乳腺癌干细胞分离鉴定及免疫治疗研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:肿瘤干细胞是存在于肿瘤组织中具有自我更新和分化潜能的细胞,是肿瘤形成的起始细胞,维持肿瘤生长,是肿瘤复发转移的根源。通过对肿瘤干细胞的分选鉴定可以使我们能更清晰认识其特征,从而寻找新的方法来治疗肿瘤,提高治愈率。肿瘤干细胞理论认为肿瘤是由肿瘤干细胞异常增殖、分化而形成的,常规治疗仅能消灭增殖期的非致瘤性肿瘤细胞,从而使肿瘤缩小甚至消失,但是当治疗停止后,具有耐药性的肿瘤干细胞再次增殖形成肿瘤,并像“蒲公英”一样到处播散。如果我们能去除乳腺癌干细胞,肿瘤将会永远消退,从而达到根治肿瘤的目的。近年来,免疫治疗正逐渐成为肿瘤综合治疗的研究热点,有望成为肿瘤治疗的又一主要手段。免疫治疗中常用的活性细胞有:淋巴因子激活的杀伤细胞(LAK)、肿瘤浸润淋巴细胞(TIL)、细胞因子诱导的杀伤细胞(CIK)和特异性细胞毒T淋巴细胞(CTL)。有报道提出,利用树突状细胞(dendritic cell, DC)的高抗原递呈活性,将乳腺癌细胞抗原肽负载DC,从而激活机体免疫反应,可促进抗瘤效应和特异性。树突状细胞作为唯一的专职抗原递呈细胞(antigen processing cell, APC),处于免疫反应的中心地位。非成熟的DC捕获抗原后被激活成为成熟的DC,其细胞表面表达MHCⅠ类和Ⅱ类分子、共刺激分子B7-1(CD80)和B7-2(CD86)、黏附分子CD54(ICAM-1)和CD50(ICAM-3)等,并将抗原肽递呈给CD4+和CD8+T细胞,诱导其成为特异性细胞毒性T细胞(CTL),分泌细胞因子(如IL-12等),产生Th1型免疫应答而发挥抗肿瘤作用。
     本研究拟采用流式细胞仪测定乳腺癌MCF-7细胞系中CD55高表达(CD55hig)细胞平均荧光密度值,并分选CD55hig细胞,分析其是否具有肿瘤干细胞特性,并以此来检测原发性乳腺癌组织中乳腺癌干细胞的比例,从而寻找一种从乳腺癌组织中分离肿瘤干细胞的方法;术中摘取乳腺癌患者腋窝淋巴结,从腋窝区域引流淋巴结单个核细胞中,诱导培养DCs和肿瘤抗原特异性CTLs,通过体外杀伤实验,为乳腺癌干细胞的治疗提供新的方法和理论依据。方法:
     第一部分乳腺癌MCF-7细胞系中CD55hig亚群生物学特性分析培养乳腺癌MCF-7细胞系,加入核酸染料Hoechst33342和Verapami,流式细胞仪检测SP亚群和MP亚群细胞比例,并分离SP亚群和MP亚群细胞,以CD55单克隆抗体标记SP干细胞和MP亚群细胞,测定SP干细胞和MP亚群细胞的CD55平均荧光密度值,再以CD55单克隆抗体标记未分选MCF-7细胞,测定CD55hig细胞所占比例,并分选收集CD55hig细胞,检测其细胞贴壁率、克隆形成率和细胞周期等生物学特性,测定CD55hig细胞是否具备肿瘤干细胞特性。
     第二部分化学药物及免疫治疗对乳腺癌MCF-7细胞系中CD55hig亚群的杀伤研究
     用不同血药浓度(10%、25%、50%、75%和100%)的化疗药物多西他赛、表阿霉素和氟尿嘧啶杀伤乳腺癌MCF-7细胞,以杀伤效果最高的血药浓度的药物来杀伤CD55hig细胞和CD55low细胞,酸性磷酸酶法测定活细胞数检测其杀伤效应;抽取人外周血,淋巴细胞分离液分离收集单个核细胞,以IFN-γ(1500 U/ml)、抗CD3单抗(100 ng/ml)、IL-1α(100 U/ml)和IL-2(1000 U/ml)诱导培养,流式细胞检测CIK细胞的表型分子CD3、CD4、CD8和CD56表达,培养14天后收集CIK细胞,以效应细胞比靶细胞40:1杀伤CD55hig细胞和CD55low细胞,酶标检测仪检测杀伤率;术中严格无菌摘取乳腺癌引流淋巴结1~2枚,用机械法获取淋巴细胞悬液,并用淋巴细胞分离液分离单个核细胞,以RPMI1640完全培养基重悬、培养2h,贴壁细胞以rhGM-CSF(1000U/ml), rhIL-4(200U/ml)和TNF-α(200U/ml)联合培养诱导DCs;非贴壁细胞,加入rhIL-2(200U/ml)培养为TDLNCs。分选收集MCF-7细胞中CD55hig细胞,通过冻融法制备肿瘤抗原,负载DCs,将后者与TDLNCs共培养,以诱导肿瘤特异性CTLs。分别培养至第1天和第7天收获DCs,流式细胞分析仪检测其CD1a、CD83和CD86细胞表型,用非放射性细胞毒分析试剂盒,检测CTLs细胞对CD55hig细胞和CD55low细胞体外杀伤活性,分析经诱导的DCs功能和CTLs杀伤特异性。
     第三部分原发性乳腺癌组织中CD55hig细胞检测及其临床意义
     选取2008年2月至2009年1月在我科收治的乳腺癌患者45例。术中切取部分乳腺癌组织,机械法获得细胞悬液,加入抗CD55抗体和抗CK19抗体,对原发性乳腺癌单细胞悬液进行免疫荧光标记,以流式细胞学方法进行检测CD55高表达(CD55hig)群细胞的比例。结合患者的临床资料,分析乳腺癌患者CD55高表达与临床病理学指标的关系。
     结果:
     1 MCF-7细胞染色Hoechst3342染料后,流式细胞分析SP比例为4.34±0.59%,而加入维拉帕米后显著减低为0.1±0.07%。
     2收集SP和MP细胞,分别标记CD55单克隆抗体后,流式细胞术测定SP细胞CD55的平均荧光密度值为100.85±4.57,MP细胞CD55的平均荧光值为50.51±4.75;CD55单克隆抗体标记未分选的MCF-7细胞,流式细胞仪分析CD55hig细胞比例为2.12±0.39%。
     3 CD55hig和CD55low细胞接种后6h、12h和18h,贴壁率分别为29.53±1.20%、46.40±2.99%、77.2±1.07%和40.87±1.55%、55.40±2.46%、85.10±3.36%,CD55hig细胞贴壁率低于CD55low亚群细胞,P<0.05,差异有统计学意义;接种24h后,CD55hig细胞贴壁率为95.5±1.1%,CD55low细胞贴壁率为96.3±0.96%,P>0.05,无统计学差异。接种12h后,显微镜下观察CD55hig细胞多为球形呈悬浮状态,而CD55low细胞已贴壁为梭形。
     4 CD55hig细胞和CD55low细胞均具有一定克隆形成的能力,CD55hig细胞在培养一周后克隆形成率为20.04±1.07%,低于CD55low细胞27.14±1.07%,P=0.000,差异有统计学意义。
     5流式分析发现,CD55hig细胞中G0/G1静止期细胞占85.4±3.37%,明显高于CD55low细胞(58.6±2.55%)及MCF-7细胞(70.73±4.21%),P值均<0.05 ,有统计学差异。CD55hig细胞处于增殖期的S期细胞仅占13.93±3.45% ,明显低于CD55low细胞( 40.36±2.56% )及MCF-7细胞(24.93±2.86%),P值均<0.05,差异有统计学意义。
     6不同血药浓度化疗药物对MCF-7细胞杀伤效果不一,多西他赛组5个浓度中以10%血药浓度对MCF-7细胞杀伤效果最高57.3±4.75%,表阿霉素组和氟尿嘧啶组以100%血药浓度最高,分别为40.2±2.46%和26.6±2.44%,高于其他浓度杀伤效果。
     7 (10%血药浓度)多西他赛、(100%血药浓度)表阿霉素和(100%血药浓度)氟尿嘧啶对CD55hig亚群细胞杀伤率为28.5±0.04%、18.4±0.02%和12.4±0.01%,明显低于其对MCF-7细胞杀伤率,P值均小于0.05,差异有统计学意义;对CD55low亚群细胞杀伤率为58.8±0.06%、45.4±2.28%和34.3±0.01%,P值均大于0.05,无统计学差异。
     8 CIK细胞对三组细胞都有杀伤,CIK细胞对MCF-7、CD55hig亚群细胞和CD55low亚群细胞杀伤率为39.15±3.30%、42.72±4.36%和46.41±4.67%, CD55low亚群细胞组杀伤率与MCF-7组(P=0.000)和CD55hig亚群细胞组杀伤率(P=0.046)相比,P值均小于0.05,差异有统计学意义;MCF-7组和CD55hig亚群细胞组杀伤率相比,P=0.053,无统计学差异。
     9诱导前的TDLNCs中,CD3+和CD8+细胞含量分别为73.93±2.18和32.78±3.21%;诱导后DC-Ag-TDLNC组中CD3+和CD8+细胞含量分别为82.67±2.79%和62.54±2.51%,诱导后CD3+、CD8+T细胞含量均明显升高, P<0.01。诱导前TDLNCs中CD4+细胞含量为27.3±2.58%;CD4+细胞含量无明显变化,P>0.05。
     10特异性CTL对CD55hig、CD55low和MCF-7细胞杀伤率分别为52.86±4.45%、22.41±2.83%、21.67±4.15%,CD55hig组明显高于CD55low和MCF-7组细胞的杀伤率,P<0.001,CD55low和MCF-7组细胞的杀伤率相比较无统计学意义,P=0.629。
