辅助生殖技术子代胎盘中生长发育相关印记基因CDKN1C、PHLDA2及IGF2的表达和基因印记研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1978年首例试管婴儿诞生以来,辅助生殖技术(assisted reproductive technology, ART)用于临床已逾30年,为不孕症的治疗作出了巨大的贡献。目前,发达国家1-4%的新生儿来自ART,随着子代生育高峰的到来,ART子代已逐渐成为世界人口的重要组成部分。ART非自然生殖的特性以及缺乏临床前安全性研究而直接临床应用的背景,日益引起人们对其生殖遗传安全性的关注。虽然目前未发现ART可直接导致子代出现明显畸形,但不断有报道指出,ART子代不良健康风险增加,生长发育问题就是其中之一,胎儿过度生长或低出生体重儿的风险增高,但原因尚不明确。可能源于不孕夫妇自身的遗传背景,也可能与ART的一系列操作相关。
     表观遗传学是近年来在国际上迅猛发展的崭新研究领域,它是指通过DNA甲基化、组蛋白翻译后修饰等不改变基因核苷酸序列的方式,将遗传信息传递给子代的过程,包括DNA甲基化、基因组印记、组蛋白修饰等。其中,基因印记使某些基因(印记基因)在个体中只有一个亲本来源的等位基因表达。印记基因在人类基因组中只占少数,但在生长发育过程中却发挥至关重要的作用,一旦出现异常,将导致印记疾病或肿瘤的发生。基因组的印记修饰是可逆的,易受环境因素的干扰而出现可遗传的改变,影响子代表型。基因印记在配子及胚胎发育早期需经历擦除及重建过程,ART恰施于这一表观遗传修饰重编程的关键时期。近年来已有大量研究发现,ART操作可导致印记基因表达、DNA甲基化修饰等改变。流行病学调查发现,ART子代患罕见印记异常疾病,如Beckwith-Wiedemann综合征的风险增加。本课题组之前的研究也发现,ART子代脐血中印记基因表达、印记状态及甲基化状态异常。因此,ART极有可能通过干扰基因印记而影响子代生长发育潜能。
     在胚胎期,滋养层细胞较内细胞团对环境因素的干扰更为敏感,因此胎盘组织发生表观遗传修饰异常的风险比胎儿更大。在胎盘中有许多参与母胎间物质转运、影响胎盘、胎儿生长的印记基因表达。其中,父源表达(母源印记)的印记基因促进胎儿生长和营养吸收;母源表达(父源印记)的印记基因抑制胎儿生长。这些基因的缺失或异常激活均可导致胎儿生长发育异常。
     ART是否可通过干扰胎盘基因印记而影响子代的生长发育?其干扰的程度如何?相关机制如何?至今不明。
     本研究以人类ART及自然妊娠足月、单胎子代的胎盘组织为研究对象,选择其中父源印记的生长抑制基因CDKN1C (cyclin-dependent kinase inhibitor 1C)、PHLDA2 (pleckstrin homology-like domain, family A, member 2)及母源印记的生长促进基因IGF2(insulin-like growth factor 2),用逆转录(reverse transcription, RT)-实时荧光定量PCR (Real time PCR).蛋白印迹(Westernblot).PCR直接测序、RT-PCR直接测序、PCR-聚丙烯酰胺凝胶电泳、亚硫酸盐测序(bisulfite sequencing,BSP)等方法研究其表达、甲基化状态及印记状态,探索ART影响子代生长发育的表观遗传机制,评估ART的生殖遗传安全性。
     第一部分ART子代胎盘中印记基因CDKN1C、PHLDA2及IGF2的表达差异
     目的:研究ART子代胎盘中生长发育相关印记基因CDKN1C、PHLDA2及IGF2表达与自然妊娠子代是否存在差异,并探索其与表型间的联系。
     方法:收集足月、单胎ART子代胎盘39例,自然妊娠子代胎盘40例,比较两组新生儿出生体重。采用实时荧光定量PCR检测胎盘中目的基因nRNA表达水平;采用蛋白印迹检测蛋白表达水平。
     结果:ART组新生儿平均出生体重低于对照组,但无显著性差异。ART组胎盘中,CDKN1C、IGF2 mRNA表达水平均显著上调,PHLDA2蛋白表达水平显著上调;PHLDA2 mRNA及CDKN1C、IGF2蛋白表达水平无显著改变。
     结论:ART子代胎盘中存在生长发育相关印记基因表达异常,可能影响子代的生长发育潜能。
     第二部分ART子代胎盘中印记基因CDKN1C、PHLDA2及IGF2印记调控区和启动子区的DNA甲基化状态研究
     目的:研究ART子代胎盘中印记基因CDKN1C、PHLDA2及IGF2印记调控区及启动子区的DNA甲基化状态,比较其与自然妊娠子代间的差异,并探索其与基因表达间的关系。
     方法:选择6例ART足月、单胎子代及5例自然妊娠足月、单胎子代胎盘,用亚硫酸盐测序法检测目的基因印记调控区KvDMR1、H19 DMR及CDKN1C、PHLDA2启动子区CpG岛的DNA甲基化状态。
     结果:对照组印记调控区KvDMR1、H19 DMR均呈差异甲基化,甲基化率在50%左右。ART组KvDMR1区31个CpG位点的甲基化率均低于对照组,第9位点甲基化率显著下降,其中一例ICSI子代甲基化率明显低于对照组及其他ART标本;H19 DMR区20个CpG位点的甲基化率普遍高于对照组,第7位点甲基化率显著上升,其中一例IVF子代甲基化率明显高于对照组及其他ART标本。对照组及ART组CDKN1C、PHLDA2启动子区均呈低甲基化,甲基化率在0-23%左右。ART组CDKN1C启动子区15个CpG位点中,第7-11位点甲基化率显著下降;PHLDA2启动子区23个CpG位点中,第5位点甲基化率显著下降,第1、2、7、10、11位点甲基化率显著上升。
     结论:ART子代胎盘印记基因的印记调控区及启动子区DNA甲基化状态改变,提示ART可能通过干扰调控区的DNA甲基化而影响印记基因表达。
     第三部分ART子代胎盘中印记基因CDKN1C、PHLDA2及IGF2的印记状态研究
     目的:研究ART子代胎盘中印记基因CDKN1C、PHLDA2及IGF2的等位基因表达状态及CDKN1C、IGF2的亲源表达状态,揭示它们在胎盘中的印记状态是否改变,并探索印记状态与印记调控区DNA甲基化改变及基因表达异常间的关系。
