新型生物人工肝病毒安全性的实验探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:乳糖酰基壳聚糖纳米纤维支架上猪肝细胞和MSCs共培养体系的PERVs分泌及体外感染性分析
     目的:明确乳糖酰基壳聚糖纳米纤维支架上猪肝细胞和MSCs共培养体系的PERV分泌情况及体外感染能力。
     方法:将新鲜分离的猪肝细胞和传代至第3-5代MSCs细胞单独或2:1共培养接种于有或无乳糖酰基壳聚糖纳米纤维支架的6孔培养板,定为单纯肝细胞组(Hep)、肝细胞及MSCs共培养组(Co)、乳糖酰基壳聚糖纳米纤维支架+肝细胞组(Nano),乳糖酰基壳聚糖纳米纤维支架+肝细胞及MSCs共培养组(Nano-Co),连续培养7天。每天收集培养液检测逆转录酶(RT)活性,并通过RT-PCR和实时定量PCR测定PERV RNA水平。通过western blot检测培养液中PERV颗粒有无。细胞培养液体外孵育HEK293细胞以测定其感染性。
     结果:Hep组和Nano组PERV分泌10小时和第2天最高,后呈逐渐下降趋势,前者PERV分泌持续5天,而后者延长分泌至第6天。Co组和Nano-Co组PERV分泌在第2天后随时间逐渐增多,第6天达到PERV分泌高峰。经比较,Nano-Co组从第2天后PERV分泌量明显高于单纯肝细胞,且从第2天后每天PERV分泌量显著高于10H。体外感染实验发现Co组和Nano-Co在后期有微嵌合细胞外,并无HEK293细胞感染PERV。
     结论:猪肝细胞和MSCs共培养体系在两种培养条件下均能分泌PERV,而在乳糖酰基壳聚糖纳米纤维支架上培养2天后PERV分泌量随时间逐渐增多,且后期体外感染实验出现微嵌合状态,但并无表现出明显体外感染性。由此提示猪肝细胞和MSCs共培养体系置于乳糖酰基壳聚糖纳米纤维支架上培养2天内使用较为合理。
     第二部分:不同孔径血浆成分交换柱对新型BAL系统PERV透过情况的影响
     目的:检测采用不同孔径的血浆交换柱的PERV透过情况;为新型BAL系统血浆交换柱孔径的选择提供数据参考。
     方法:将猪肝细胞和MSCs以2:1混合共培养于基于乳糖酰基壳聚糖纳米膜支架的多层平板型生物反应器中,并构建新型BAL系统。依据血浆成分交换柱膜孔径将实验分为10nm组、20nm组、30nm组和35nm组。细胞灌入后4小时开始培养液循环,循环48小时。检测三循环培养液内逆转录酶(RT)活性、PERV RNA以及western blot测定PERV颗粒。同时用培养液体外孵育HEK293细胞以测定其感染性。
     结果:除30nm和35nm组在循环48小时后出现PERV RNA透过血浆成分交换柱和血浆分离柱外,在各孔径组各循环时间点均无PERV RNA、PERV蛋白和RT活性检出,提示无PERV透过各种孔径的血浆成分交换柱。体外感染实验除个别出现微嵌合状态外并无HEK293细胞感染PERV。
     结论:在拟定治疗期6小时内,并未见感染性PERV颗粒透过血浆成分交换柱,但在膜孔径>20nm的血浆成分交换柱中48小时时有PERV RNA的透过。所以,从病毒安全性方面考虑,采用膜孔径≤20nm的血浆成分交换柱是安全的。
     第三部分:新型BAL治疗应用的病毒安全性研究
     目的:评估新型BAL治疗应用的病毒安全性。
     方法:采用氨基半乳糖诱导建立急性肝功能衰竭犬动物模型。以基于乳糖酰基壳聚糖纳米纤维支架的多层平板型反应器为装置基础,以猪肝细胞-MSCs共培养体系为种子细胞构建新型BAL,并于建模第2天治疗实验犬,治疗时间3小时,抽取治疗前、治疗中和治疗后BAL系统内血浆及犬全血,并于治疗后1年处死取新、肝、脾、肺、肾组织。检测血浆、PBMCs以及各组织中PERV RNA、DNA、逆转录酶(RT)活性,组织样本加行western blot和免疫组化测定PERV衣壳蛋白gag p30。此外,各时间点血浆体外孵育HEK293细胞以测定其感染性。
     结果:PERV RNA、DNA、RT活性出现于循环3血浆中,提示循环3中存在细胞释放的PERVs.其余血浆样本均未检出PERV RNA、DNA、RT活性以及抗PERV抗体,而且体外感染中均无HEK293感染。此外,PBMCs和组织标本中各项PERV检验也均为阴性,提示治疗期间并无PERV透过血浆成分交换柱而感染实验犬。
     结论:新型BAL治疗急性肝功能衰竭实验犬模型后并无动物感染PERV,说明新型BAL在治疗应用中具有可靠地在体病毒安全性,为将来该系统的临床试验提供了安全性证据。
Part 1:Production and infectivity of PERVs by the co-culture system of porcine hepatocytes and MSCs with galactosylated chitosan nanofiber scaffolds
     AIM:To detect the production and infectivity of PERVs released by the co-culture system of porcine hepatocytes and MSCs with galactosylated chitosan nanofiber scaffolds.
     METHODS:The primary porcine hepatocytes or the mixed suspension of hepatocytes and MSCs during passages 3 to 5 (2:1) was cultured for 7 days in the 6 well cell culture plates with or without the galactosylated chitosan nanofiber scaffolds (defined as Hepatocytes (Hep) group, nanofiber scaffold (Nano) group, co-culture (Co) group and nanofiber scaffold & co-culture (Nano-Co) group, respectively). The culture media were collected daily to detect the reverse transcriptase (RT) activity with RT activity assay kits, the PERV RNA by RT-PCR and real-time PCR with the PERV specific primers, and the PERV protein gag p30 with Western blotting. In vitro infectivity of the supernatant was tested by incubating HEK293 cells.
     RESULTS:Two peaks of PERV expression were found at 10H and day 2 and followed by a regular decline in Hep group and Nano group. Presence of the virus lasted five days in the former group and six days in the later group. But in Co group and Nano-Co group, the PERV release gradually increased after 2 days to the peaks in Day 6. By Comparision, the virus levels in the Nano-Co group after two days were obviously higher than that in the Hep group or than that in the Nano-Co group at 10H.. No HEK293 cell was infected in vitro by the supernatant, although some microchimerism was observed in Co group and Nano-Co group.
     CONCLUSION:PERV release was confirmed in the co-culture system of porcine hepatocytes and MSCs, and when the cells were cultured with galactosylated chitosan nanofiber scaffolds the viruses increased gradually over time with a significant higher production after 2 days than simple primary hepatocytes or its level at 10H in Nano-Co group. However, no obvious in vitro infectivity was found although microchimerism appeared in the last few days. The results suggest it reasonable that the co-culture system of porcine hepatocytes and MSCs with galactosylated chitosan nanofiber scaffolds be used within two days after inoculation.
     Part 2:The influence of the plasma component separators with different membrane pore sizes on the transfer of PERVs in the novel BAL
     AIM:To detect the transfer of PERVs across the plasma component separators with different membrane pore sizes, and to find a plasma component separator with suitable pore size for the novel BAL.
     METHODS:The mixed suspension of hepatocytes and MSCs during passages 3 to 5 (2:1) was perfused into the novel multi-layer radial-flow bioreactor based on galactosylated chitosan nanofiber scaffolds to establish a new BAL system composed of three circuits. The BAL systems were divided into four groups according to the membrane pore size of the plasma component separators, that is, l0nm group,20nm group,30nm group and 35nm group. The media flow was initiated 4 hours after the cells were seeded and lasted 48 hours. The culture media in each circuit were collected at regular intervals to detect the reverse transcriptase (RT) activity with RT activity assay kits, the PERV RNA by RT-PCR and real-time PCR with the PERV specific primers, and the PERV protein gag p30 with Western blotting. In vitro infectivity of the supernatant was tested by incubating HEK293 cells.
     RESULTS:Except the transmission of PERV RNA through the plasma component separators and plasmafilters at 48 hours in 30nm group and 35nm group, no PERV RNA, PERV capsid protein, and RT activity was detected in the supernatant in the external circuit of all groups at any time point, suggesting no PERV particles across the plasma component separators with different membrane pore sizes. In addition, no HEK293 cell was infected in vitro by the supernatant, although some microchimerism was observed with the media from the Circuit 3.
     CONCLUSION:No transfer of infectious PERVs across the plasma component separators with different membrane pore sizes was found during the proposed duration of the treatment, but PERV RNA was able to pass through the plasma component separators with membrane pore sizes>20nm. Therefore, it may be safer in the virology to apply the plasma component separators with mambrane pore sizes≤20nm.
     Part 3:Study on the virological safety of the novel BAL in therapeutic application
     AIM:To evaluate the virological safety of the novel BAL in therapeutic application.
     METHODS:Five dogs of galactosamine-induced ALF were treated for 3 hours with the new BAL based on the new multi-layer radial-flow bioreactor containing galactosylated chitosan nanofiber scaffolds and co-system of porcine hepatocytes and MSCs in the second day after models established. The plasma in each circuit and the whole blood of the canines were collected before, during and after the treatment, and the dogs were sacrificed to retrieve the tissue of hearts, livers, spleen, lung and kidneys. These fuild samples were used to detect the PERV RNA, DNA, and RT activity, and the immunohistochemisty and western blot were performed to find the PERVs capsid protein gag p30 in the tissue. Furthermore, the HEK293 cells were incubated by the plasma to determine their In vitro infectivity.