     11多西他赛(10%血药浓度)、CIK细胞和特异性CTL细胞对CD55hig细胞的杀伤率分别为:28.5±0.04%、42.72±4.36%和52.86±4.45%;特异性CTL细胞组与CIK细胞组和多西他赛(10%血药浓度)组相比较,P均为0.000,CIK细胞组与多西他赛(10%血药浓度)组相比较,P=0.000。
     12本实验测得原发性乳腺癌肿瘤组织中CD55hig比例为0.21±0.20%,较乳腺癌细胞株MCF-7所测CD55hig的比例2.12±0.39%低。
     13乳腺癌患者组织中CD55hig比例随着淋巴结转移数目增加而增高,0个腋淋巴结转移组、1~3个腋淋巴结转移组和≥4个腋淋巴结转移3组间比较,P =0.000,差异有统计学意义,三组之间两两比较,均有统计学差异。
     14乳腺癌患者组织中C-erbB2(++-+++)组CD55hig比例为0.277±0.034%,较C-erbB2(-)组的CD55hig比例(0.028±0.005%)有明显的升高,P=0.000,差异有统计学意义。
     15 CD55hig比例在乳腺癌不同病理类型之间、不同临床分期之间、ER(-)与ER(+-+++)组之间、PR(-)与PR(+-+++)组之间、Ki67(-),Ki67(+-+++)组之间的差异均无统计学意义,P>0.05。
     16本研究发现,CD55hig比例在术前化疗组与未化疗组的比较中无统
     计学差异,P =0.448。结论:
     1以核酸染料Hoechst33342标记乳腺癌细胞株MCF-7细胞,流式细胞检测发现有淡染的SP细胞,verapamil阻断后此部分细胞明显减少,SP细胞为肿瘤干细胞。
     2 CD55单克隆抗体标记分选出的SP和MP细胞,检测发现SP细胞CD55荧光值高于MP细胞的荧光值,以此值检测CD55单克隆抗体标记的未分选的MCF-7细胞,发现存在少量的CD55hig细胞。
     3 CD55hig细胞大多数处于静止期、不贴壁呈悬浮状态和克隆遗传性,CD55hig细胞具有肿瘤干细胞生物学特性。
     4三种化疗药物对乳腺癌细胞系MCF-7、CD55hig和CD55low细胞均有杀伤效果,但是由于CD55hig细胞绝大多数处于细胞分裂静止期,化疗药物对其杀伤效果不显著。
     5 CIK细胞对乳腺癌细胞系MCF-7、CD55hig和CD55low细胞杀伤效应有显著差异,CIK细胞杀伤效果高于化疗药物,但是没有特异性杀伤效果。
     6经CD55hig细胞冻融抗原刺激诱导的DCs可以使TDLNCs增殖、分化为肿瘤抗原特异性CTLs,针对CD55hig细胞具有较强的杀伤效应,而对其他类型的肿瘤细胞无明显杀伤效应。
     7特异性CTL细胞对CD55hig细胞具有特异性杀伤效果,其杀伤效果高于CIK细胞和化疗药物,为乳腺癌干细胞的治疗提供新的方法和依据。
     8流式细胞检测乳腺癌组织中CD55hig细胞比例为0.21±0.20%。
     9乳腺癌组织中CD55hig细胞比例与腋淋巴结转移的数量、C-erbB2的表达呈正相关联性,与病理类型、临床分期、ER、PR、KI67表达及术前化疗无明显相关,推测CD55hig比例与乳腺癌的转移和病情的进展有相关联性。
Objective: Tumor stem cells, which reside in tumor tissue with self renewal and differentiated potentiality, are the initiator cells of tumor’s formation and maintain tumor growth,induce recurrence and metastatic. Trough separation and identifacation on breast cancer stem cell, we could recognise those characteristic clearer and find new method to therapy tumor and elevate cure rate. In theory of tumor stem cell, tumor forms of tumor stem cell’s abnormal generation and differentiation. Conventional therapy only eliminate the non-tumorigenic tumour cell in multiplication period to make the tumor diminute even disappear. However, when stop treating, the tumor stem cell with chemical sproof could generate to tumor again and disseminate like dandelion. IF we remove the tumor stem cell, the tumor will extinct forever and radical cure the tumor. Recently, immunotherapy will become another major method of cancer treatment. The effective cells using in immunotherapy include lymphakine active killer cells (LAK), tumor-infiltrating lympjocytes(TIL), cytokine induced killer cells(CIK), and specific cytotoxicity T lymphocytes(CTL). The researches have showed that dendritic cell(DC) can greatly process tumor antigen, DC loaded by tumor antigen can activate host immune, promote the activity and specificity of CTL to kill tumor cells. DC, as the professional antigen processing cells, play a center role in immune reaction. The im-matured DCs will be activated to matured DCs after captured antigen, which express MHC classⅠand classⅡmolecule、co-stimulatory molecule B7-1(CD80) and B7-2 (CD86)、adhesion molecule CD54 (ICAM-1) and CD50 (ICAM-3) in the cell surface. After presenting the antigen peptide to CD4+ and CD8+ T cells, DCs induce the T cells become to specific cytotoxicity T cells,which can excrete cytokines and produce Th1 type immune response to educe the anti-tumor
     effect. We adopt flow cytometry determing the mean fluorecence density of cell highly exprssing CD55 in breast cancer MCF-7 cell line and sorting CD55hig cells, to analyze whether the CD55hig cells possess characteristics of cancer stem cells, detect the existence and the ratio in the primarily breast cancer and find a new method for isolate breast cancer stem cells in breast cancer tumor tissue. DCs and specific CTLs were induced from single-nucleus cells of axillary lymph nodes and analyzed by killing test in vitro. The aim is hoping to find a new method to treat breast cancer stem cells.