     方法:以39例ART足月、单胎子代及40例自然妊娠足月、单胎子代胎盘为研究对象,用PCR-聚丙烯酰胺凝胶电泳、PCR直接测序、RT-PCR直接测序检测胎盘中目的基因的印记状态。
     结果:CDKN1C、PHLDA2及IGF2在胎盘中均为单等位基因表达的印记基因。CDKN1C为母源表达、父源印记基因,IGF2为父源表达、母源印记基因。在ART组未发现上述目的基因异常的印记状态。
     结论:ART子代胎盘印记调控区及启动子区DNA甲基化状态改变,但未发现印记基因CDKN1C、PHLDA2及IGF2的印记状态不稳定性。提示胎盘的基因组印记可能还受到DNA甲基化以外的修饰调控。
Since the birth of Louise Brown in 1978, assisted reproductive technology (ART), as a worldwidely accepted technology, has enabled many infertile couples to enjoy parenthood in the past 30 years. The babies conceived by ART have accounted for 1-4% of all births in developed countries now and gradually become an important part of the world population. ART induces an increasing worry about its risk in reproductive genetics because of its artificial character and the absence of sufficient risk evaluation before clinical use. Till now no evidence has found that ART is directly related to obvious malformation in offspring. But a series of epidemiological studies have revealed that ART babies tend to have health problems, such as growth and development problems. However, little is known about the exact underlying mechanisms. It is also unclear whether the genetic disorders of the infertile parents or the manipulations of ART raise the risk.
     Epigenetics means changes in phenotype that are heritable but do not involve DNA mutation, including DNA methylation, genomic imprinting, histone modifications and so on. Genomic imprinting is an epigenetic process by which the male and female germ line are confered a sex-specific mark (imprint) on certain chromosomal regions. As a consequence, the imprinted gene is expressed from only one of the paternal or maternal chromosomes while the other copy is silent. There are only a few genes in human genome found to be imprinted, but they play important roles in growth and development and the abnormality will induce imprinting defects or tumors. Genomic imprinting is reversible and is vulnerable to environmental stress which will lead to heritable disturbance and change the phenotype of offspring. Genomic imprinting will undergo erasing and re-establishment during gamete and preimlantation embryo development. It is high time that ART manipulations take place. A series of studies have found that ART would lead to aberrant imprinted genes expression, DNA methylation, and so on. A number of reports have suggested that ART might be associated with an increased risk of imprinting defects, such as Beckwith-Wiedemann syndrome (BWS). The previous research of our team also found aberrant imprinted genes expression and DNA methylation in the umbilical blood of ART offspring. Therfore, ART probably influence the growth and development potential of offspring by disturbing the genomic imprinting.
