宽黏度域型多段逆流型搅拌器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
搅拌设备广泛应用于石油、化工、医药、食品、能源、造纸、废水处理等过程工业中,但许多反应体系的粘度变化范围从数厘泊到数万厘泊,其属于宽粘度域且大都为非牛顿型流体,因此给反应器搅拌的选择带来了难题。为此本文通过实验和数值模拟方法对三种典型的宽粘度域搅拌桨型MIG-0.7、INTERMIG-0.7、MIG-0.9的功率特性、混合特性以及流场特性进行研究,为其在工业中的选取和设计提供可靠的依据。
     首先通过实验方法测出三种宽粘度域桨型在不同浓度羧甲基纤维素钠(CMC)和不同转速下的功率和混合时间。并对其进行功率特性、混合特性分析,从而得出三种桨型的Metzner常数K_s、K_p、功率特性曲线;表征混合特性的C_1、C_4~*无量纲参数;确定三种桨型在不同浓度CMC溶液中最佳混合转速。其次应用FLUENT6.2软件选用多重参考系法、Realizable k-e湍流模型对三种桨型进行不同浓度、不同转速数值模拟,并把模拟结果与实验结果进行对比,得出模拟此类搅拌器的合适数值模型。
     通过实验得到三种桨型的Metzner常数K_s,MIG-0.9最大,INTERMIG-0.7次之,MIG-0.7最小;通过C_4~*~R~*曲线确定每种搅拌型式在不同浓度CMC物料内的最佳转速。
     通过模拟得出三种桨型的功率、混合时间模拟结果与实验结果较吻合,因此可用模拟代替实验进行以上三种桨型的工业设计。
     本文的研究结果对工业宽粘度域搅拌反应器的选择使用与优化设计都具有一定的指导意义。
Agitation equipments are commonly used in industrial mixing applications such as chemical industry, foodstuff, metallurgy, paper making, petroleum and water disposal, etc. But the viscosity of many reaction system rise from centipoises to tens of thousands centipoises, Belong to non-newton fluid of wide viscosity domain, So it is the problems to choose mixing impeller of reactors. Because of these factors, Power,mixed properties and flow characteris- tics of the broad viscosity domain impeller type, MIG - 0.7 INTERMIG -0.7 and MIG - 0.9 are researched by experiment and numerical simulation methods in the paper .And the detailed information of mixing an fluid flow in the stirred tank is studied.
     Firstly power and mixing time of three paddle type are measured in the different concentration solution of sodium carboxymethylcellulose(CMC) and different rotatespeed,thereby Metzner constants K_s、K_p and Power characteristic curve , C_1、C_4~* ofcharacterizating mixed properties nondimensional parameters are obtained by analyzing the characteristics of power and mixing,determining optimal mixing speed of three impeller in different concentrations CMC solution.Secondly multi-reference frame(MRF) of FLUENT6.2 simulation software is used to simulate the impellers, and Realizable k-eturbulence model is used in the simulation of three paddle type under three kinds of different concentrations ,rotate speed.The appropriate numerical models of three paddle type are obtained by comparing the simulation results with experimental results.
     Metzner constants K_s of three interference multistage counterflow impellers are obtained through experiments: MIG-0.9 maximum, INTERMIG-0.7 times, MIG-0.7 minimum .The best speed is determined by analyzing three interference multistagecounterflow impellers'curve of C_4~*~R~* .
     Results of numerical simulation are mostly in line with experimental result. therefore Numerical simulation can be used in place of experiment of three interference multistage counterflow impellers industrial design.
     The research results in the Paper Provide guidance for the choice and optimized design to the mechanical mixing operations when a wide change in viscosity occurs throughout the process.
引文
[1]欧舒J Y.流体混合技术[M].北京:化学工业出版社,1991.