     Method: Part one: Biological characteristics of CD55hig side population in human breast cancer line MCF-7.
     In this rsearch, we cultivated the human breast cancer MCF-7 cells and addined nucleic dye Hoechst33342 and verapami, detected the ratio of SP and MP subpopulation cell by flow cytometry and separated them. Then SP and MP cells were labeled with anti-CD55 monoclonal antibody and detected the mean fluorescent intensity. We used anti-CD55 monoclonal antibody labling unsorted MCF-7 cells, detected the proportion of CD55hig side population cells and sorted them to detect their biological characteristics such as cell adherence efficiency, cloning efficiency and cell cycle, to analyze whether the CD55hig cells possess characteristics of cancer stem cells.
     Part two: Killing activity of chemotherapeutics and immunity on CD55hig side population in human breast cancer line MCF-7.
     Human breast cancer line MCF-7 cells were killed by docetaxel, epirubicin and fluorouracil in different blood drug level (10%, 25%, 50%, 75% and 100%). Then choosed the maximal killing blood drug level chemotherapeutics to kill CD55hig cells and CD55low cells, detected the lethal effect by Acid Phosphatase Assay; We drew-off human peripheral blood , abrupted and gathered the mononuclearcell with lympholeukocyte separating medium,cultured them with IFN-γ(1500 U/ml)、anti-CD3(100 ng/ml)、IL-1α(100 U/ml) and IL-2(1000 U/ml) and detected the phaenotype molecule of CIK cells such as: CD3, CD4, CD8 and CD56. After 14 days, we collected the CIK cells and kill the CD55hig cells and CD55low cells with effector cell vs target cell 40:1, the kill ratio were detected by with non-radioaction cytotoxic analytical reagent kite; 1 or 2 lymphonodes strictly with asepsis were taked in operation. Then it was separated single-nucleus cells(SNC) in albuginea rete. The SNC from lymphonodes were cultured in 10% FCS RPMI1640. After adherencing 2 hours, the attached cells were cultured with rhGM-CSF(1000U/ml), rhIL-4(200U/ml) and TNF-α(200U/ml) to be induced into DCs. The unattached cells were cultured with rhIL-2(200U/ml) induce into tumor draining lymph node cells(TDLNCs). CD55hig cells seperated and collected from MCF-7 cells were made for the breast cancer freeze-thawing antigen. DCs were stimulated by the cancer freeze-thawing antigen in order to load the tumor antigen, then, were co-cultured with TDLNCs to derivation tumor antigen specific CTLs. DCs suspension were harvested at the 1st day and the 7th day in vitro culturing and co-culturing with PE-CD1a、PE-CD83、FITC-CD86 MoAb, the cytophenotype was detected with flow cytometry(FCM). The cytotoxicity of the CTLs to CD55hig cells and CD55low cells were determined with non-radioaction cytotoxic analytical reagent kite, to analysis the function of differentiated DCs and specificity of the CTLs.
     Part three: The detection of stem-like cells in primary breast cancer tissue and its clinical significance.
     Chosen 45 Patients with breast cancer which came from the 1st surgery department in my hospital, from February in 2008 to January in 2009. Small amounts breast cancer tissue were taked in operation, Then it was separated single-nucleus cells (SNC) in albuginea rete. We joined in fluid of both immunofluorescence anti-CD55 and anti-CK19 to label the cells and detected the ratio of the high expression of CD55(CD55hig) by flow cytometry. Combined the clinical data of patients , we analyzed the experimental data.
     Results:
     1. After dyed by Hoechst33342,the percentage of SP cells contained in MCF-7 was 4.34±0.59%. The percentage of SP significantly degrated when blocked by verapamil(0.1±0.07%).
     2. The mean fluorescent intensity of SP and MP cells labeled with anti-CD55 monoclonal antibody was 100.85±4.57 and 50.51±4.75, respectively. Unsorted MCF-7 cells were labeled with anti-CD55 monoclonal antibody. The proportion of CD55hig cells was 2.12±0.39%.
     3. The adherence efficiency of CD55low cells at 6h, 12h, 18h and 24h were 40.87±1.55%, 55.40±2.46%, 85.10±3.36% and 96.3±0.96%, the adherence efficiency of CD55hig cells at 6h, 12h, 18h and 24h were 29.53±1.20%, 46.40±2.99%, 77.2±1.07% and 95.5±1.1%. The adherence efficiency of CD55low cells were higher than CD55hig cells at 6h, 12h and 18h. There was statistical difference between the two groups, (P<0.05). The adherence efficiency of CD55hig cells and CD55low cells at 24h didn’t appear marked difference( P>0.05); the CD55hig cells were mostly spherica and CD55low cells were spindle after planted 12h.
     4. The Cloning efficiency of CD55hig cells at one week was 20.04±1.07%, which was lower than CD55low cells. There was statistical difference between the two groups(P<0.05).
     5. The percentage of G0/G1 in CD55hig cells was 85.4±3.37%, which was higher than CD55low cells(58.6±2.55%) and unsorted MCF-7 cells (70.73±4.21%), there was statistical difference between them, P<0.05. The percentage of S in CD55hig cells was 13.93±3.45%,which was lower than CD55low cells(40.36±2.56%) and unsorted MCF-7 cells (24.93±2.86%), there was statistical difference between them, P<0.05;
     6. The killing effect of chemotherapeutics on MCF-7 cells in different blood drug level were not same. In docetaxel group, the maximal blood drug level(10% blood drug level) killing MCF-7 cells was 57.3±4.75%. In epirubicin and fluorouracil group, the maximal blood drug level(100% blood drug level) killing MCF-7 cells was 40.2±2.46% and 26.6±2.44%.