     Trophectoderm cells might be more sensitive to environmental stress than inner cell mass, so that the risk of epigenetic changes is higher in placenta than in fetus. There are many imprinted genes in placenta known to be crucial for placental and fetal growth. In general, the paternally expressed (maternally imprinted) genes enhance fetal growth and the maternally expressed (paternally imprinted) genes restrict fetal growth. Loss or aberrant activation of them will cause abnormalities in fetal growth and development.
     Do the growth and development problems of ART babies have something to do with the aberrant genomic imprinting in placenta caused by ART? How seriously can it be disturbed by ART? What are the underlying mechanisms?
     In the present study, we focused on paternally imprinted growth restricting genes CDKN1C (cyclin-dependent kinase inhibitor 1C), PHLDA2 (pleckstrin homology-like domain, family A, member 2) and maternally imprinted growth promoting gene IGF2 (insulin-like growth factor 2) in placenta. We conducted reverse transcription (RT)-Real time PCR, Westernblot, direct sequencing, PCR-polyacrylamide gel electrophoresis and bisulfite sequencing (BSP) to investigate the expression and imprinted status of these three genes and DNA methylation patterns of their impinting control regions and promoters in term and singleton placentas derived from ART and spontaneous pregnancy in order to elucidate the underlying epigenetic mechanisms for the growth and development problems of the ART conceived babies and evaluate the epigenetic risk of ART.
     Part I The expression of imprinted genes CDKN1C, PHLDA2 and IGF2 changed in human placentas derived from ART
     Objective:To investigate the mRNA and protein expression differences of CDKN1C, PHLDA2 and IGF2 between ART and spontaneously conceived placentas.
     Methods:We collected 39 ART conceived, term and singleton placentas and 40 comparative spontaneously conceived placentas. We compared the birth weights of babies between two groups, used RT-Real time PCR to analyze the mRNA expression levels and used Westernblot to analyze the protein expression levels of the target genes.
     Results:The average birth weight of ART group was lower than that of control group, but without significant difference. In ART conceived placenta, CDKN1C and IGF2 were significantly up-regulated in mRNA levels and PHLDA2 was significantly up-regulated in protein level. There were no significant differences in PHLDA2 mRNA and CDKN1C, IGF2 protein expressions between two groups.
     Conclusion:The expression of several growth and development related imprinted genes changed in ART conceived placentas. It may influence the growth and development potential of ART babies.
     PartⅡDNA methylation analysis of imprinting control regions and promoters of imprinted genes CDKN1C, PHLDA2 and IGF2 in human placentas derived from ART
     Objective:To investigate the change of DNA methylation patterns in imprinting control regions and promoters of CDKN1C, PHLDA2 and IGF2 between ART and spontaneously conceived placentas, and elucidate the relationship between aberrant DNA methylation and abnormal gene expression.
     Methods:Six ART conceived and 5 spontaneously conceived term and singleton placentas were subjected to bisulfite sequencing. DNA methylation patterns in CpG islands of imprinting control regions KvDMRl, H19 DMR and promoters of CDKN1C and PHLDA2 were analyzed.
     Results:All spontaneously conceived placentas were differentially methylated in KvDMR1 and H19 DMR. The methylation rates were both around 50%. The average methylation rate of every CpG site in KvDMRl was lower in ART group and there was a significant decrease in methylation at CpG site 9. One case of ICSI conceived placentas was extremely hypomethylated in this region. The average methylation rates of most CpG sites in H19 DMR were higher in ART group and there was a significant increase in methylation at CpG site 7. One case of IVF conceived placentas was extremely hypermethylated in this region. Both ART and control group were hypomethylated in the promoters of CDKN1C and PHLDA2. The methylation rates were 0-23%. However, in ART group, there was a significant decrease in methylation at CpG site 7-11 in CDKN1C promoter while a significant increase at CpG site 1,2,7, 10,11 and a significant decrease at CpG site 5 in PHLDA2 promoter.
     Conclusion:The aberrant DNA methylation patterns in the imprinting control regions and promoters may contribute to the abnormal expressions of imprinted genes in ART conceived placentas.
     PartⅢImprinted status analysis of imprinted genes CDKN1C, PHLDA2 and IGF2 in human placentas derived from ART
     Objective:To investigate the change of allele-specific expression of CDKN1C, PHLDA2 and IGF2 and parent-specific expression of CDKN1C and IGF2 in ART conceived placentas and elucidate the relationship among imprinted status, aberrant DNA methylation and abnormal gene expression.
     Methods:Thirty-nine ART conceived and 40 spontaneously conceived term and singleton placentas were involved. PCR-polyacrylamide gel electrophoresis, PCR-direct sequencing and RT-PCR-direct sequencing were applied to detect the imprinted status of target genes in placentas.
