. and Wilson, Z.A. (2006) Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant. J Exp Bot. 57, 2709-2717.
    Warmke, H.E., Overman, M.A. (1972). Cytoplasmic male sterility in sorghum. 1. Callose behaviour in fertile and sterile anthers. J. Hered, 63,103-108.
    Worrall, D., Hird, D.L., Hodge, R., Paul, W., Draper, J., Scott, R. (1992). Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell, 7,759-771.
    Wilson, Z.A., Morroll, S.M., Dawson, J., Swarup, R. and Tighe, P.J. (2001) The Arabidopsis MALE STERILITYI (MSI) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant J. 28,27-39.
    Yang, C., Vizcay-Barrena, G., Conner, K. and Wilson, Z.A. (2007) MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. Plant Cell 19,3530-3548.
    Yang,S.L.,Xie,L.F.,Mao,H.Z.,Puah,C.S.,Yang,W.C.,Jiang,L.,Sundaresan,V.and Ye,D.(2003) TAPETUM DETERMINANT1 is required for cell specialization in the Arabidopsis anther.Plant Cell 15,2792-2804.
    Yang,S.L.,Jiang,L.,Puan,C.S.,Xie,L.F.,Zhang,X.Q.,Chen,L.Q.,Yang,W.C.and Ye,D.(2005) Overexpression of TAPETUM DETERMINANT1 alters the cell fates in the Arabidopsis carpel and tapetum via genetic interaction with EXCESS MICROSPOROCYTES1/EXTRA SPOROGENOUS CELLS.Plant Physiol.139,186-191.
    Zhang,W.,Sun,Y.J.,Timofejeva,L.,Chert,C.B.,Grossniklaus,U.and Ma,H.(2006) Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1(DYT1) encoding a putative bHLH transcription factor.Development 133,3085-3095.
    Zhang,Z.B.,Zhu,J.,Gao,J.F.,Wang,C,Li,H.,Li,H.,Zhang,H.Q.,Zhang,S.,Wang,D.M.,Wang,Q.X.,Huang,H.,Xia,H.J.and Yang,Z.N.(2007)Transcription factor AtMYB103 is required for anther development by regulating tapetum development,callose dissolution and exine formation in Arabidopsis.Plant J.52:528-538.
    Zhao,D.Z.,Wang,G.F.,Speal,B.and Ma,H.(2002) The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther.Genes Dev.16,2021-2031.