     7. The killing effect on CD55hig cells of docetaxel(10% blood drug level), epirubicin(100% blood drug level) and fluorouracil(100% blood drug level) were 28.5±0.04%, 18.4±0.02% and 12.4±0.01%, which were lower than on MCF-7 cells Obviorsly, there was statistical difference between them, P<0.05. The killing effect on CD55low cells of docetaxel(10% blood drug level), epirubicin(100% blood drug level) and fluorouracil(100% blood drug level) were 58.8±0.06%, 45.4±2.28% and 34.3±0.01%. There were no significant difference, P>0.05.
     8. The killing ratio on MCF-7 cells, CD55hig cells and CD55low cells of CIK cells were 39.15±3.30%, 42.72±4.36% and 46.41±4.67%. The killing ratio of CD55low cells group compared to MCF-7 cells group(P=0.000) and CD55hig cells group(P=0.046), there was statistical difference between them, P<0.05, there were significant difference. Compared the killing ratio of MCF-7 cells group with CD55hig cells group, P=0.053, there were no significant difference.
     9. The percentage of CD3+ and CD8+ T cells in TDLNCs were 73.93±2.18 and 32.78±3.21% before stimulation with tumor antigen. and were 82.67±2.79% and 62.54±2.51% after stimulation with rhIL-2 and Ag-DCs. The percentage of CD3+ and CD8+ T cell could be increased by the Ag-DCs. There was statistical difference between them, P<0.01. The percentage of CD4+ T cells in TDLNCs was 27.3±2.58% before stimulation with tumor antigen, however the percentage were 17.49±4.21% after stimulation. The percentage of CD4+ T cells wasn’t heighten after induced by comparison, there were no significant difference, P>0.05.
     10. The killing ratio on MCF-7 cells, CD55hig cells and CD55low cells of special CTL cells were 52.86±4.45%,22.41±2.83% and 21.67±4.15%. The killing ratio of CD55hig cells group was higher than MCF-7 cells group and CD55low cells group, there was statistical difference between them, P<0.001; Compared MCF-7 cells group with CD55low cells group, P=0.629, there were no significant difference.
     11. The killing ratio of docetaxel(10% blood drug level), CIK cells and special CTL cells on CD55hig cells were 28.5±0.04%, 42.72±4.36% and 52.86±4.45%; Compared special CTL cells group with docetaxel(10% blood drug level) and CIK cells group, P=0.000. Compared docetaxel(10% blood drug level) and CIK cells group, P=0.000.
     12. The mean of the rate of CD55hig cells in primary breast cancer tissue was 0.21%, which was lower than the rate in breast cancer MCF-7 cells (2.12±0.39%).
     13. The ratio of CD55hig cells were increased with increased the number of the transferring axillary lymph nodes. There were statistically significance among non-metastatic axillary lymph node group、one to three axillary lymph nodes metastasis group and more than three axillary lymph nodes metastasis group, P =0.000.
     14. The ratio of CD55hig cells in C-erbB2(++~+++) group was 0.277±0.034%, higher than the ratio of CD55hig cells in C-erbB2(-~+) group the difference was statistical significant, P =0.000.
     15. There were no relationship between the ratio of CD55hig cells and pathology category, clinical stage, ER(-) and ER(+~+++), PR(-) and PR(+~+++), Ki-67(-) and Ki-67(+~+++), P>0.05.
     16. In the research, there was no relationship between the rate of CD55hig cells and preoperative chemotherapy,P =0.448. Conclusions:
     1. Hypochromatic sp cells are detect in human breast cancer line MCF-7 cells dyed by Hoechst33342. The percentage of SP cells obviously decreased when blocked by verapamil. SP cells contain cancer stem cells.
     2. The mean fluorescent intensity of SP is higher than MP cells when labeled with anti-CD55 monoclonal antibody. Unsorted MCF-7 cells are labeled with anti-CD55 monoclonal antibody by flow cytometer, we find a small amount of CD55hig cells.
     3. CD55hig cells are more nonadherent, quiensent and clonogenetic. So CD55hig cells have biological characteristics of cancer stem cells.
     4. Three chemotherapeutics have certainly killin effect on MCF-7 cells, CD55low cells and CD55hig cells. But most CD55hig cells don’t divide, the killing effect of chemotherapeutics on CD55hig cells is not significant.
     5. Although the killing effect of CIK cells on MCF-7 cells, CD55low cells and CD55hig cells are significant, which are higher than chemotherapeutics, the special killing effect are not significant.
     6. DCs induced by CD55hig cells freeze-thawing antigen could make TDLNCs generate to tumor antigen special CTLs, which have significant killing effect on CD55hig cells and non significant killing effect on other category tumor cells.
     7. Special CTLs have special killing effect on CD55hig cells, heigher than CIK cells and chemotherapeutics.This provids new method to cure breast cancer stem cells.
     8. The rate of CD55hig cells in breast cancer tissue is 0.21±0.20%.
     9. The rate of CD55hig cells in breast cancer tissue relates to the axillary lymph nodes metastasis and C-erbB2 protain expressions. There are no relationship to pathology category, clinical stage, expression of ER, PR and Ki-67 and preoperative chemotherapy. Those suppose that the rate of CD55hig cells relates to the metastasis and advancement of breast cancer.
引文
1 Al-Hajj M,Clarker MF. Self-renewal and solid tumor stem cells. Oncongene. 2004, 23(43),7274-7282.
    2 Bonnet D, Dick JE. Human acute myeloid leukaemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med, 1997,3(7):730-743.
    3 Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA, 2003, 100 (7): 3983-3988.
    4 Kondo T, setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA,2004. 101 (3):781-786.
    5 Zhou S, Schuetz JD, Bunting KD, et al. The ABC transporter Bcrp1/ ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of t he side2population phenotype. Nat Med, 2001, 7(9): 1028- 1034.
    6许健,王水,许立生,等.乳腺癌细胞系中肿瘤干细胞相关亚群初步研究.南京医科大学学报, 2007,27(4):350-254.
    7 A. Nicholson-Weller, J. Burge, D.T. Fearon, et al. Isolation of a human erythrocyte membrane glycoprotein with decay-accelerating activity for C3convertases of the complement system, J. Immunol. 1982,129, 184-189.
    8 Jing-xian Xu, Eiichi M, Yalan L, et al. High tolerance to apoptotic stimuli induced by serum depletion and ceramide in side-population cells: High expression of CD55 as a novel character for side-population. Experimental Cell Resrar, 2007, 313 (9):1877-1885.
    9 Emens LA, Reilly RT, Jaffee EM. Breast cancer vaccines: maximizing cancer treatment by tapping into host immunity. Endocrine-Related Cancer, 2005, 12(1):1-17.
    10 Bonnet D, Dick JE. Human acute myeloid leukemia is organized asa hierarchy that originates from a prinutivc hemutopoielic tell.Nat Med, 1997, 3 (7):730-737.
    11 Goodell MA,Brose K,Paradis G,et al.Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo.J Exp Med. 1996,183(4):1797-1806.