    [2]王凯,冯连芳 混合设备设计[M]机械工业出版社2000.4 39-40
    [3]顾雪萍,冯连芳,刘烨,王凯 三种新型桨搅拌特性比较[J]合成橡胶工业,2000.11.15,23(6):344-347
    [4]翁志学,黄志明,李允明 湍流搅拌釜多层桨层间距对搅拌特性的影响[J]化学工程1983 6:1-6
    [5]顾雪萍,冯连芳,王嘉骏,刘烨,王凯 泛能式搅拌桨搅拌特性研究[J]化学工程,2003年8月第31卷第4期
    [6]王嘉陵,冯连芳,顾雪萍.内外单螺带式搅拌器的Metzner常数[J].高校化学工程学报,1999,13(5):442-446.[32]
    [7]王嘉陵,冯连芳,顾雪萍.锚式搅拌器功率消耗与Metzner常数研究[J].化学工程,1999,27(6):20-30
    [8]朱秀林.搅拌槽中高粘非弹性和弹性流体的混合[D].浙江大学博士学位论文,1987
    [9]武斌等.搅拌槽内粘稠物系的混合过程[J].高校化学工程学报,1997:143-149
    [10]翁志学等.湍流搅拌釜多层桨层间距对搅拌特性的影响[J].化学工程,1983,6:31-37
    [11]林猛流等.激光法测定搅拌器的混合特性[J].化学工程,1986,3:52-57
    [12]吴越 一种测量混合时间的新方法[J]试验力学 第14卷 第1期1999.3:102-105
    [13]王凯,非牛顿流体的流动、混合和传热[M],1988
    [14]贺波.搅拌槽内三叶长薄叶螺旋桨流体力学性能的研究及其在固液悬浮操作中的应用[D].北京:北京化工学院,1990.
    [15]周涛.长薄叶螺旋桨固液搅拌槽内流体力学性能研究[D].北京:北京化工学院,1992.
    [16]戴干策,范自晖,姚一平.搅拌反应器中湍流微结构的研究[J].高校化学工程学报,1986,1:1-5.
    [17]高正明,姚文杰,王英深等.应用热膜风速仪测定搅拌槽内气一液两相流的流体力学参数[J].化学工程与工艺,1994,10:90-94.
    [18]侯栓弟,王英深,施力田.螺旋搅拌槽内湍流参数[J].化工学报,1995,46:480-486.
    [19]侯栓弟,王英深,施力田.螺旋搅拌槽内湍流运动测量与数据处理[J].高校化学工程学报,1996,10:196-201.
    [20]侯栓弟.搅拌槽内三维流场的实验研究与数值模拟[D].北京:北京化工大学,1997.
    [21]李程,粒子图像测速(PIV)技术的研究及其在先进搅拌釜流场测量中的应用[D].上海:华东理工大学,2002
    [22]王文堂,王英探,施力田.螺旋搅拌槽中液体的流动结构[J].化学反应工程与工艺,1994,10(3):274-281.
    [23]谢理智.LDV与PIV测量技术及其搅拌器流场的测量实践[D].北京:北京大学,1998.
    [24]周国忠.搅拌槽内流动与混和过程的实验研究及数值模拟[D].北京:北京化工大学,2002.
    [25]周国忠,王英探,施力川.用CFD研究搅拌槽内的混合过程[J].化工学报,2003,54:886-890.
    [26]丁绪淮,周理.液体搅拌[M].北京,化学工业出版社,1983.
    [27]张国娟.搅拌槽内混合过程的数值模拟[D].北京:北京化工大学,2004.
    [28]张国娟,阂键,高正明.涡轮桨搅拌槽内混合过程的数值模拟[J].北京化工大学学报,2004,31(6):24-27
    [29]张林进,叶旭初.搅拌器内湍流场的CFD模拟研究[J].南京工业大学学报,2005,27(2):59-63
    [30]周国忠,施力田,王英深.搅拌槽内近桨区流动场的数值研究[J].高校化学工程学报,2002,16(1):17-22
    [31]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001
    [32]郭鸿志.传输过程数值模拟[M].北京:冶金工业出版社,1998
    [33]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出 版社, 2004
    [34]Rita D'Aquino. Impellers for Niche Mixing Needs[J]. Chemical Engineering Progress; Sep 2004; 100,9; ABI/INFORM Trade & Industry pg. 10
    [35]EKATO, 1991. Handbook of Mixing Technology: General Theory, Selection Criteria, Application. EKATO Ruhr-und Mischtechnik GmbH, Schopfheim.
    
    [36] Nienow, A.W., 1990. Gas dispersion performance in fermenter operation[J].Chemical Engineering Progress, February, pp. 61—71.