     RESULTS:PERV RNA, DNA and RT activity found in the plasma of Circuit 3 revealed PERV particles released by the co-cultured cells existing in Circuit 3. No PERV RNA, DNA, RT activity and anti-PERV antibody was detected in he other plasma including that from the other circuits and the whole blood of the dogs, and no HEK293 cells was infected by all the plasma samples in vitro. In addition, the results of all PERV-related analysis in the PBMCs and the tissue were negative, suggesting no transfer of PERVs across the plasma component separators and no experimental dogs infected.
     CONCLUSION:No evidence of transmission of PERVs into the ALF canines with the treatment of the new BAL was observed, which proved the reliable virological safety of the new BAL.
引文
1. Lee WM, Squires RH, Jr., Nyberg SL, Doo E, Hoofnagle JH. Acute liver failure: Summary of a workshop. Hepatology 2008;47(4):1401-15.
    2. Khashab M, Tector AJ, Kwo PY. Epidemiology of acute liver failure. Curr Gastroenterol Rep 2007;9(1):66-73.
    3. Riordan SM, Williams R. Perspectives on liver failure:past and future. Semin Liver Dis 2008;28(2):137-41.
    4. Fiegel HC, Kaufmann PM, Bruns H, Kluth D, Horch RE, Vacanti JP, et al. Hepatic tissue engineering:from transplantation to customized cell-based liver directed therapies from the laboratory. J Cell Mol Med 2008;12(1):56-66.
    5. McKenzie TJ, Lillegard JB, Nyberg SL. Artificial and bioartificial liver support. Semin Liver Dis 2008;28(2):210-7.
    6. Gerlach JC, Zeilinger K, Patzer Ii JF. Bioartificial liver systems:why, what, whither? Regen Med 2008;3(4):575-95.
    7. Hughes RD, Williams R. Assessment of bioartificial liver support in acute liver failure. Int J Artif Organs 1996;19(1):3-6.
    8. Demetriou AA, Rozga J, Podesta L, Lepage E, Morsiani E, Moscioni AD, et al. Early clinical experience with a hybrid bioartificial liver. Scand J Gastroenterol Suppl 1995;208:111-7.
    9. Watanabe FD, Mullon CJ, Hewitt WR, Arkadopoulos N, Kahaku E, Eguchi S, et al. Clinical experience with a bioartificial liver in the treatment of severe liver failure. A phase I clinical trial. Ann Surg 1997;225(5):484-91; discussion 91-4.
    10. Sussman NL, Gislason GT, Conlin CA, Kelly JH. The Hepatix extracorporeal liver assist device:initial clinical experience. Artif Organs 1994;18(5):390-6.
    11. van de Kerkhove MP, Di Florio E, Scuderi V, Mancini A, Belli A, Bracco A, et al. Phase I clinical trial with the AMC-bioartificial liver. Int J Artif Organs 2002;25(10):950-9.
    12. Morsiani E, Pazzi P, Puviani AC, Brogli M, Valieri L, Gorini P, et al. Early experiences with a porcine hepatocyte-based bioartificial liver in acute hepatic failure patients. Int J Artif Organs 2002;25(3):192-202.
    13. Chamuleau RA, Deurholt T, Hoekstra R. Which are the right cells to be used in a bioartificial liver? Metab Brain Dis 2005;20(4):327-35.
    14. Tsiaoussis J, Newsome PN, Nelson LJ, Hayes PC, Plevris JN. Which hepatocyte will it be? Hepatocyte choice for bioartificial liver support systems. Liver Transpl 2001;7(1):2-10.
    15. Kobayashi N, Okitsu T, Tanaka N. Cell choice for bioartificial livers. Keio JMed 2003;52(3):151-7.
    16. Phua J, Lee KH. Liver support devices. Curr Opin Crit Care 2008;14(2):208-15.
    17. Armstrong JA, Porterfield JS, De Madrid AT. C-type virus particles in pig kidney cell lines. J Gen Virol 1971;10(2):195-8.
    18. Patience C, Takeuchi Y, Weiss RA. Infection of human cells by an endogenous retrovirus of pigs. Nat Med 1997;3(3):282-6.
    19. Le Tissier P SJ, Takeuchi Y, Patience C, Weiss RA. Two sets of human-tropic pig retrovirus. Nature 1997;389(6652):681-82.
    20. Edamura K, Nasu K, Iwami Y, Nishimura R, Ogawa H, Sasaki N, et al. Prevalence of porcine endogenous retrovirus in domestic pigs in Japan and its potential infection in dogs xenotransplanted with porcine pancreatic islet cells. J Vet Med Sci 2004;66(2):129-35.
    21. Lee JH, Webb GC, Allen RD, Moran C. Characterizing and mapping porcine endogenous retroviruses in Westran pigs. J Virol 2002;76(11):5548-56.
    22. Li Z, Ping Y, Shengfu L, Hong B, Youping L, Yangzhi Z, et al. Phylogenetic relationship of porcine endogenous retrovirus (PERV) in Chinese pigs with some type C retroviruses. Virus Res 2004; 105(2):167-73.
    23. Nyberg SL, Hibbs JR, Hardin JA, Germer JJ, Platt JL, Paya CV, et al. Influence of human fulminant hepatic failure sera on endogenous retroviral expression in pig hepatocytes. Liver Transpl 2000;6(1):76-84.
    24. Martin U, Kiessig V, Blusch JH, Haverich A, von der Helm K, Herden T, et al. Expression of pig endogenous retrovirus by primary porcine endothelial cells and infection of human cells. Lancet 1998;352(9129):692-4.
    25. McKane BW, Ramachandran S, Xu XC, Olack BJ, Chapman WC, Mohanakumar T. Natural antibodies prevent in vivo transmission of porcine islet-derived endogenous retrovirus to human cells. Cell Transplant 2004;13(2):137-43.
    26. Takeuchi Y, Patience C, Magre S, Weiss RA, Banerjee PT, Le Tissier P, et al. Host range and interference studies of three classes of pig endogenous retrovirus. J Virol 1998;72(12):9986-91.
    27. Wilson CA, Wong S, VanBrocklin M, Federspiel MJ. Extended analysis of the in vitro tropism of porcine endogenous retrovirus. J Virol 2000;74(1):49-56.
    28. Specke V, Rubant S, Denner J. Productive infection of human primary cells and cell lines with porcine endogenous retroviruses. Virology 2001;285(2):177-80.
    29. Wilson CA, Wong S, Muller J, Davidson CE, Rose TM, Burd P. Type C retrovirus released from porcine primary peripheral blood mononuclear cells infects human cells. J Virol 1998;72(4):3082-7.
    30. Martin U, Winkler ME, Id M, Radeke H, Arseniev L, Takeuchi Y, et al. Productive infection of primary human endothelial cells by pig endogenous retrovirus (PERV). Xenotransplantation 2000;7(2):138-42.
    31. Argaw T, Colon-Moran W, Wilson CA. Limited infection without evidence of replication by porcine endogenous retrovirus in guinea pigs. J Gen Virol 2004;85(Pt 1):15-9.
    32. van der Laan LJ, Lockey C, Griffeth BC, Frasier FS, Wilson CA, Onions DE, et al. Infection by porcine endogenous retrovirus after islet xenotransplantation in SCID mice. Nature 2000;407(6800):90-4.
    33. Deng YM, Tuch BE, Rawlinson WD. Transmission of porcine endogenous retroviruses in severe combined immunodeficient mice xenotransplanted with fetal porcine pancreatic cells. Transplantation 2000;70(7):1010-6.
    34. Clemenceau B, Jegou D, Martignat L, Sai P. Microchimerism and transmission of porcine endogenous retrovirus from a pig cell line or specific pathogen-free pig islets to mouse tissues and human cells during xenografts in nude mice. Diabetologia 2002;45(6):914-23.
    35. Pitkin Z, Mullon C. Evidence of absence of porcine endogenous retrovirus (PERV) infection in patients treated with a bioartificial liver support system. Artif Organs 1999;23(9):829-33.
    36. Paradis K, Langford G, Long Z, Heneine W, Sandstrom P, Switzer WM, et al. Search for cross-species transmission of porcine endogenous retrovirus in patients treated with living pig tissue. The XEN 111 Study Group. Science 1999;285(5431):1236-41.
    37. Kuddus R, Patzer JF,2nd, Lopez R, Mazariegos GV, Meighen B, Kramer DJ, et al. Clinical and laboratory evaluation of the safety of a bioartificial liver assist device for potential transmission of porcine endogenous retrovirus. Transplantation 2002;73(3):420-9.
    38. Di Nicuolo G, van de Kerkhove MP, Hoekstra R, Beld MG, Amoroso P, Battisti S, et al. No evidence of in vitro and in vivo porcine endogenous retrovirus infection after plasmapheresis through the AMC-bioartificial liver. Xenotransplantation 2005;12(4):286-92.
    39. van de Kerkhove MP, Di Florio E, Scuderi V, Mancini A, Belli A, Bracco A, et al. Bridging a patient with acute liver failure to liver transplantation by the AMC-bioartificial liver. Cell Transplant 2003;12(6):563-8.
    40. Irgang M, Sauer IM, Karlas A, Zeilinger K, Gerlach JC, Kurth R, et al. Porcine endogenous retroviruses:no infection in patients treated with a bioreactor based on porcine liver cells. J Clin Virol 2003;28(2):141-54.
    41. Sauer IM, Kardassis D, Zeillinger K, Pascher A, Gruenwald A, Pless G, et al. Clinical extracorporeal hybrid liver support-phase I study with primary porcine liver cells. Xenotransplantation 2003;10(5):460-9.
    42. Abu-Absi SF, Seth G, Narayanan RA, Groehler K, Lai P, Anderson ML, et al. Characterization of a hollow fiber bioartificial liver device. Artif Organs 2005;29(5):419-22.