    12 Hadnagy A, Gaboury L, Beaulieu R,et al. SP analysis may be used to identify cancer stem cell populations. Exp Cell Res. 2006; 312(19): 3701 -3710.
    13 Triel C, Vestergaard ME, Bolund L, et al. Side population cells in human and mouse epidermis lack stem cell characteristics. Exp Cell Res. 2004; 295 (18): 79-90.
    1 Jones RJ, MatsuiW. Cancer stem cells: from bench to bedside. Biol Blood Marrow Transp lant, 2007, 13(1): 47-52.
    2 Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer, 2002, 2(1):48-58.
    3 Soltysova A, Altanerova V, Altaner C. Cancer stem cells. Neoplasma, 2005, 52(6): 435-440.
    4 Michael D, Tito F, Susan B. Tumor stem cells and drug resistance. NatRev, 2005, 5 (4): 275-284.
    5 Leonard GD, Fojo T, Bates SE. The role of ABC transporters in clinical practice. Oncologist, 2003, 8(5):411-424.
    6 Ohno R, Asou N, Ohnishi K. Treatment of acute promyelocytic leukemia: strategy toward further increase of cure rate. Leukemia, 2003, 17(8): 1454- 1463.
    7 Farnie G, Clarke, Spence K, et al. Novel cell culture technique for primary ductal carcinoma in situ: role of notch and ep idermal growth factor re2cep tor signaling pathways. J Natl Cancer Inst, 2007, 99(8):616-627.
    8 Dean M, Rojo T, Bates S.Tumour stem Cells and drug resistance.Nat Rev Cancer, 2005, 5 (4):275-284.
    9 Zhou S, Schuetz JD, Bunting KD, et a1. The ABC transporter Bcrpl/ ABCG2 is expressed in a wide varlet’of stem ceils and is a molecular determinant of the side-population phenotype. Nat Med, 2001, 7(9):1028- 1034.
    10 Costello RT, Mallet F, Gaugler B, et al. Human acutemyeloid leukemia CD34+/CD38- progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Res, 2000,60 (16): 4403- 1441.
    11 Yu Fengyan, Yao Herui, Zhu Pengcheng, et al. Iet-7 regulates self renewal and tumori- genicity of breast cancer cells. Cell, 2007, 131(6):1109-1123.
    12李治,刘春萍,贺艳丽,等.乳腺癌干细胞多药耐药基因表达及意义.肿瘤,2008,28(2):129-131.
    13 Mohamadzadeh M, Ronald L. Dendritic cells: In the forefront of immunopathogensis and vaccine development-A review. J Immune Based Ther Vaccine, 2004, 2(1): 1-14.
    14 Dallal RM, Lotze MT. The dendritic cell and man cancer vaccine. Curr Opin Immunol, 2000, 12(5): 583-588.
    15 Chong H, Hutchinson G, Hart IR, et al. Expression of B7 co-stimulatory molecules by B16 melanoma results in a nature killer cell-dependentsystemic immunity only against B7 expressing tumors. Br J Cancer, 1998, 78(8): 1043-2105.
    16 Tsuge T, Yamakawa M, Tsukamoto M. Infiltrating dendritic/Langerhans cells in primary breast cancer. Breast Cancer Res Treat, 2000, 59(2): 141- 152.
    17段学燕,龙金华,肖静,等.肿瘤微环境对树突细胞功能状态的影响.贵阳医学院学报,2004,29(5): 385-388.
    18徐禹,周福洋,吴建平,等.抗原致敏树突状细胞诱导CTL对MCF-7细胞的体外杀伤效应.武汉大学学报·医学版, 2008, 29(4): 463-466.
    19 Jefford M, Maraskovsky E, Cebon J, et al. The use of dendritic cells in cancertherapy. Lancet, 2001, 2(6): 343-353.
    20张喜梅,周福洋,吴建平,等. DC活化淋巴细胞对自体乳腺癌细胞的杀伤作用.肿瘤防治研究, 2008, 35(7): 457-459.
    21韩超峰,曹雪涛.肿瘤诱导的树突状细胞功能缺陷及机制.中国肿瘤生物治疗杂志,2005, 12(2): 89-93.
    22 Heiser A, Coleman D, Dannull J. et al. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL reponses against metastatic prostate tumors. J Clin Invest, 2002, 109(3): 409-417.
    23刘运江,张建立,单保恩,等.乳腺癌患者腋下淋巴结来源的DC诱导自体特异性CTL实验研究.细胞与分子免疫学杂志,2007,23(1):60-62.
    24刘运江,张建立,单保恩,等.负载乳腺癌细胞冻融抗原的DC对CTL体外特异性杀伤活性的影响.中国免疫学杂志,2007,23(8):693-696.1 Xu JX, Morii E, Liu Y, et al. High tolerance to apoptotic stimuli induced by serum depletion and ceramide in side-population cells: high expression of CD55 as a novel character for side-population. Exp Cell Res, 2007, 313(9): 1877-1885.
    2 Blair A, Hoqqe DE, Allice LE, et al. Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood, 1997, 89(9): 3104-3112.
    3 Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells. Nature,2001, 414(6859):105-101.
    4李治,黄韬,贺艳丽,等.乳腺癌干细胞逃逸化疗机制的研究.中华实验外科杂志.2007,24 (1):20-21.
    5 Dean M,Fo jo T, Bates S Tumour stem cells and drug resistance. Nat Rev Cancer, 2005,5 (4):275-284.
    6 Zhou S, Schuetz JD, Bunting KD, et al. The ABC transporter Bcrp1/ ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of t he side2population phenotype. Nat Med,2001,7(9): 1028- 1034.
    7 Pearson RD, Smith GH, Slavin S, et al. Evo-Devo and the evolution of cancer: A hypothesis for metamorphic therapies for the cancers of prolactininfluenced tumourigenesis: With special reference to glioblastoma multiforme (GBM). Med Hypotheses. 2009, 26(6):602-607.
    8 Charfe J, Ganestier C, Iovino F, et al. Breast cancer cell lines containfunctional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res, 2009, 69(4):1302-1313.
    9 Clarke MF, Morrison SJ, Wiclla Ms, et al.Isolation and use of solid tumor stem cell.USA:2002,111(9):56-59.
    10 Al-Hajj M, Wicha MS, Benito A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA, 2003, 100(7): 3983-3988.
    11 Kondo T, Setoquchi T, Taqa T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA, 2004, 101(3): 781-786.
    12 Sell S, Pierce GB. Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Invest, 1994,70:6-22.
    13 Patrawala L, Calhoun T, Schneider BR, et al. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res, 2005, 65(14): 6207-6219.
    14 Donev RM, Cole DS, Sivasankar B, et al. p53 regulates cellular resistance to complement lysis through enhanced expression of CD59. Cancer Res. 2006, 66(4):2451-2458.
    15 Mikesch JH, Schier K, Roetqer A, et al. The expression and action of decay-accelerating factor (CD55) in human malignancies and cancer therapy. Cell Oncol, 2006, 28(56): 223-232.
    16 Zhang J, Shen KW, Liu G, et al. Antigenic profiles of disseminated breast tumour cells and microenvironment in bone marrow. Eur J Surg Oncol, 2003, 29(2):121-126.