    [37] Ibrahim, S., Nienow, A.W., 1995. Power curves and flow patterns for a range of impellers in Newtonian fluids 40    [38] E.S. Szalai, P. Arratia, K. Johnson, F.J. Muzzio. Mixing analysis in a tank stirred with Ekato IntermigJ impellers[J]. Chemical Engineering Science 59 (2004) 3793 -3805
    [39] Szalai, E.S., Arratia, P., Johnson, K., Muzzio, F.J., 2004. Mixing analysis in atank stirred with Ekato Intermig impellers[J]. Chemical Engineering Science59,3793-3805.
    [40] Yao, W.G, Sato, H., Takahashi, K., Koyama, K., 1998. Mixing performance experiments in impeller stirred tanks subjected to unsteady rotational speeds[J].Chemical Engineering Science 53, 3031—3040.
    [41] Joele Aubin*, Catherine Xuereb. Design of multiple impeller stirred tanks for the mixing of highly viscous fluids using CFD [J]. Chemical Engineering Science 61(2006) 2913—2920
    [42] Hudcova, V., v. Machon, A. W. Nienow Gas-Liquid Dispersion with Dual Rushton Turbine Impellers[J].Biotechnology and Bieongineering 1989 (34) 617—628
    [43] Armenante poeri M .,Yu-Tsang Huang,Tong Li Determination of The Minimum Agitation Speed to Attain The Just Dispersed State in Solid-Liquid and Liquid-Liquid Reactors provided Wtth Multiple Impellers Chem . Eng. Sci 1992 47 2865—2870
    [44] K Rutherford, M S Mahmoudi, K C Lee, et al.The influence of Rushion impeller blade and disk thickness on the mixing characteristics of stirred Vessels[J] .Trans IchemE, 1996, 74(A):369—378.
    [45] Nienow A W.On impeller circulation and mixing effectiveness in the turbulent flow regime[J]. Chemical Engineering Science,1997,52:2557-2565
    [46] Van,t Riet K, Smith J M.Chem Eng Sci, 1975, 30:1093.
    [47] Winardi S, Nakao S, Nagase Y.Patten recognition in flow visualization around a paddle impeller[J].J Chem Eng Japan, 1988, 21:503—508.
    [48] Nishikawa M, Nagata S.Jchem.Eng Japan, 1976, 9:489.
    [49] Rao M A, Brodkey R S.Continuous flow stirred tank turbulence parameters in the Impeller stream[J].Chem Eng Sci, 1972, 27:137—156.
    [50] Van,t Riet K,Bruijn W, Smith J M.Real and pseudo-turbulence in the discharge stream from a rushton turbin[J].Chem Sci, 1976, 31:407-412.
    [51] Wu H, Patterson G K.Laser-Doppler measurement of turbulent flow parameters in a stirred mixer[J].Chem Eng Sci, 1989a, 44:2207—2221.
    [52]Bakker A, Myers KJ, Lee K C.Trans IchemE, 1996, 74:485.
    [53] Myers K J, Ward R W, Bakker A.A Digital Particle Image Velocimetry Investigation of Flow Field Instabilities of Axial Flow Impellers[J]. Trans of the ASME, 1997, 119:623-632.
    [54] Ranade V V, Perrard M Le sauze N, Xuereb C, et al.Trailing vortices of Rushton turbine:PIV measurements and CFD simulation with snapshot approach[J] .Trans Iehem E, 2001, 79A:3-12.
    [55] Costes J, Couderc J P.Study by Laser Doppler Anemometry of the Turbulent Flow Induced by a Rushton Turbine in a Stirred Tank: Influence of the Size of the Units-I.Mean Flow and Turbulence[J] .Chem Eng Sci, 1988, 43(10):2751—276.
    
    [56] V P Mishra P Kumar,J B Joshi et al.Conf on Mixing[C]1995:465—472.
    [57] BAUDOUC, XUEREB C.Laser Doppler Measurements of FloW Field and Turbulent Flow Parameters in a Stirred Tank Equipped with Two Industrial Propellers[J].Recents Progres en Genie des Procedes,1997,Volll(51):11-18.
    [58] R K Geisler 6th Euro Conf on Mixing[C], 1988.