    43. Di Nicuolo G, D'Alessandro A, Andria B, Scuderi V, Scognamiglio M, Tammaro A, et al. Long-term absence of porcine endogenous retrovirus infection in chronically immunosuppressed patients after treatment with the porcine cell-based Academic Medical Center bioartificial liver. Xenotransplantation 2010;17(6):431-9.
    44.冯瑞兵,王健,段钟平,赵军,刘青.实验用小型猪相关生物人工肝猪逆转录病毒感染的初步研究.中华传染病杂志2005;23(3):178-80.
    45. Wang HH, Wang YJ, Liu HL, Liu J, Huang YP, Guo HT, et al. Detection of PERV by polymerase chain reaction and its safety in bioartificial liver support system. World J Gastroenterol 2006; 12(8):1287-91.
    46. Liu Q, Liu Z, Dalakas E. Prevalence of porcine endogenous retrovirus in Chinese pig breeds and in patients treated with a porcine liver cell-based bioreactor. World J Gastroenterol 2005;11(30):4727-30.
    47.刘青,段钟平,韩大康,赵秀英,陈煜,冯瑞兵,鲍旭丽.猪肝细胞型生物人工肝治疗后猪逆转录病毒感染人体的追踪观察.中华检验医学杂志2003;26(8):460-62.
    48.陈钟,陈瑞新,丁义涛,田鹏鹏,周卉.新型生物人工肝系统治疗急性肝衰竭犬后猪内源性逆转录病毒传播的实验研究.南通大学学报(医学版2007;27(3):175-77.
    49. Chu XH, Shi XL, Feng ZQ, Gu ZZ, Ding YT. Chitosan nanofiber scaffold enhances hepatocyte adhesion and function. Biotechnol Lett 2009;31(3):347-52.
    50. Chu XH, Shi XL, Feng ZQ, Gu JY, Xu HY, Zhang Y, et al. In vitro evaluation of a multi-layer radial-flow bioreactor based on galactosylated chitosan nanofiber scaffolds. Biomaterials 2009;30(27):4533-8.
    51. Gu J, Shi X, Zhang Y, Chu X, Hang H, Ding Y. Establishment of a three-dimensional co-culture system by porcine hepatocytes and bone marrow mesenchymal stem cells in vitro. Hepatol Res 2009;39(4):398-407.
    52. Gu J, Shi X, Zhang Y, Ding Y. Heterotypic interactions in the preservation of morphology and functionality of porcine hepatocytes by bone marrow mesenchymal stem cells in vitro. J Cell Physiol 2009;219(1):100-8.
    1. Chu XH, Shi XL, Feng ZQ, Gu ZZ, Ding YT. Chitosan nanofiber scaffold enhances hepatocyte adhesion and function. Biotechnol Lett 2009;31(3):347-52.
    2. Gu J, Shi X, Zhang Y, Ding Y. Heterotypic interactions in the preservation of morphology and functionality of porcine hepatocytes by bone marrow mesenchymal stem cells in vitro. J Cell Physiol 2009;219(1):100-8.
    3. Moscoso I, Hermida-Prieto M, Manez R, Lopez-Pelaez E, Centeno A, Diaz TM, et al. Lack of cross-species transmission of porcine endogenous retrovirus in pig-to-baboon xenotransplantation with sustained depletion of anti-alphagal antibodies. Transplantation 2005;79(7):777-82.
    4. Blusch JH, Roos C, Nitschko H. A polymerase chain reaction-based protocol for the detection of transmission of pig endogenous retroviruses in pig to human xenotransplantation. Transplantation 2000;69(10):2167-72.
    5. Switzer WM, Shanmugam V, Chapman L, Heneine W. Polymerase chain reaction assays for the diagnosis of infection with the porcine endogenous retrovirus and the detection of pig cells in human and nonhuman recipients of pig xenografts. Transplantation 1999;68(2):183-8.
    6. van de Kerkhove MP, Germans MR, Deurholt T, Hoekstra R, Joziasse DH, van Wijk AC, et al. Evidence for Galalpha(1-3)Gal expression on primary porcine hepatocytes:implications for bioartificial liver systems. J Hepatol 2005;42(4):541-7.
    7. Galbraith DN, Kelly HT, Dyke A, Reid G, Haworth C, Beekman J, et al. Design and validation of immunological tests for the detection of Porcine endogenous retrovirus in biological materials. J Virol Methods 2000;90(2):115-24.
    8. Czauderna F, Fischer N, Boller K, Kurth R, Tonjes RR. Establishment and characterization of molecular clones of porcine endogenous retroviruses replicating on human cells. J Virol 2000;74(9):4028-38.
    9. Nyberg SL, Hibbs JR, Hardin JA, Germer JJ, Platt JL, Paya CV, et al. Influence of human fulminant hepatic failure sera on endogenous retroviral expression in pig hepatocytes. Liver Transpl 2000;6(1):76-84.
    10. Kuddus R, Patzer JF,2nd, Lopez R, Mazariegos GV, Meighen B, Kramer DJ, et al. Clinical and laboratory evaluation of the safety of a bioartificial liver assist device for potential transmission of porcine endogenous retrovirus. Transplantation 2002;73(3):420-9.
    11. Lee WM, Squires RH, Jr., Nyberg SL, Doo E, Iloofnagle JH. Acute liver failure: Summary of a workshop. Hepatology 2008;47(4):1401-15.
    12. Riordan SM, Williams R. Perspectives on liver failure:past and future. Semin Liver Dis 2008;28(2):137-41.
    13. Gerlach JC, Zeilinger K, Patzer Ii JF. Bioartificial liver systems:why, what, whither? Regen Med 2008;3(4):575-95.
    14. McKenzie TJ, Lillegard JB, Nyberg SL. Artificial and bioartificial liver support. Semin Liver Dis 2008;28(2):210-7.
    15. Chamuleau RA, Deurholt T, Hoekstra R. Which are the right cells to be used in a bioartificial liver? Metab Brain Dis 2005;20(4):327-35.
    16. Tsiaoussis J, Newsome PN, Nelson LJ, Hayes PC, Plevris JN. Which hepatocyte will it be? Hepatocyte choice for bioartificial liver support systems. Liver Transpl 2001;7(1):2-10.
    17. Kobayashi N, Okitsu T, Tanaka N. Cell choice for bioartificial livers. Keio J Med 2003;52(3):151-7.
    18. Armstrong JA, Porterfield JS, De Madrid AT. C-type virus particles in pig kidney cell lines. J Gen Vrol 1971;10(2):195-8.
    19. Patience C, Takeuchi Y, Weiss RA. Infection of human cells by an endogenous retrovirus of pigs. Nat Med 1997;3(3):282-6.
    20. Wilson CA. Porcine endogenous retroviruses and xenotransplantation. Cell Mol Life Sci 2008;65(21):3399-412.
    21. Martin U, Kiessig V, Blusch JH, Haverich A, von der Helm K, Herden T, et al. Expression of pig endogenous retrovirus by primary porcine endothelial cells and infection of human cells. Lancet 1998;352(9129):692-4.
    22. Takeuchi Y, Patience C, Magre S, Weiss RA, Banerjee PT, Le Tissier P, et al. Host range and interference studies of three classes of pig endogenous retrovirus. J Viro 1998;72(12):9986-91.
    23. Wilson CA, Wong S, Muller J, Davidson CE, Rose TM, Burd P. Type C retrovirus released from porcine primary peripheral blood mononuclear cells infects human cells. J Virol 1998;72(4):3082-7.
    24. Martin U, Winkler ME, Id M, Radeke H, Arseniev L, Takeuchi Y, et al. Productive infection of primary human endothelial cells by pig endogenous retrovirus (PERV). Xenotransplantation 2000;7(2):138-42.
    25. Wilson CA, Wong S, VanBrocklin M, Federspiel MJ. Extended analysis of the in vitro tropism of porcine endogenous retrovirus. J Virol 2000;74(1):49-56.
    26. Specke V, Rubant S, Denner J. Productive infection of human primary cells and cell lines with porcine endogenous retroviruses. Virology 2001;285(2):177-80.
    27. Fruhauf JH, Mertsching H, Giri S, Fruhauf NR, Bader A. Porcine endogenous retrovirus released by a bioartificial liver infects primary human cells. Liver Int 2009;29(10):1553-61.
    28. Pyra H, Boni J, Schupbach J. Ultrasensitive retrovirus detection by a reverse transcriptase assay based on product enhancement. Proc Natl Acad Sci U S A 1994;91(4):1544-8.
    29. Chu XH, Shi XL, Feng ZQ, Gu JY, Xu HY, Zhang Y, et al. In vitro evaluation of a multi-layer radial-flow bioreactor based on galactosylated chitosan nanofiber scaffolds. Biomaterials 2009;30(27):4533-8.
    30. McIntyre MC, Kannan B, Solano-Aguilar GI, Wilson CA, Bloom ET. Detection of porcine endogenous retrovirus in cultures of freshly isolated porcine bone marrow cells. Xenotransplantation 2003;10(4):337-42.
    1. Chu XH, Shi XL, Feng ZQ, Gu JY, Xu HY, Zhang Y, et al. In vitro evaluation of a multi-layer radial-flow bioreactor based on galactosylated chitosan nanofiber scaffolds. Biomaterials 2009;30(27):4533-8.
    2. Moscoso I, Hermida-Prieto M, Manez R, Lopez-Pelaez E, Centeno A, Diaz TM, et al. Lack of cross-species transmission of porcine endogenous retrovirus in pig-to-baboon xenotransplantation with sustained depletion of anti-alphagal antibodies. Transplantation 2005;79(7):777-82.