    17 Press MF, Bernstein L, Thomas PA, et al. HER-2/neu gene amplification characterized by fluorescence in situ hybridization: poor prognosis in node-negative breast carcinomas. Clin Oncol,1997,15: 2894-2904.
    18任军.认识肿瘤干细胞对治疗转移性乳腺癌的重要性。临床肿瘤学杂志,2006,11(10):721-723.
    1 Emens LA, Reilly RT, Jaffee EM. Breast cancer vaccines: maximizing cancer treatment by tapping into host immunity. Endocrine-Related Cancer, 2005, 12(1):1-17
    2 Al Hajj M, Becker MW, Wicha M, et al.Therapeutic implications of cancer stem cells.Curr O pin Genet Dev, 2004, 14(1):43-47
    3 Muller A, Homey B, Soto H ,et al .Involvement of chemokine receptors in breast cancer me- tastasis.Nature,2001,410(6824):50-56
    4 Taichman RS, Cooper C, Keller ET, et al.Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res, 2002, 62(6):1832-1837
    5 Kijima T, Maulik G,Ma PC,et al. Regulation of cellular proliferation, cytoskeletal function, and signal transduction through CXCR4 and c-Kit in sm all cell lung cancer cells.Cancer Res, 2002, 62(21):6304-6311
    6 Vogel G. Stem cell research. Rat brains respond to embryonic stem cells. Science, 2002, 295 (5553):254-255
    7 Tsai RY.A molecular view of stem cell and cancer cell self-renewal.Int J Biochem Cell Biol, 2004, 36(4):684-694
    8 Bonnet D, Dick JE. Human acute myeloid leukemia is organized asa hierarchy that originates from a prinutivc hemutopoielic tell.Nat Med, 1997, 3 (7):730-737
    9 Cox CV, Eve1y RS, Oakhill A, et al. Charactervation of acute lyntpho- blastic leukenita porgenitor cells. B lood,2004,104(9)2919-2925
    10 Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identifi- cation of tumori- genic breast cancer cells. Proc Natl Acad Sci USA, 2003, 100 (7): 3983-3988
    11 Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996; 183(4): 1797-1806
    12 Zhou S, Schuetz J D, Bunting K D, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of t he side2population phenotype. Nat Med, 2001, 7(9): 1028 -1034
    13 Alvi AJ, Clayton H, Joshi C, et al. Functional and molecular characterisa- tion of mammary side population cells. Bresat Cancer Res, 2003, 5(1): R1- 8
    14 Al Hajj M, Clarker MF. Self-renewal and solid tumor stem cells. Oncogene, 2004, 23 (43): 7274-7282
    15许健,王水,许立生,等.乳腺癌细胞系中肿瘤干细胞相关亚群初步研究.南京医科大学学报,2007,27(4):350-354
    16 L.G. Durrant, M.A. Chapman, D.J. Buckley, et al. Enhanced expression of the complement regulatory protein CD55 predicts a poor prognosis in colorectal cancer patients. Cancer Immunol Immunother. 2003,52 (10):638-642
    17 Y. Terui, T. Sakurai, Y. Mishima, et al. Blockade of bulky lymphoma- associated CD55 expression by RNA interference overcomes resistance to complement-dependent cytotoxicity with rituximab. Cancer Sci. 2006,97 (1):72-79
    18 R.D. Loberg, L.L. Day, R. Dunn, et al. Inhibition of decay-accelerating factor (CD55) attenuates prostate cancer growth and survival in vivo. Neoplasia,2006,8(1): 69-78
    19 Jing-xian Xu, Eiichi M, Yalan L, et al. High tolerance to apoptotic stimuli induced by serum depletion and ceramide in side-population cells: High expression of CD55 as a novel character for side-population. Experimental Cell Resrar, 2007, 313(9):1877-1885
    20 Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, andcancer stem cells. Nature, 2001, 414(6859):105-111
    21 Ponti D, Costa A, Zaffaroni N, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/p rogenitor cell properties. Cancer Res, 2005, 65(13):5506-5511
    22 Dontu G, Wicha MS. Survival of mammary stem cells in suspensionculture: implications for stem cell biology and neoplasia. J Mammary Gland Biol Neop lasia, 2005, 10 (1): 75-86
    23李海志,易彤波,武正炎.悬浮培养联合化疗筛选乳腺癌干细胞.中国癌症杂志,2008,18(3):172-175
    24林叔陈,黄明主,张凤春等.乳腺癌干细胞的富集和相关基因表达.上海交通大学学报(医学版).2008,28(8):915-920
    25 Gou S, Liu T, Wang C, et al. Establishment of clonal colony-forming- assay for porpaga- tion of pancreatic cancer cells with stem cell porperties. J Pancreas, 2007, 34(4):429- 435
    26 Gems M, Vande VH, De BG, et al. The ellicienny of magnetic-activated cell sorting and fluorescence-activated cell sorting in the decontamination of testicular cell suspensions in cancer patients. J Hum Repord, 2007, 22 (3):733-742
    27 Cheng AJ, ChanL C, China KY,et al.Oarl cancer plasmn tumor marker identified with head- based affinity-fractionated proteomic technology.J Clin Chem,2005,51(12):2236-2244
    28 Ohyama M. Hair follicle bulge: a fascinating reservoir of epithelial stem cells.J Dermatol Sci, 2007, 46(2):81-89
    29 Abraham BK, Fritz P, McClellan M, et al. Prevalence of CD44+/CD24-/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res, 2005, 11 (3):1154-1159
    30 Hadnagy A, Gaboury L, Beaulieu R,et al. SP analysis may be used to identify cancer stem cell populations. Exp Cell Res 2006; 312(19): 3701 -3710
    31 Triel C, Vestergaard ME, Bolund L, et al. Side population cells in human and mouse epidermis lack stem cell characteristics. Exp Cell Res 2004; 295(18): 79-90
    32 Montanaro F, Liadaki K, Schienda J, et al. Demystifying SP cell purification: viability, yield, and phenotype are defined by isolation parameters. Exp Cell Res 2004;298(1): 144-154
    33 Mogi M, Yang J, Lambert JF, et al. Akt signaling regulates side populationcell phenotype via Bcrp1 translocation. J Bio Chem, 2003, 278(40): 39068 -39075
    34 Naylor CS, Jaworska E, Branson K, et al. Side population/ABCG2- positive cells represent a heterogeneous group of haemopoietic cells: implications for the use of adult stem cells in transplantation and plasticity protocols. Bone Marrow Transplant, 2005, 35(4):353-360
    35张玥,张凤春,张雁云.乳腺癌干细胞相关亚群细胞周期分析.肿瘤防治杂志, 2005, 12(24):1861-1864
    36 Turashvili G, Bouchal J, Burkadze G, et al. Wnt signaling pathway in mammary gland development and carcinogenesis. Pathobiology, 2006, 73 (5):213-223
    37 Dontu G, E-Ashry D, Wicha MS. Breast cancer, stem/progenitor cells and the estrogen receptor. Trends Endocerinol Metab, 2004, 15(5):193-197