    [59] J.M.Nouri, J.MultiPhase, vol8, 1992
    [60]Yoon H S, Sharp K V, Hill D F, et al.Intergrated Experimental and Computational Approach to Simulation of Flow in a Stirred Tank[J]. Chem Eng Sci, 2001, 56:6635—6649.
    [61] Harvey P S, Greaves M. Turbulent Flow in an Agitated Vessel[J]. TransIChemE,1982, 60:201-210
    [62] Naude I , Xuereb C, Bertrand J.Direct Prediction of the flows induced by Propeller in an agitated vessel using an unstructured mesh[J].Can J Chem En,1998, 76:63-640.
    [63] Jaworski Z, Dyster KN, Moore I P T, et al.The use of angle resolve LDV data to compare two differential turbulence models applied to sliding mesh CFD flow simulation in a stirred tank[C].9th Euro Conf On Mixing, 1997, 187—193.
    [64] Ford C, Ein-Mozaffari F, Bennington C, et al.Simulation of mixing dynamics in agitated Pulp stock chests using CFD[J].John Wiley and Sons Inc, 2006,10(52):3562-3569.
    [65] Noorman H, MorudK, Hjertager B H, et al.CFD modeling and verification of flow and conversion in a 1m~3 bioreactor, Proc 3rd Int Conf Bioreactor and Bioprocessing Fluid Dynamics[C].Cambridge, 1993, 241—258.
    [66] Lunden M, Stenberg O, Andersson B.Evaluation of a method of measuring mixing time using numerical simulation and experimenial data[J].Chem Eng Commun, 1995, 139:115-136.
    [67] Schmalzriedt S, Reuss M.APPlication of computational fluid dynamics to simulations of mixing and biotechnical conversion process in stirred tank bioreactors[C].Paris:Proceeding of 9th Europe Conference on Mixing, 1997,171-178.
    [68] Patwardhan A W, Joshi J B, Relation between flow pattern and blending in stirred tanks[J], Ind.Eng.Chem.Res., 1999, 38, 3131—3143
    [69] Jaworski Z, Bujalski W, Otomo N, et al.CFD study of homogenization with dual Rushton turbines-comparison with experimenial results[J] .Trans IChemE, 2000,78(A):327-333.
    [70] K H Javed, Mahmud T, Zhu J M.Numerical simulation of turbulent batch mixing in a vessel agitated by a Rushton turbine[J].Chemical Engineering and Processing, 2006, 2(45):99-112.
    [71] Sakakura Kei, Shiojima Takeo, satoru.Numerical simulation of double helical ribbon agitators using three-dimensional DEM simulation[J]. Japan Society of Mechanical Engineers.2005, 703(71):766-772.
    [72] Middleton J C, Pierce F, Lynch P M. Computations of flow field and complex reaction yield in turbulent stirred reactors, and comparison with experimental data[J].ChemEngDes, 1986, 64:18—22
    [73] Fokema M D. Importance of using correct boundary conditions for CFD simulations of stirred tanks[J].Can J Chem Eng, 1994, 17:177-183
    [74] Kresta S M, Wood P E. The flow field Produced by a Pitched blade turbinexharacterization of turbulence and estimation of the dissipation rate[J].Chem Eng Sci, 1993, 48:1761-1774
    [75] Perieleous K A, Patel M K. The source-sink approach in the modeling of stirred reactors[J].Physieo Chemieal Hydrodynamics, 1987, 9:279—297
    [76]Xu Y, Mcgrath G.Trans.IchemE, 1996, 74:471—480
    [77] Alberto Brueato.Complete numerical Prediction of flow fields in baffled stirred vessels:The inner-outer approach[C].8th Euro.Conf.on Mixing, 1994:155—162.
    [78] Alberto Brueato, Michele Ciofalo, Franco Grisafi, et al.Numerical Prediction of flow fields in baffled stirred vessels:A comparison of alterative modeling approaches[Jl.Chemieal Engineering Seience, 1998, 53(21):3653—3684.
    [79] Wang Weijing, Mao Zaisha.In:Proceedings of the 10th National Conference On Chemical Engineering[C].Zhengzhou:2000:271—74.
    [80] Luo J Y, Issa R I, Gosman A D.Prediction of impeller-induced flows in mixing vessels using multiple frames of reference[J].Institution of Chemical Engineers Symposium Series 136. Rughy, UK:Institution of Chemical Engineers,1994:549-556.