    3. van de Kerkhove MP, Germans MR, Deurholt T, Hoekstra R, Joziasse DH, van Wijk AC, et al. Evidence for Galalpha(1-3)Gal expression on primary porcine hepatocytes:implications for bioartificial liver systems. J Hepatol 2005;42(4):541-7.
    4. Galbraith DN, Kelly HT, Dyke A, Reid G, Haworth C, Beekman J, et al. Design and validation of immunological tests for the detection of Porcine endogenous retrovirus in biological materials. J Virol Methods 2000;90(2):115-24.
    5. Czauderna F, Fischer N, Boller K, Kurth R, Tonjes RR. Establishment and characterization of molecular clones of porcine endogenous retroviruses replicating on human cells. J Virol 2000;74(9):4028-38.
    6. Nyberg SL, Hibbs JR, Hardin JA, Germer JJ, Platt JL, Paya CV, et al. Influence of human fulminant hepatic failure sera on endogenous retroviral expression in pig hepatocytes. Liver Transpl 2000;6(1):76-84.
    7. Kuddus R, Patzer JF,2nd, Lopez R, Mazariegos GV, Meighen B, Kramer DJ, et al. Clinical and laboratory evaluation of the safety of a bioartificial liver assist device for potential transmission of porcine endogenous retrovirus. Transplantation 2002;73(3):420-9.
    8. Blusch JH, Roos C, Nitschko H. A polymerase chain reaction-based protocol for the detection of transmission of pig endogenous retroviruses in pig to human xenotransplantation. Transplantation 2000;69(10):2167-72.
    9. Chapman LE. Xenotransplantation, xenogeneic infections, biotechnology, and public health. Mt Sinai J Med 2009;76(5):435-41.
    10. Chapman LE, Folks TM, Salomon DR, Patterson AP, Eggerman TE, Noguchi PD. Xenotransplantation and xenogeneic infections. N Engl J Med 1995;333(22):1498-501.
    11. Wilson CA. Porcine endogenous retroviruses and xenotransplantation. Cell Mol Life Sci 2008;65(21):3399-412.
    12. Armstrong JA, Porterfield JS, De Madrid AT. C-type virus particles in pig kidney cell lines. J Gen Virol 1971;10(2):195-8.
    13. Patience C, Takeuchi Y, Weiss RA. Infection of human cells by an endogenous retrovirus of pigs. Nat Med 1997;3(3):282-6.
    14. Chamuleau RA, Deurholt T, Hoekstra R. Which are the right cells to be used in a bioartificial liver? Metab Brain Dis 2005;20(4):327-35.
    15. Tsiaoussis J, Newsome PN, Nelson LJ, Hayes PC, Plevris JN. Which hepatocyte will it be? Hepatocyte choice for bioartificial liver support systems. Liver Transpl 2001;7(1):2-10.
    16. Kobayashi N, Okitsu T, Tanaka N. Cell choice for bioartificial livers. Keio J Med 2003;52(3):151-7.
    17. Nyberg SL, Hibbs JR, Hardin JA, Germer JJ, Persing DH. Transfer of porcine endogenous retrovirus across hollow fiber membranes:significance to a bioartificial liver. Transplantation 1999;67(9):1251-5.
    18. Chen SC, Mullon C, Kahaku E, Watanabe F, Hewitt W, Eguchi S, et al. Treatment of severe liver failure with a bioartificial liver. Ann N Y Acad Sci 1997;831:350-60.
    19. Watanabe FD, Shackleton CR, Cohen SM, Goldman DE, Arnaout WS, Hewitt W, et al. Treatment of acetaminophen-induced fulminant hepatic failure with a bioartificial liver. Transplant Proc 1997;29(1-2):487-8.
    20. Donini A, Baccarani U, Risaliti A, Degrassi A, Bresadola F. Temporary neurological improvement in a patient with acute or chronic liver failure treated with a bioartificial liver device. Am J Gastroenterol 2000;95(4):1102-4.
    21. Xue YL, Zhao SF, Luo Y, Li XJ, Duan ZP, Chen XP, et al. TECA hybrid artificial liver support system in treatment of acute liver failure. World J Gastroenterol 2001;7(6):826-9.
    22. Pazzi P, Morsiani E, Vilei MT, Granato A, Rozga J, Demetriou AA, et al. Serum bile acids in patients with liver failure supported with a bioartificial liver. Aliment Pharm Therap 2002;16(8):1547-54.
    23. Samuel D, Ichai P, Feray C, Saliba F, Azoulay D, Arulnaden JL, et al. Neurological improvement during bioartificial liver sessions in patients with acute liver failure awaiting transplantation. Transplantation 2002;73(2):257-64.
    24. Gan JH, Zhou XQ, Qin AL, Luo EP, Zhao WF, Yu H, et al. Hybrid artificial liver support system for treatment of severe liver failure. World J Gastroenterol 2005;11(6):890-4.
    25. Demetriou AA, Rozga J, Podesta L, Lepage E, Morsiani E, Moscioni AD, et al. Early clinical experience with a hybrid bioartificial liver. Scand J Gastroenterol Suppl 1995;208:111-7.
    26. Ding YT, Qiu YD, Chen Z, Xu QX, Zhang HY, Tang Q, et al. The development of a new bioartificial liver and its application in 12 acute liver failure patients. World J Gastroenterol 2003;9(4):829-32.
    27. Detry O, Arkadopoulos N, Ting P, Kahaku E, Watanabe FD, Rozga J, et al. Clinical use of a bioartificial liver in the treatment of acetaminophen-induced fulminant hepatic failure. Am Surg 1999;65(10):934-8.
    28. Watanabe FD, Mullon CJ, Hewitt WR, Arkadopoulos N, Kahaku E, Eguchi S, et al. Clinical experience with a bioartificial liver in the treatment of severe liver failure. A phase I clinical trial. Ann Surg 1997;225(5):484-91; discussion 91-4.
    29. Baquerizo A, Mhoyan A, Kearns-Jonker M, Arnaout WS, Shackleton C, Busuttil RW, et al. Characterization of human xenoreactive antibodies in liver failure patients exposed to pig hepatocytes after bioartificial liver treatment:an ex vivo model of pig to human xenotransplantation. Transplantation 1999;67(1):5-18.
    30. Petrovic LM, Arkadopoulos N, Demetriou AA. Activation of hepatic stellate cells in liver tissue of patients with fulminant liver failure after treatment with bioartificial liver. Hum Pathol 2001;32(12):1371-5.
    31. Peltekian K LG. Role of cytokines and immune mechanisms in acute liver failure. In:Lee WM WR, editor. Acute liver failure. Cambridge, United Kingdom: Cambridge University Press,1997:67.
    32. Shi XL, Zhang Y, Han B, Gu JY, Chu XH, Xiao JQ, et al. Effects of membrane molecular weight cutoff on performance of a novel bioartificial liver. Artif Organs 2011;35(3):E40-6.
    1. Chu XH, Shi XL, Feng ZQ, Gu JY, Xu HY, Zhang Y, et al. In vitro evaluation of a multi-layer radial-flow bioreactor based on galactosylated chitosan nanofiber scaffolds. Biomaterials 2009;30(27):4533-8.
    2. Li LJ, Du WB, Zhang YM, Li J, Pan XP, Chen JJ, et al. Evaluation of a bioartificial liver based on a nonwoven fabric bioreactor with porcine hepatocytes in pigs. J Hepatol 2006;44(2):317-24.
    3. Moscoso I, Hermida-Prieto M, Manez R, Lopez-Pelaez E, Centeno A, Diaz TM, et al. Lack of cross-species transmission of porcine endogenous retrovirus in pig-to-baboon xenotransplantation with sustained depletion of anti-alphagal antibodies. Transplantation 2005;79(7):777-82.
    4. van de Kerkhove MP, Germans MR, Deurholt T, Hoekstra R, Joziasse DH, van Wijk AC, et al. Evidence for Galalpha(1-3)Gal expression on primary porcine hepatocytes:implications for bioartificial liver systems. J Hepatol 2005;42(4):541-7.
    5. Blusch JH, Roos C, Nitschko H. A polymerase chain reaction-based protocol for the detection of transmission of pig endogenous retroviruses in pig to human xenotransplantation. Transplantation 2000;69(10):2167-72.
    6. Di Nicuolo G, van de Kerkhove MP, Hoekstra R, Beld MG, Amoroso P, Battisti S, et al. No evidence of in vitro and in vivo porcine endogenous retrovirus infection after plasmapheresis through the AMC-bioartificial liver. Xenotransplantation 2005;12(4):286-92.
    7. Czauderna F, Fischer N, Boller K, Kurth R, Tonjes RR. Establishment and characterization of molecular clones of porcine endogenous retroviruses replicating on human cells. J Virol 2000;74(9):4028-38.
    8. Hughes RD, Williams R. Assessment of bioartificial liver support in acute liver failure. Int JArtif Organs 1996;19(1):3-6.
    9. Sussman NL, Gislason GT, Conlin CA, Kelly JH. The Hepatix extracorporeal liver assist device:initial clinical experience. Artif Organs 1994;18(5):390-6.
    10. Demetriou AA, Rozga J, Podesta L, Lepage E, Morsiani E, Moscioni AD, et al. Early clinical experience with a hybrid bioartificial liver. Scand J Gastroenterol Suppl 1995;208:111-7.
    11. Watanabe FD, Mullon CJ, Hewitt WR, Arkadopoulos N, Kahaku E, Eguchi S, et al. Clinical experience with a bioartificial liver in the treatment of severe liver failure. A phase I clinical trial. Ann Surg 1997;225(5):484-91; discussion 91-4.
    12. van de Kerkhove MP, Di Florio E, Scuderi V, Mancini A, Belli A, Bracco A, et al. Phase I clinical trial with the AMC-bioartificial liver. Int J Artif Organs 2002;25(10):950-9.