    38 Liu BY, McDermott SP, Khwaja SS, et al. The transforming activity of Wnt effectors correlates with their abilityto induce the accumulation of mammary progenitor cells. Proc Natl Acad Sci U S A,2004,101(12):4158- 4163
    39李治,刘春萍,贺艳丽等.乳腺癌干细胞多药耐药基因表达及意义.肿瘤,2008,28(2):129-131
    40 Li Y, Welm B, Podsypanina K, et al. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells . Proc Natl Acad Sci USA,2003,100(26): 15853-15858
    41 Karim R, Tse G, Putti T, et a1. The significance of the Wnt pathway in the pathology of human cancers. Pathology, 2004, 36(2):120-128
    42 Machold R, Hayashi S, Rutlin M, et al. Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron. 2003,39(6):937-50
    43 Ramalho-Santos M, Melton DA, McMahon AP. Hedgehog signals regulate multiple aspects of gastrointestinal development. Development. 2000,127(12):2763-72
    44 Lewis MT. Hedgehog signaling in mouse mammary gland development and neoplasia. J Mammary Gland Biol Neoplasia. 2001,6(1):53-66
    45 Liu S, Dontu G, Wicha MS. Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res.2005,7(3):86-95
    46 Lewis MT, Veltmaat JM. Next stop, the twilight zone: hedgehog network regulation of mammary gland development. J Mammary Gland Biol Neoplasia.2004, 9(2):165-81
    47 Xie J, Johnson RL, Zhang X, et al. Mutations of the PATCHED gene in several types of sporadic extracutaneous tumors. Cancer Res 1997, 57 (12): 2369-2372
    48 Chang-Claude J, Dunning A, Schnitzbauer U, et al. The patched polymorphism Pro1315- Leu(C3944T)may modulate the association between use of oral contraceptives and breast cancer risk. Int J Cancer. 2003, 103(6):779-83
    49 Kubo M, Nakamura M, Tasaki A, et al. Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res 2004, 64(17):6071-6074
    50 Cohen MM Jr. The hedgehog signaling network. Am J Med Genet A.2003, 123(1):5-28
    51 Kubo M, Nakamura M, Tasaki A, et al. Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res,2004, 64(17):6071-6074
    52 Liu S, Dontu G, Mantle ID, et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res,2006, 66(12):6063-6071
    53 Soriano JV, Uyttendaele H, Kitajewski J, et al. Expression of an activated Notch4(int-3) oncoprotein disrupts morphogenesis and induces an invasive phenotype in mammary epithelial cells in vitro. Int.J Cancer, 2000, 86(5): 652-659
    54 Brennan K, Brown AM. Is there a role for Notch signalling in human breast cancer? Breast Cancer Res.2003, 5(2):69-75
    55 Weijzen S, Rizzo P,Brid M, et al. Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med.2002,8(9):979-86
    56 Dontu G, Abdallah WM, Foley JM, et al. In vitro propagation and transcrip-tional profiling of human mammary stem/progenitor cells.Genes Dev.2003, 17(10):1253-70
    57 Pece S, Serrisi M, Santolini E, et al. Loss of negative regulation by Numb over Notch is rele- vant to human breast carcinogenesis. J Cell Biol, 2004, 167(2):215-221
    58 Dontu G, Jackson KW, McNicholas E, et al. Role of Notch signaling in cell-fate determi- nation of human mammary stem/progenitor cells. Breast Cancer Res. 2004, 6(6):R605-615
    59 Nickoloff BJ, Osborne BA, Miele L. Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene,2003, 22(42): 6598- 6608
    60 Sheridan C, Kishimoto H, Fuchs RK, et al. CD44 (+) /CD24 (-) breast cancer cells exhibit enhanced invasive p roperties: an early step necessary formetastasis. Breast Cancer Res, 2006, 8(5): R59
    61 Holmgren L, O’Reilly MS, Folkman J. Dormancy of micrometastases: balanced prolifera- tion and apoptosis in the presence of angiogenesis suppression. NatMed, 1995, 1(2): 149-153
    62 BalicM, Lin1 H, Young L, et al. Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res, 2006, 12(19): 5615-5621
    63 Liu Rui, Wang Xinhao, Chen GY, et al. The prognostic role of a gene signature from tumorigenic breast cancer cells. N Engl J Med, 2007, 356 (3): 217-226
    64 Shipitsin M, Lauren L, Polyak K, et al. Molecular definition of breast tumor heterogeneity. Cancer Cell, 2007, 11(3): 259-273
    65 Gong Jifang, Di Lijun, Ren Jun, et al. Phenotype analysis and correlations of breast cancer stem cellswith drugresistant related molecularmarkers.Cytotherapy, 2007, 9 ( supp l):215
    66任军.清除及诱导乳腺癌干细胞是提高临床疗效的关键.北京大学学报(医学版),2008, 40(5): 449-452
    67 Jones RJ, MatsuiW. Cancer stem cells: from bench to bedside. Biol BloodMarrow Transplant, 2007, 13(1): 47-52
    68 Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer, 2002, 2(1):48-58
    69 Soltysova A, Altanerova V, Altaner C. Cancer stem cells. Neoplasma, 2005, 52(6): 435-440
    70 Michael D, Tito F, Susan B. Tumor stem cells and drug resistance. Nat Rev, 2005, 5 (4): 275 -284
    71 Leonard GD, Fojo T, Bates SE. The role of ABC transporters in clinical practice. Oncologist, 2003, 8(5):411-424
    72 Ohno R, Asou N, Ohnishi K. Treatment of acute promyelocytic leukemia: strategy toward further increase of cure rate. Leukemia, 2003, 17(8): 1454- 1463
    73 Farnie G, Clarke, Spence K, et al. Novel cell culture technique for primary ductal carcinoma in situ: role of notch and ep idermal growth factor re2cep tor signaling pathways. J Natl Cancer Inst, 2007, 99(8):616-627
    74 Massard C, Deutsch E, Soria JC. Tumor stem cell targeted treatment: elimination or differentiation. Ann Oncol, 2006, 17(11):1620-1624
    75 Shay JW, Wright WE. Telomerase therapeutics for cancer: challenges and new directions. Nat Rev Drug Discover, 2006, 5(7):577-584
    76 Dean M, Rojo T, Bates S.Tumour stem Cells and drug resistance.Nat Rev Cancer, 2005, 5(4):275-284
    77 Zhou S, Schuetz JD, Bunting KD, et a1. The ABC transporter Bcrpl/ ABCG2 is expressed in a wide varlet’of stem ceils and is a molecular determinant of the side-population phenotype. Nat Med, 2001, 7(9):1028- 1034
    78 Costello RT, Mallet F, Gaugler B, et al. Human acutemyeloid leukemia CD34+/CD38- progenitor cells have decreased sensitivity to chemotherapyand Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Res, 2000,60(16):4403- 1441