    [81] Bujalski W, Jaworski Z, Nienow AW.CFD study of homogenization with dual Rushoton turbines-comparison with experimental results Part11: The multiple reference frame[J], Trans IchmE, 2002, 80:97~104.
    [82] Lane G L, Schwarz M P, Evans G m.Predicting gas-liquid flow in a mechanically stirred tank[J].Applied Mathematical Modeling, 2002, 26:223—235.
    [83] Bakker A,Laroche R D, Wang M H, et al.Sliding mesh simulation of laminar flow in stirred reactors[J].Trans IChemE, PartA, 1997, 75:42—44.
    [84] Ranade V V, Dommeti S M S.Computational snapshot of flow generated by axial impellers in baffled stirred vessels[J] .Trans IChemE, PartA, 1996, 74:476—484
    [85] Marzio Piller, Enrico Nobile, Thomas J..DNS study of turbulent transport at low Prandtl numbers in a channel flow[J] Journal of Fluid Mechanics, 2002,45(8):419-441.
    [86] Wissink J.Q.DNS of separating low Reynolds number flow in a turbine cascade with incoming wakes[J].International Journal of Heat and Fluid FloW, 2003,24(4):626—635.
    [87]Eggels G M.Direct and Large-eddy simulation of Turbulent Fluid Flow Using the Lattiee-Boltzmann Seheme[J].Int.J.Heat and Fluid Flow, 1996, 17(3):307—323.
    [88]Hartmann H., DerksenJ.J., Montavon C., et al.Assessment of large eddy and RANS stirred tank simulations by means of LDA[J].Chemical Engineering Seience, 2004, 59:2419-2432
    [89]Raul Aleamo, Giorgio Mieale, Franco Grisafi, et al.Large-eddy simulation of turbulent flow in an unbaffled stirred tank driven by a Rushton turbine[J].Chemical Engineering Seience, 2005, 60:2303—2316.
    [90] Derkson, Van den akker, H E A.Large eddy simulations on the flow driven by a Rushton turbine[J].AIChEJ, 1999, 45:209—221.
    [91] Yeoh S.L., Papadakis G, Yianneskis M..Detemination of mixing time and degree of homogeneity in stirred vessels with large eddy simulation[J].Chemieal Engineering Seience, 2005, 60:2293-2302,
    [92] Versteeg H. K., Malalasekera W. An introduction to computational fluid dynamics: the finite volume method[M]. New York: Wiley, 1995
    [93] Chen C. J., Jaw S. Y. Fundamentals of turbulence modeling[M]. Washington:Taylor&Francis, 1998
    
    [94] Fluent Inc. FLUENT User's Guide. Fluent Inc., 2003
    [95] Launder B. E., Spalding D. B. Lectures in mathematical models of turbulence[M].London: Academic Press, 1972
    [96] Yakhot V., Orzag S. A. Renormalization group analysis of turbulence: basic theory[J]. J. Scient Comput., 1986,1:3-11
    [97] Shih T. H., Liou W. W. Shabbir A., et al. A new k-e eddy viscosity model for high Reynolds number turbulence flows[J]. Comput. Fluids, 1995, 24(3):227-238
    [98] Hoffmann A. C., Stein L. E. Gas cyclones and swirl tubes: Principles, Design and Operation [M]. New-York: Springer-Verlag Berlin and Heidelberg, 2002
    [99] Fu S., Huang P. G., Launder B. E., et al. A comparison of algebraic and differential second-moment closures for axisymmetric turbulent shear flows with and without swirl[J], ASME J. Fluids Eng., 1998,110(6):216-221
    [100] Patankar S. V. Numerical heat transfer and fluid flow [M]. New York:McGraw-Hill, 1980
    [101] Patanker S. V., Spalding D. B. A calculation processure for heat, mass and momentum transfer in three-dimensional parabolic flows[J]. Int. J. Heat Mass Transfer, 1972,15(10):1787-1806
    [102] Van Doormal J. P., Raithby G. G. Enhancement of the SIMPLE method for predicting incompressible fluid flows[J]. Numerical Heat Transfer, 1984,7:147-163
    [103] Issa R. I. Solution of the implicitly discretised fluid flow equations by operator-splitting[J]. J. Comput. Phys., 1986, 62:40-65