    13. Morsiani E, Pazzi P, Puviani AC, Brogli M, Valieri L, Gorini P, et al. Early experiences with a porcine hepatocyte-based bioartificial liver in acute hepatic failure patients. Int J Artif Organs 2002;25(3):192-202.
    14. Gu J, Shi X, Zhang Y, Ding Y. Heterotypic interactions in the preservation of morphology and functionality of porcine hepatocytes by bone marrow mesenchymal stem cells in vitro. J Cell Physiol 2009;219(1):100-8.
    15. Wilson CA. Porcine endogenous retroviruses and xenotransplantation. Cell Mol Life Sci 2008;65(21):3399-412.
    16. Argaw T, Colon-Moran W, Wilson CA. Limited infection without evidence of replication by porcine endogenous retrovirus in guinea pigs. J Gen Virol 2004;85(Pt 1):15-9.
    17. van der Laan LJ, Lockey C, Griffeth BC, Frasier FS, Wilson CA, Onions DE, et al. Infection by porcine endogenous retrovirus after islet xenotransplantation in SCID mice. Nature 2000;407(6800):90-4.
    18. Deng YM, Tuch BE, Rawlinson WD. Transmission of porcine endogenous retroviruses in severe combined immunodeficient mice xenotransplanted with fetal porcine pancreatic cells. Transplantation 2000;70(7):1010-6.
    19. Clemenceau B, Jegou D, Martignat L, Sai P. Microchimerism and transmission of porcine endogenous retrovirus from a pig cell line or specific pathogen-free pig islets to mouse tissues and human cells during xenografts in nude mice. Diabetologia 2002;45(6):914-23.
    20. Yang YG, Wood JC, Lan P, Wilkinson RA, Sykes M, Fishman JA, et al. Mouse retrovirus mediates porcine endogenous retrovirus transmission into human cells in long-term human-porcine chimeric mice. J Clin Invest 2004;114(5):695-700.
    21. Martina Y, Kurian S, Cherqui S, Evanoff G, Wilson C, Salomon DR. Pseudotyping of porcine endogenous retrovirus by xenotropic murine leukemia virus in a pig islet xenotransplantation model. Am J Transplant 2005;5(8):1837-47.
    22. Ericsson TA, Takeuchi Y, Templin C, Quinn G, Farhadian SF, Wood JC, et al. Identification of receptors for pig endogenous retrovirus. Proc Natl Acad Sci U S A 2003;100(11):6759-64.
    23. Takeuchi Y, Patience C, Magre S, Weiss RA, Banerjee PT, Le Tissier P, et al. Host range and interference studies of three classes of pig endogenous retrovirus. J Virol 1998;72(12):9986-91.
    24. Mattiuzzo G, Matouskova M, Takeuchi Y. Differential resistance to cell entry by porcine endogenous retrovirus subgroup A in rodent species. Retrovirology 2007;4:93.
    25. Pitkin Z, Mullon C. Evidence of absence of porcine endogenous retrovirus (PERV) infection in patients treated with a bioartificial liver support system. Artif Organs 1999;23(9):829-33.
    26. Paradis K, Langford G, Long Z, Heneine W, Sandstrom P, Switzer WM, et al. Search for cross-species transmission of porcine endogenous retrovirus in patients treated with living pig tissue. The XEN 111 Study Group. Science 1999;285(5431):1236-41.
    27. Kuddus R, Patzer JF,2nd, Lopez R, Mazariegos GV, Meighen B, Kramer DJ, et al. Clinical and laboratory evaluation of the safety of a bioartificial liver assist device for potential transmission of porcine endogenous retrovirus. Transplantation 2002;73(3):420-9.
    28. van de Kerkhove MP, Di Florio E, Scuderi V, Mancini A, Belli A, Bracco A, et al. Bridging a patient with acute liver failure to liver transplantation by the AMC-bioartificial liver. Cell Transplant 2003;12(6):563-8.
    29. Irgang M, Sauer IM, Karlas A, Zeilinger K, Gerlach JC, Kurth R, et al. Porcine endogenous retroviruses:no infection in patients treated with a bioreactor based on porcine liver cells. J Clin Virol 2003;28(2):141-54.
    30. Sauer IM, Kardassis D, Zeillinger K, Pascher A, Gruenwald A, Pless G, et al. Clinical extracorporeal hybrid liver support--phase I study with primary porcine liver cells. Xenotransplantation 2003;10(5):460-9.
    31. Abu-Absi SF, Seth G, Narayanan RA, Groehler K, Lai P, Anderson ML, et al. Characterization of a hollow fiber bioartificial liver device. Artif Organs 2005;29(5):419-22.
    32. Di Nicuolo G, D'Alessandro A, Andria B, Scuderi V, Scognamiglio M, Tammaro A, et al. Long-term absence of porcine endogenous retrovirus infection in chronically immunosuppressed patients after treatment with the porcine cell-based Academic Medical Center bioartificial liver. Xenotransplantation 2010;17(6):431-9.
    33.单晶,赵秀英,韩大康,刘青,薛毅珑,段钟平.混合型生物人工肝治疗重型肝炎的临床研究.中国血液净化2002;1(1):39-41.
    34.段钟平,韩大康,刘青,赵秀英,薛毅珑,黄春,等.组合型生物人工肝治疗重型肝炎肝功能衰竭的临床应用.中华肝脏病杂志2002;10(4):305-06.
    35.刘青,段钟平,韩大康,赵秀英,陈煜,冯瑞兵,等.猪肝细胞型生物人工肝治疗后猪逆转录病毒感染人体的追踪观察.中华检验医学杂志2003;26(8):460-62.
    36.冯瑞兵,王健,段钟平,赵军,刘青.实验用小型猪相关生物人工肝猪逆转录病毒感染的初步研究.中华传染病杂志2005;23(3):178-80.
    37. Liu Q, Liu Z, Dalakas E. Prevalence of porcine endogenous retrovirus in Chinese pig breeds and in patients treated with a porcine liver cell-based bioreactor. World J Gastroenterol 2005;11(30):4727-30.
    38. Wang HH, Wang YJ, Liu HL, Liu J, Huang YP, Guo HT, et al. Detection of PERV by polymerase chain reaction and its safety in bioartificial liver support system. World J Gastroenterol 2006;12(8):1287-91.
    39.陈钟,陈瑞新,丁义涛,田鹏鹏,周卉.新型生物人工肝系统治疗急性肝衰竭犬后猪内源性逆转录病毒传播的实验研究.南通大学学报(医学版2007;27(3):175-77.
    40. Heneine W, Tibell A, Switzer WM, Sandstrom P, Rosales GV, Mathews A, et al. No evidence of infection with porcine endogenous retrovirus in recipients of porcine islet-cell xenografts. Lancet 1998;352(9129):695-9.
    41. Nyberg SL, Hibbs JR, Hardin JA, Germer JJ, Persing DH. Transfer of porcine endogenous retrovirus across hollow fiber membranes:significance to a bioartificial liver. Transplantation 1999;67(9):1251-5.
    42. Levy MF, Argaw T, Wilson CA, Brooks J, Sandstrom P, Merks H, et al. No evidence of PERV infection in healthcare workers exposed to transgenic porcine liver extracorporeal support. Xenotransplantation 2007;14(4):309-15.
    43. Nyberg SL, Hibbs JR, Hardin JA, Germer JJ, Platt JL, Paya CV, et al. Influence of human fulminant hepatic failure sera on endogenous retroviral expression in pig hepatocytes. Liver Transpl 2000;6(1):76-84.
    44. Stockmann HB, Hiemstra CA, Meijer R, Marquet RL, JN IJ. Acute liver failure attenuates hyperacute xenograft rejection. Transplant Proc 2000;32(5):1114-5.
    45. Chamuleau RA, Poyck PP, van de Kerkhove MP. Bioartificial liver:its pros and cons. Ther Apher Dial 2006;10(2):168-74.
    1. Armstrong JA, Porterfield JS, De Madrid AT. C-type virus particles in pig kidney cell lines. J Gen Virol 1971;10(2):195-8.
    2. Akiyoshi DE, Denaro M, Zhu H, Greenstein JL, Banerjee P, Fishman JA. Identification of a full-length cDNA for an endogenous retrovirus of miniature swine. J Virol 1998;72(5):4503-7.
    3. Todaro GJ, Benveniste RE, Lieber MM, Sherr CJ. Characterization of a type C virus released from the porcine cell line PK(15). Virology 1974;58(1):65-74.
    4. Busse C, Marschall HJ, Moennig V. Further investigations on the porcine lymphoma C-type particle (PLCP) and the possible biological significance of the virus in pigs. Ann Rech Vet 1978;9(4):651-8.
    5. Moennig V, Frank H, Hunsmann G, Ohms P, Schwarz H, Schafer W. C-type particles produced by a permanent cell line from a leukemic pig. Ⅱ. Physical, chemical, and serological characterization of the particles. Virology 1974;57(1):179-88.
    6. Strandstrom H, Veijalainen P, Moennig V, Hunsmann G, Schwarz H, Schafer W. C-type particles produced by a permanent cell line from a leukemic pig. Ⅰ. Origin and properties of the host cells and some evidence for the occurrence of C-type-like particles. Virology 1974;57(1):175-8.
    7. Ibrahim Z, Busch J, Awwad M, Wagner R, Wells K, Cooper DK. Selected physiologic compatibilities and incompatibilities between human and porcine organ systems. Xenotransplantation 2006;13(6):488-99.
    8. Allan JS. The risk of using baboons as transplant donors. Exogenous and endogenous viruses. Ann N YAcad Sci 1998;862:87-99.
    9. Fishman JA. Infection and xenotransplantation. Developing strategies to minimize risk. Ann N YAcad Sci 1998;862:52-66.