    79 Hirschmann JC, Foster AE, Wulf GG, et al. A distinct“side population”of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A, 2004, 101(39): 14228-14233
    80 Yu Fengyan, Yao Herui, Zhu Pengcheng, et al. Iet-7 regulates self renewal and tumori- genicity of breast cancer cells. Cell, 2007, 131(6):1109-1123
    81李治,黄韬,贺艳丽,等.乳腺癌干细胞逃逸化疗机制的研究.中华实验外科杂志. 2007,24(1):20-21
    82 Phillips TM, McBride WH, Pajonk F. The response of CD24(-/low)/ CD44+ breast cancer- initiating cells to radiation. J Natl Cancer Inst, 2006, 98(24):1777-1785
    83 Diehn M, Clarke MF. Cancer stem cells and radiotherapy: new insights into tumor radio- resistance. J Natl Cancer Inst. 2006, 98(24):1755-1777
    84 Woodward WA, Chen MS, Behbod F, et al. WNT/betacatenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci U S A, 2007, 104(2):618-623
    1 Feinmesser M, Sulkes A, Morgenstern S, et al. HLA-DR and beta 2 microglobulin expression in medullary and atypical medullary carcinoma of the breast: histopathologically similar but biologically distinct entities. J Clin Pathol, 2000,53(4):286-291
    2 Zia A, Schildberg FM, funke I. MCH classⅠnegative phenotype of disseminate tumor cells in bone marrow is associated with poor survival in ROMO breast cancer patients. Int J Cancer, 2001,93(4): 566-569
    3 Emtage PC, Wan Y, Muller W, et al. Enhanced interleukin-2 gene transfer immunotherapy of breast cancer by coexpression of B7-1 and B7-2. J Interferon Cytokine Res, 1998,18(11):927-932
    4 O’Connell J, Bennet MW, O’Sullivan GC, et al. Expression of the apoptosis-inducing ligands FasL and TRAIL in malignant and benign human breast tumor. Clin Diagn Lab Immunol, 1999,6(4):457-462
    5 Gutierrez LS, Eliza M, Niven-Fairchild T, et al. The Fas/FasL system: a mechanism for immune evasion in human breast caecinomas. Breast Cancer Res Treat, 1999;6(4):245-249
    6 Muschen M, Moers C, Warskulat U, et al. CD95 ligand expression in differentiated breast cancer. J Pathol, 1999,189(3):378-383
    7 Gutsmer R, Li W, Sutterwala S, et al. Tumor-Associated Glycoprotein That Blocks MHC classⅡ-Dependent Antigen Presrntation by Dendritic cells. The Journal ofImmunology, 2004, 173(2):1023-103
    8 Carlos CA, Dong HF, Howard OM, et al. Human Tumor Antigen MUC1 Is Chemotactic for Immature Dendritic Cells and Elicits Maturation but Does Not Promote Th1 Type Immunity. The Journal of Immunology, 2005, 175(3): 1628-1635
    9崔澄.参与肿瘤免疫逃逸的免疫抑制分子.临床肿瘤学杂志, 2005,10(5):545-548
    10 Steinman RM. The dendritic cells system and its role in immunogenicity. Annu Rev Immunol, 1991,9:217-296
    11 Mohamadzadeh M, Ronald L. Dendritic cells: In the forefront of immunopathogensis and vaccine development-A review. J Immune Based Ther Vaccine, 2002(1):1-14
    12 Lamont AG, Adorini L. IL-12: Key cytokine in immune regulation. Immunol Today, 1996,17(5):204-217
    13 Dallal RM, Lotze MT. The dendritic cell and man cancer vaccine. Curr Opin Immunol, 2000,12(5):583-588
    14 Candido KA, Shimizu K, McLaughlin JC, et al. Local Administration of Dendritic cells Inhibits Established Breast Tumor Growth: Implications for Apoptosis-inducing Agent. Cancer Res, 2001,61(1): 228-236
    15 Chapoval AI,Tamada K, Chen L. In vitro growth inhibition of a broad spectrum of tumor cell lines by activated human dendritic cells. Blood, 2000,96(8):2808-2813
    16 Gong J, Avigan D, Chen D, et al. Activation of antitumor cytotoxic T lymphocytes by fusions of human dendritic cells and breast carcinoma cells. Proc Natl Acad Sci USA, 2000,97(6):2715-2718
    17 Avigan D, Vasir B, Gong J,et al. Fusion Cell Vaccination of Patients with Metastatic Breast and Renal Cancer Induces Immunological and Clinical Responses. Clinical Cancer Res, 2004,10(14):4699-4708
    18 Chen Z, Huang H, Chang T, et al. Enhanced HER-2/neu-specific antitumor immunity by cotransduction of mouse dendritic cells with two genes encoding HER-2/neu and alpha tumor necrosis factor. Cancer Gene Ther, 2002,9(9):778-786
    19 Kontani K, Taguchi O, Ozaki Y, et al. Dendritic cell vaccine immunotherapy of cancer targeting MUC-1 mucin. Int J Mol Med, 2003,12 (4) :493-502
    20刘剑勇,张春燕,刘荫农,等.树突细胞对肿瘤浸润淋巴细胞抗乳腺癌免疫活性影响的研究.癌症,2003,22(10):1030-1033
    21 Nesselhut T, Matthes C, Mars D, et al. Cancer therepy with immature monocyte-derived dendritic cells in patients with advanced breast cancer. Clinical Oncology, 2005,23(16S):2528-2533
    22 Yoneyama H, Matsuno K, Matsushimaa K. Migration of dendritic cells. Int J Hematol, 2005,81(3):204-207
    23 Sakakura K, Chikamatsu K, Sakurai T, et al. Infiltration of dendritic cell and NK cells into the sentinel lymph nodes in oral cavity cancer. Oral Oncol, 2005,41(1):89-96
    24郭丽娟,孙立群,李桂芝,等.喉癌病人颈淋巴结免疫组化测试.耳鼻咽喉-头颈外科, 1996,3(2):116-118
    25 Peng Z, Li R, Li L, et al. Enhancing antitumor activity of tumor draining lymph node cells by autologous dendritic cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 2004,20(5):595-597
    26 Vuylsteke RJ, Molenkamp BG, Gietema HA, et al. Local administration of granulocyte/macrophage colony-stimulating factor increase the number and activation state of dendritic cells in the sentinel lymph node of early-stage melanoma. Cancer Res, 2004,64 (22):8456-8460
    27 Li Q, Carr AL, Donald EJ, et al. Synergistic effects of IL-12 and IL-18 in skewing tumor-reactive T-cell responses towards a type I pattern. Cancer Res, 2005,65(3):1063-1070
    28 Kimura H, Dobrenkov K, Iida T, et al. Tumor draining lymph nodes of primary lung cancer patients: a potent source of tumor specific killer cells and dendritic cells. Anticancer Res, 2005,25(1A):85-94
    29 Skitzki J, Craig RA, Okuyama R, et al. Donor cell cycling, trafficking, and accumulation during adoptive immunotherapy for murine lung metastases. Cancer Res, 2004,64(6):2183-2191
    30 Ruttinger D, Li R, Urba WJ, et al. Regression of bone metastases following adoptive transfer of anti-CD3-activated and IL-2-expanded tumor vaccine draining lymph node cells. Clin Exp Metastasis, 2004, 21(4):305-312