    10. Patience C, Takeuchi Y, Weiss RA. Infection of human cells by an endogenous retrovirus of pigs. Nat Med 1997;3(3):282-6.
    11. Le Tissier P, Stoye JP, Takeuchi Y, Patience C, Weiss RA. Two sets of human-tropic pig retrovirus. Nature 1997;389(6652):681-2.
    12. Takeuchi Y, Patience C, Magre S, Weiss RA, Banerjee PT, Le Tissier P, et al. Host range and interference studies of three classes of pig endogenous retrovirus. J Virol 1998;72(12):9986-91.
    13. Specke V, Plesker R, Coulibaly C, Boller K, Denner J. Productive infection of a mink cell line with porcine endogenous retroviruses (PERVs) but lack of transmission to minks in vivo. Arch Virol 2002;147(2):305-19.
    14. Wilson CA, Wong S, VanBrocklin M, Federspiel MJ. Extended analysis of the in vitro tropism of porcine endogenous retrovirus. J Virol 2000;74(l):49-56.
    15. Blusch JH, Patience C, Takeuchi Y, Templin C, Roos C, Von Der Helm K, et al. Infection of nonhuman primate cells by pig endogenous retrovirus. J Virol 2000;74(16):7687-90.
    16. Ritzhaupt A, Van Der Laan LJ, Salomon DR, Wilson CA. Porcine endogenous retrovirus infects but does not replicate in nonhuman primate primary cells and cell lines. J Virol 2002;76(22):11312-20.
    17. Specke V, Rubant S, Denner J. Productive infection of human primary cells and cell lines with porcine endogenous retroviruses. Virology 2001;285(2):177-80.
    18. Martin U, Winkler ME, Id M, Radeke H, Arseniev L, Takeuchi Y, et al. Productive infection of primary human endothelial cells by pig endogenous retrovirus (PERV). Xenotransplantation 2000;7(2):138-42.
    19. Ericsson TA, Takeuchi Y, Templin C, Quinn G, Farhadian SF, Wood JC, et al. Identification of receptors for pig endogenous retrovirus. Proc Natl Acad Sci U S A 2003;100(11):6759-64.
    20. Overbaugh J, Miller AD, Eiden MV. Receptors and entry cofactors for retroviruses include single and multiple transmembrane-spanning proteins as well as newly described glycophosphatidylinositol-anchored and secreted proteins. Microbiol Mol Biol Rev 2001;65(3):371-89, table of contents.
    21. Andriamampandry C, Taleb O, Kemmel V, Humbert JP, Aunis D, Maitre M. Cloning and functional characterization of a gamma-hydroxybutyrate receptor identified in the human brain. FASEB J 2007;21(3):885-95.
    22. Mattiuzzo G, Matouskova M, Takeuchi Y. Differential resistance to cell entry by porcine endogenous retrovirus subgroup A in rodent species. Retrovirology 2007;4:93.
    23. Gemeniano M, Mpanju O, Salomon DR, Eiden MV, Wilson CA. The infectivity and host range of the ecotropic porcine endogenous retrovirus, PERV-C, is modulated by residues in the C-terminal region of its surface envelope protein. Virology 2006;346(1):108-17.
    24. Harrison I, Takeuchi Y, Bartosch B, Stoye JP. Determinants of high titer in recombinant porcine endogenous retroviruses. J Virol 2004;78(24):13871-9.
    25. Lavillette D, Ruggieri A, Russell SJ, Cosset FL. Activation of a cell entry pathway common to type C mammalian retroviruses by soluble envelope fragments. J Virol 2000;74(1):295-304.
    26. Barnett AL, Cunningham JM. Receptor binding transforms the surface subunit of the mammalian C-type retrovirus envelope protein from an inhibitor to an activator of fusion. J Virol 2001;75(19):9096-105.
    27. Lavillette D, Kabat D. Porcine endogenous retroviruses infect cells lacking cognate receptors by an alternative pathway:implications for retrovirus evolution and xenotransplantation. J Virol 2004;78(16):8868-77.
    28. Martin J, Herniou E, Cook J, O'Neill RW, Tristem M. Interclass transmission and phyletic host tracking in murine leukemia virus-related retroviruses. J Virol 1999;73(3):2442-9.
    29. Ericsson T, Oldmixon B, Blomberg J, Rosa M, Patience C, Andersson G. Identification of novel porcine endogenous betaretrovirus sequences in miniature swine. J Virol 2001;75(6):2765-70.
    30. Patience C, Switzer WM, Takeuchi Y, Griffiths DJ, Goward ME, Heneine W, et al. Multiple groups of novel retro viral genomes in pigs and related species. J Virol 2001;75(6):2771-5.
    31. Niebert M, Tonjes RR. Evolutionary spread and recombination of porcine endogenous retroviruses in the suiformes. J Virol 2005;79(1):649-54.
    32. Niebert M, Tonjes RR. Analyses of prevalence and polymorphisms of six replication-competent and chromosomally assigned porcine endogenous retroviruses in individual pigs and pig subspecies. Virology 2003;313(2):427-34.
    33. Tonjes RR, Niebert M. Relative age of proviral porcine endogenous retrovirus sequences in Sus scrofa based on the molecular clock hypothesis. J Virol 2003;77(22):12363-8.
    34. Klymiuk N, Muller M, Brem G, Aigner B. Characterization of porcine endogenous retrovirus gamma pro-pol nucleotide sequences. J Virol 2002;76(22):11738-43.
    35. Klymiuk N, Muller M, Brem G, Aigner B. Phylogeny, recombination and expression of porcine endogenous retrovirus gamma2 nucleotide sequences. J Gen Virol 2006;87(Pt 4):977-86.
    36. Le Tissier P SJ, Takeuchi Y, Patience C, Weiss RA. Two sets of human-tropic pig retrovirus. Nature 1997;389(6652):681-82.
    37. Wilson CA, Wong S, Muller J, Davidson CE, Rose TM, Burd P. Type C retrovirus released from porcine primary peripheral blood mononuclear cells infects human cells. J Virol 1998;72(4):3082-7.
    38. Bosch S, Arnauld C, Jestin A. Study of full-length porcine endogenous retrovirus genomes with envelope gene polymorphism in a specific-pathogen-free Large White swine herd. J Virol 2000;74(18):8575-81.
    39. Herring C, Quinn G, Bower R, Parsons N, Logan NA, Brawley A, et al. Mapping full-length porcine endogenous retroviruses in a large white pig. J Virol 2001;75(24):12252-65.
    40. Rogel-Gaillard C, Bourgeaux N, Billault A, Vaiman M, Chardon P. Construction of a swine BAC library:application to the characterization and mapping of porcine type C endoviral elements. Cytogenet Cell Genet 1999;85(3-4):205-11.
    41. Czauderna F, Fischer N, Boller K, Kurth R, Tonjes RR. Establishment and characterization of molecular clones of porcine endogenous retroviruses replicating on human cells. J Virol 2000;74(9):4028-38.
    42. Krach U, Fischer N, Czauderna F, Tonjes RR. Comparison of replication-competent molecular clones of porcine endogenous retrovirus class A and class B derived from pig and human cells. J Virol 2001;75(12):5465-72.
    43. Suzuka I, Shimizu N, Sekiguchi K, Hoshino H, Kodama M, Shimotohno K. Molecular cloning of unintegrated closed circular DNA of porcine retrovirus. FEBS Lett 1986;198(2):339-43.
    44. Preuss T, Fischer N, Boller K, Tonjes RR. Isolation and characterization of an infectious replication-competent molecular clone of ecotropic porcine endogenous retrovirus class C. J Virol 2006;80(20):10258-61.
    45. Lee JH, Webb GC, Allen RD, Moran C. Characterizing and mapping porcine endogenous retroviruses in Westran pigs. J Virol 2002;76(11):5548-56.
    46. Edamura K, Nasu K, Iwami Y, Nishimura R, Ogawa H, Sasaki N, et al. Prevalence of porcine endogenous retrovirus in domestic pigs in Japan and its potential infection in dogs xenotransplanted with porcine pancreatic islet cells. J Vet Med Sci 2004;66(2):129-35.
    47. Li Z, Ping Y, Shengfu L, Hong B, Youping L, Yangzhi Z, et al. Phylogenetic relationship of porcine endogenous retrovirus (PERV) in Chinese pigs with some type C retroviruses. Virus Res 2004;105(2):167-73.
    48. Jin H, Inoshima Y, Wu D, Morooka A, Sentsui H. Expression of porcine endogenous retrovirus in peripheral blood leukocytes from ten different breeds. Transpl Infect Dis 2000;2(1):11-4.
    49. Martignat L, Sai P, Jestin A. Detection of porcine endogenous retrovirus:possible involvement in pig islet xenotransplantation. Diabetes Metab 1998;24(5):434-41.
    50. Clemenceau B, Lalain S, Martignat L, Sai P. Porcine endogenous retroviral mRNAs in pancreas and a panel of tissues from specific pathogen-free pigs. Diabetes Metab 1999;25(6):518-25.
    51. Schmidt P, Forsman A, Andersson G, Blomberg J, Korsgren O. Pig islet xenotransplantation:activation of porcine endogenous retrovirus in the immediate post-transplantation period. Xenotransplantation 2005;12(6):450-6.
    52. van der Laan LJ, Lockey C, Griffeth BC, Frasier FS, Wilson CA, Onions DE, et al. Infection by porcine endogenous retrovirus after islet xenotransplantation in SCID mice. Nature 2000;407(6800):90-4.
    53. Nyberg SL, Hibbs JR, Hardin JA, Germer JJ, Platt JL, Paya CV, et al. Influence of human fulminant hepatic failure sera on endogenous retroviral expression in pig hepatocytes. Liver Transpl 2000;6(1):76-84.
    54. Kuddus R, Patzer JF,2nd, Lopez R, Mazariegos GV, Meighen B, Kramer DJ, et al. Clinical and laboratory evaluation of the safety of a bioartificial liver assist device for potential transmission of porcine endogenous retrovirus. Transplantation 2002;73(3)-420-9.
    55. Takefman DM, Wong S, Maudru T, Peden K, Wilson CA. Detection and characterization of porcine endogenous retrovirus in porcine plasma and porcine factor VIII. J Virol 2001;75(10):4551-7.
    56. Martin U, Kiessig V, Blusch JH, Haverich A, von der Helm K, Herden T, et al. Expression of pig endogenous retrovirus by primary porcine endothelial cells and infection of human cells. Lancet 1998;352(9129):692-4.
    57. Cunningham DA, Dos Santos Cruz GJ, Fernandez-Suarez XM, Whittam AJ, Herring C, Copeman L, et al. Activation of primary porcine endothelial cells induces release of porcine endogenous retroviruses. Transplantation 2004;77(7):1071-9.
    58. Dieckhoff B, Puhlmann J, Buscher K, Hafner-Marx A, Herbach N, Bannert N, et al. Expression of porcine endogenous retroviruses (PERVs) in melanomas of Munich miniature swine (MMS) Troll. Vet Microbiol 2007;123(1-3):53-68.
    59. Oldmixon BA, Wood JC, Ericsson TA, Wilson CA, White-Scharf ME, Andersson G, et al. Porcine endogenous retrovirus transmission characteristics of an inbred herd of miniature swine. J Virol 2002;76(6):3045-8.
    60. Scobie L, Taylor S, Wood JC, Suling KM, Quinn G, Meikle S, et al. Absence of replication-competent human-tropic porcine endogenous retroviruses in the germ line DNA of inbred miniature Swine. J Virol 2004;78(5):2502-9.
    61. Wood JC, Quinn G, Suling KM, Oldmixon BA, Van Tine BA, Cina R, et al. Identification of exogenous forms of human-tropic porcine endogenous retrovirus in miniature Swine. J Virol 2004;78(5):2494-501.
    62. Martin SI, Wilkinson R, Fishman JA. Genomic presence of recombinant porcine endogenous retrovirus in transmitting miniature swine. Virol J 2006;3:91.
    63. Bartosch B, Stefanidis D, Myers R, Weiss R, Patience C, Takeuchi Y. Evidence and consequence of porcine endogenous retrovirus recombination. J Virol 2004;78(24):13880-90.
    64. Suling K, Quinn G, Wood J, Patience C. Packaging of human endogenous retrovirus sequences is undetectable in porcine endogenous retrovirus particles produced from human cells. Virology 2003;312(2):330-6.
    65. Yu P, Zhang L, Li SF, Li YP, Cheng JQ, Lu YR, et al. Long-term effects on HEK-293 cell line after co-culture with porcine endogenous retrovirus. Transplant Proc 2005;37(1):496-9.
    66. Moalic Y, Blanchard Y, Felix H, Jestin A. Porcine endogenous retrovirus integration sites in the human genome:features in common with those of murine leukemia virus. J Virol 2006;80(22):10980-8.
    67. Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E, et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl Med 2003;348(3):255-6.
    68. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003;302(5644):415-9.
    69. Argaw T, Colon-Moran W, Wilson CA. Limited infection without evidence of replication by porcine endogenous retrovirus in guinea pigs. J Gen Virol 2004;85(Pt 1):15-9.
    70. Specke V, Tacke SJ, Boller K, Schwendemann J, Denner J. Porcine endogenous retroviruses:in vitro host range and attempts to establish small animal models. J Gen Virol 2001;82(Pt 4):837-44.
    71. Deng YM, Tuch BE, Rawlinson WD. Transmission of porcine endogenous retroviruses in severe combined immunodeficient mice xenotransplanted with fetal porcine pancreatic cells. Transplantation 2000;70(7):1010-6.
    72. Goto M, Maeda A, Elfman L, Suling KM, Wood JC, Patience C, et al. No transmission of porcine endogenous retrovirus after transplantation of adult porcine islets into diabetic nude mice and immunosuppressed rats. Xenotransplantation 2004; 11(4):340-6.
    73. Martina Y, Kurian S, Cherqui S, Evanoff G, Wilson C, Salomon DR. Pseudotyping of porcine endogenous retrovirus by xenotropic murine leukemia virus in a pig islet xenotransplantation model. Am J Transplant 2005;5(8):1837-47.
    74. Kuddus RH, Metes DM, Nalesnik MA, Logar AJ, Rao AS, Fung JJ. Porcine cell microchimerism but lack of productive porcine endogenous retrovirus (PERV) infection in naive and humanized SCID-beige mice treated with porcine peripheral blood mononuclear cells. Transpl Immunol 2004; 13(1):15-24.
    75. McKane BW, Ramachandran S, Yang J, Xu XC, Mohanakumar T. Xenoreactive anti-Galalpha(1,3)Gal antibodies prevent porcine endogenous retrovirus infection of human in vivo. Hum Immunol 2003;64(7):708-17.
    76. McKane BW, Ramachandran S, Xu XC, Olack BJ, Chapman WC, Mohanakumar T. Natural antibodies prevent in vivo transmission of porcine islet-derived endogenous retrovirus to human cells. Cell Transplant 2004; 13(2):137-43.
    77. Martina Y, Marcucci KT, Cherqui S, Szabo A, Drysdale T, Srinivisan U, et al. Mice transgenic for a human porcine endogenous retrovirus receptor are susceptible to productive viral infection. J Virol 2006;80(7):3135-46.
    78. Popp SK, Mann DA, Milburn PJ, Gibbs AJ, McCullagh PJ, Wilson JD, et al. Transient transmission of porcine endogenous retrovirus to fetal lambs after pig islet tissue xenotransplantation. Immunol Cell Biol 2007;85(3):238-48.
    79. Switzer WM, Michler RE, Shanmugam V, Matthews A, Hussain AI, Wright A, et al. Lack of cross-species transmission of porcine endogenous retrovirus infection to nonhuman primate recipients of porcine cells, tissues, or organs. Transplantation 2001;71(7):959-65.
    80. Loss M, Arends H, Winkler M, Przemeck M, Steinhoff G, Rensing S, et al. Analysis of potential porcine endogenous retrovirus (PERV) transmission in a whole-organ xenotransplantation model without interfering microchimerism. Transpl Int 2001; 14(1):31-7.
    81. Simon AR, Templin C, Schroder C, Laaff G, Tessmann R, Winkler ME, et al. No evidence for productive PERV infection of baboon cells in in vivo infection model. Ann Transplant 2003;8(3):24-34.
    82. Moscoso I, Hermida-Prieto M, Manez R, Lopez-Pelaez E, Centeno A, Diaz TM, et al. Lack of cross-species transmission of porcine endogenous retrovirus in pig-to-baboon xenotransplantation with sustained depletion of anti-alphagal antibodies. Transplantation 2005;79(7):777-82.
    83. Switzer WM, Shanmugam V, Chapman L, Heneine W. Polymerase chain reaction assays for the diagnosis of infection with the porcine endogenous retrovirus and the detection of pig cells in human and nonhuman recipients of pig xenografts. Transplantation 1999;68(2):183-8.
    84. Paradis K, Langford G, Long Z, Heneine W, Sandstrom P, Switzer WM, et al. Search for cross-species transmission of porcine endogenous retrovirus in patients treated with living pig tissue. The XEN 111 Study Group. Science 1999;285(5431):1236-41.
    85. Blusch JH, Roos C, Nitschko H. A polymerase chain reaction-based protocol for the detection of transmission of pig endogenous retroviruses in pig to human xenotransplantation. Transplantation 2000;69(10):2167-72.
    86. Argaw T, Ritzhaupt A, Wilson CA. Development of a real time quantitative PCR assay for detection of porcine endogenous retrovirus. J Virol Methods 2002;106(1):97-106.
    87. Shah CA, Boni J, Bisset LR, Seebach JD, Schupbach J. Ultra-sensitive and specific detection of porcine endogenous retrovirus (PERV) using a sequence-capture real-time PCR approach. J Virol Methods 2003;109(2):209-16.
    88. Pyra H, Boni J, Schupbach J. Ultrasensitive retrovirus detection by a reverse transcriptase assay based on product enhancement. Proc Natl Acad Sci U S A 1994;91(4):1544-8.
    89.刘青,段钟平,韩大康,赵秀英,陈煜,冯瑞兵,鲍旭丽.猪肝细胞型生物人工肝治疗后猪逆转录病毒感染人体的追踪观察.中华检验医学杂志2003;26(8):460-62.
    90. Tacke SJ, Bodusch K, Berg A, Denner J. Sensitive and specific immunological detection methods for porcine endogenous retroviruses applicable to experimental and clinical xenotransplantation. Xenotransplantation 2001;8(2):125-35.
    91. Pitkin Z, Mullon C. Evidence of absence of porcine endogenous retrovirus (PERV) infection in patients treated with a bioartificial liver support system. Artif Organs 1999;23(9):829-33.
    92. Di Nicuolo G, van de Kerkhove MP, Hoekstra R, Beld MG, Amoroso P, Battisti S, et al. No evidence of in vitro and in vivo porcine endogenous retrovirus infection after plasmapheresis through the AMC-bioartificial liver. Xenotransplantation 2005; 12(4):286-92.
    93. Matthews AL, Brown J, Switzer W, Folks TM, Heneine W, Sandstrom PA. Development and validation of a Western immunoblot assay for detection of antibodies to porcine endogenous retrovirus. Transplantation 1999;67(7):939-43.
    94. Galbraith DN, Kelly HT, Dyke A, Reid G, Haworth C, Beekman J, et al. Design and validation of immunological tests for the detection of Porcine endogenous retrovirus in biological materials. J Virol Methods 2000;90(2):115-24.
    95. Levy MF, Argaw T, Wilson CA, Brooks J, Sandstrom P, Merks H, et al. No evidence of PERV infection in healthcare workers exposed to transgenic porcine liver extracorporeal support. Xenotransplantation 2007;14(4):309-15.
    96. Heneine W, Tibell A, Switzer WM, Sandstrom P, Rosales GV, Mathews A, et al. No evidence of infection with porcine endogenous retrovirus in recipients of porcine islet-cell xenografts. Lancet 1998;352(9129):695-9.
    97. Pogranichniy RM, Yoon KJ, Harms PA, Sorden SD, Daniels M. Case-control study on the association of porcine circovirus type 2 and other swine viral pathogens with postweaning multisystemic wasting syndrome. J Vet Diagn Invest 2002;14(6):449-56.
    98. Xu H, Sharma A, Okabe J, Cui C, Huang L, Wei YY, et al. Serologic analysis of anti-porcine endogenous retroviruses immune responses in humans after ex vivo transgenic pig liver perfusion. ASAIO J 2003;49(4):407-16.
    99. Fischer N, Krach U, Niebert M, Tonjes RR. Detection of porcine endogenous retrovirus (PERV) using highly specific antisera against Gag and Env. Virology 2003;311(1):222-8.
    100. Seifarth W, Spiess B, Zeilfelder U, Speth C, Hehlmann R, Leib-Mosch C. Assessment of retroviral activity using a universal retrovirus chip. J Virol Methods 2003;112(1-2):79-91.
    101. Nyberg SL, Hibbs JR, Hardin JA, Germer JJ, Persing DH. Transfer of porcine endogenous retrovirus across hollow fiber membranes:significance to a bioartificial liver. Transplantation 1999;67(9):1251-5.
    102. van de Kerkhove MP, Di Florio E, Scuderi V, Mancini A, Belli A, Bracco A, et al. Bridging a patient with acute liver failure to liver transplantation by the AMC-bioartificial liver. Cell Transplant 2003;12(6):563-8.
    103. Irgang M, Sauer IM, Karlas A, Zeilinger K, Gerlach JC, Kurth R, et al. Porcine endogenous retroviruses:no infection in patients treated with a bioreactor based on porcine liver cells. J Clin Virol 2003;28(2):141-54.
    104. Sauer IM, Kardassis D, Zeillinger K, Pascher A, Gruenwald A, Pless G, et al. Clinical extracorporeal hybrid liver support--phase I study with primary porcine liver cells. Xenotransplantation 2003;10(5):460-9.
    105. Abu-Absi SF, Seth G, Narayanan RA, Groehler K, Lai P, Anderson ML, et al. Characterization of a hollow fiber bioartificial liver device. Artif Organs 2005;29(5):419-22.
    106. Fruhauf JH, Mertsching H, Giri S, Fruhauf NR, Bader A. Porcine endogenous retrovirus released by a bioartificial liver infects primary human cells. Liver Int 2009;29(10):1553-61.
    107. Wang HH, Wang YJ, Liu HL, Liu J, Huang YP, Guo HT, et al. Detection of PERV by polymerase chain reaction and its safety in bioartificial liver support system. World J Gastroenterol 2006;12(8):1287-91.
    108. Liu Q, Liu Z, Dalakas E. Prevalence of porcine endogenous retrovirus in Chinese pig breeds and in patients treated with a porcine liver cell-based bioreactor. World J Gastroenterol 2005;11(30):4727-30.
    109. Takeuchi Y, Porter CD, Strahan KM, Preece AF, Gustafsson K, Cosset FL, et al. Sensitization of cells and retroviruses to human serum by (alpha 1-3) galactosyltransferase. Nature 1996;379(6560):85-8.
    110. Rother RP, Fodor WL, Springhorn JP, Birks CW, Setter E, Sandrin MS, et al. A novel mechanism of retrovirus inactivation in human serum mediated by anti-alpha-galactosyl natural antibody. J Exp Med 1995;182(5):1345-55.
    111. Takeuchi Y, Liong SH, Bieniasz PD, Jager U, Porter CD, Friedman T, et al. Sensitization of rhabdo-, lenti-, and spumaviruses to human serum by galactosyl(alphal-3)galactosylation. J Virol 1997;71(8):6174-8.
    112. Patience C, Patton GS, Takeuchi Y, Weiss RA, McClure MO, Rydberg L, et al. No evidence of pig DNA or retroviral infection in patients with short-term extracorporeal connection to pig kidneys. Lancet 1998;352(9129):699-701.
    113. Elliott RB, Escobar L, Garkavenko O, Croxson MC, Schroeder BA, McGregor M, et al. No evidence of infection with porcine endogenous retrovirus in recipients of encapsulated porcine islet xenografts. Cell Transplant 2000;9(6):895-901.
    114. Elliott RB, Escobar L, Tan PL, Muzina M, Zwain S, Buchanan C. Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation 2007; 14(2):157-61.
    115. Schumacher JM, Ellias SA, Palmer EP, Kott HS, Dinsmore J, Dempsey PK, et al. Transplantation of embryonic porcine mesencephalic tissue in patients with PD. Neurology 2000;54(5):1042-50.
    116. Qari SH, Magre S, Garcia-Lerma JG, Hussain Al, Takeuchi Y, Patience C, et al. Susceptibility of the porcine endogenous retrovirus to reverse transcriptase and protease inhibitors. J Virol 2001;75(2):1048-53.
    117. Powell SK, Gates ME, Langford G, Gu ML, Lockey C, Long Z, et al. Antiretroviral agents inhibit infection of human cells by porcine endogenous retroviruses. Antimicrob Agents Chemother 2000;44(12):3432-3.
    118. Wilhelm M, Fishman JA, Pontikis R, Aubertin AM, Wilhelm FX. Susceptibility of recombinant porcine endogenous retrovirus reverse transcriptase to nucleoside and non-nucleoside inhibitors. Cell Mol Life Sci 2002;59(12):2184-90.
    119. Stephan O, Schwendemann J, Specke V, Tacke SJ, Boller K, Denner J. Porcine endogenous retroviruses (PERVs):generation of specific antibodies, development of an immunoperoxidase assay (IPA) and inhibition by AZT. Xenotransplantation 2001;8(4):310-6.
    120. Shi M, Wang X, De Clercq E, Takao S, Baba M. Selective inhibition of porcine endogenous retrovirus replication in human cells by acyclic nucleoside phosphonates. Antimicrob Agents Chemother 2007;51(7):2600-4.
    121. Miyagawa S, Nakatsu S, Nakagawa T, Kondo A, Matsunami K, Hazama K, et al. Prevention of PERV infections in pig to human xenotransplantation by the RNA interference silences gene. J Biochem 2005;137(4):503-8.
    122. Dieckhoff B, Karlas A, Hofmann A, Kues WA, Petersen B, Pfeifer A, et al. Inhibition of porcine endogenous retroviruses (PERVs) in primary porcine cells by RNA interference using lentiviral vectors. Arch Virol 2007;152(3):629-34.
    123. Dekker S, Toussaint W, Panayotou G, de Wit T, Visser P, Grosveld F, et al. Intracellularly expressed single-domain antibody against p15 matrix protein prevents the production of porcine retroviruses. J Virol 2003;77(22):12132-9.
    124. Simeonovic CJ, Ziolkowski AF, Popp SK, Milburn PJ, Lynch CA, Hamilton P, et al. Porcine endogenous retrovirus encodes xenoantigens involved in porcine cellular xenograft rejection by mice. Transplantation 2005;79(12):1674-82.
    125. Ramachandran S, Jaramillo A, Xu XC, McKane BW, Chapman WC, Mohanakumar T. Human immune responses to porcine endogenous retrovirus-derived peptides presented naturally in the context of porcine and human major histocompatibility complex class Ⅰ molecules:implications in xenotransplantation of porcine organs. Transplantation 2004;77(10):1580-8.
    126. Chapman LE, Wilson CA. Implications of the advent of homozygous alpha 1, 3-galactosyltransferase gene-deficient pigs on transmission of infectious agents. Xenotransplantation 2003;10(4):287-8.
    127. Byrne GW, McCurry KR, Martin MJ, McClellan SM, Platt JL, Logan JS. Transgenic pigs expressing human CD59 and decay-accelerating factor produce an intrinsic barrier to complement-mediated damage. Transplantation 1997;63(1):149-55.
    128. Levy MF, Crippin J, Sutton S, Netto G, McCormack J, Curiel T, et al. Liver allotransplantation after extracorporeal hepatic support with transgenic (hCD55/hCD59) porcine livers:clinical results and lack of pig-to-human transmission of the porcine endogenous retrovirus. Transplantation 2000;69(2):272-80.
    129. Magre S, Takeuchi Y, Langford G, Richards A, Patience C, Weiss R. Reduced sensitivity to human serum inactivation of enveloped viruses produced by pig cells transgenic for human CD55 or deficient for the galactosyl-alpha(1-3) galactosyl epitope. J Vrol 2004;78(11):5812-9.
    130. Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS, et al. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 2002;295(5557):1089-92.
    131. Takeuchi Y, Cosset FL, Lachmann PJ, Okada H, Weiss RA, Collins MK. Type C retrovirus inactivation by human complement is determined by both the viral genome and the producer cell. J Virol 1994;68(12):8001-7.
    132. Quinn G, Wood JC, Ryan DJ, Suling KM, Moran KM, Kolber-Simonds DL, et al. Porcine endogenous retrovirus transmission characteristics of galactose alphal-3 galactose-deficient pig cells. J Virol 2004;78(11):5805-11.