     Results:CDKN1C, PHLDA2 and IGF2 maintained monoallelic expression in all samples analyzed, so that they are all imprinted genes in placenta. CDKN1C is a maternally expressed and paternally imprinted gene. IGF2 is a paternally expressed and maternally imprinted gene. We found no alteration in imprinted status of target genes in ART conceived placentas.
     Conclusion:We found aberrant DNA methylation patterns in imprinting control regions and promoters of ART conceived placentas but detect no instability of imprinted status in target genes. It suggests that other modifications besides DNA methylation may also contribute to the genomic imprinting in placenta.
引文
1.黄荷凤,周馥贞,金帆.现代辅助生育技术.北京:人民军医出版社,2003.
    2. Nyboe Andersen A, Goossens V, Bhattacharya S, Ferraretti AP, Kupka MS, de Mouzon J, Nygren KG; European IVF-monitoring (EIM) Consortium, for the European Society of Human Reproduction and Embryology (ESHRE). Assisted reproductive technology and intrauterine inseminations in Europe,2005:results generated from European registers by ESHRE:ESHRE. The European IVF Monitoring Programme (EIM), for the European Society of Human Reproduction and Embryology (ESHRE). Hum Reprod.2009; 24(6):1267-1287
    3. Schieve LA, Meikle SF, Ferre C, et al. Low and very low birthweight conceived with uese of assisted reproductive technology. N Engl J Med.2002; 346(10): 731-737
    4. McDonald SD, Murphy K, Beyene J, Ohlsson A. Perinatel outcomes of singleton pregnancies achieved by in vitro fertilization:a systematic review and meta-analysis. J Obstet Gynaecol Can.2005; 27(5):449-459
    5. Jackson RA, Gibson KA, Wu YW, Croughan MS. Perinatal outcomes in singletons following in vitro fertilization:a meta-analysis.Obstet Gynecol.2004; 103(3): 551-563.
    6. DeBaun MR, Niemitz EL, and Feinberg, AP. Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. American Journal of Human Genetics.2003; 72(1):156-160
    7. Gicquel C, Gaston V, Mandelbaum J, Siffroi JP, Flahault A, and Le Bouc Y. In vitro fertilization may increase the risk of Beckwith-Wiedemann syndrome related to the abnormal imprinting of the KCNQ1OT1 gene. American Journal of Human Genetics.2003; 72(5):1338-1341
    8. Maher ER, Brueton LA, Bowdin SC, Luharia A, Cooper W, Cole TR, Macdonald F, Sampson JR, Barratt CL, Reik W, Hawkins MM. Beckwith-Wiedemann syndrome and assisted reproduction technology (ART). Journal of Medical Genetics.2003; 40(1):62-64.
    9. Halliday J,Oke K, Breheny S, Algar EJ, and Amor D. Beckwith-Wiedemann syndrome and IVF:A case-control study. American Journal of Human Genetics. 2004; 75(3):526-528.
    10. Allis CD, Jenuwein T, Reinberg D. Epigenetics.北京:科学出版社,2008,第一版
    11.薛京伦,汪旭,吴超群等.表观遗传学:原理、技术与实践.上海:科学技术出版社,2006,第一版
    12. Horsthemke B, Ludwig M. Assisted reproduction:the epigenetic perspective. Hum Reprod Upd.2005; 11(5); 473-482
    13. Huntriss J, Picton HM. Epigenetic consequences of assisted reproduction and infertility on the human preimplantation embryo. Hum Fertil (Camb).2008; 11(2): 85-94
    14. Cox GF, Burger J, Lip V et al. Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet.2002; 71(1):162-164
    15.(?)rstavik KH, Eiklid K, van der Hagen CB, et al. Another case of imprinting defect in a girl with Angelman syndrome who was conceived by intracytoplasmic semen injection. Am J Hum Genet.2003; 72(1):218-219.
    16. Gosden R, Trasler J, Lucifero D, et al. Rare congenital disorders, imprinted genes, and assisted reproductive technology. Lancet.2003; 361(9373):1975-1977
    17. Mann MR, Lee SS, Doherty AS, Verona RI, Nolen LD, Schultz RM, Bartolomei MS. Selective loss of imprinting in the placenta following preimplantation development in culture. Development.2004; 131(15):3727-3735
    18. Apostolidou S, Abu-Amero S, O'Donoghue K, et al. Elevated placental expression of the imprinted PHLDA2 gene is associated with low birth weight. J Mol Med. 2007; 85(4):379-87
    19. Smith F.M. Garfield A.S. Ward A. Regulation of growth and metabolism by imprinted genes. Cytogenet Genome Res.2006; 113(1-4):279-291
    1. McDonald SD, Murphy K, Beyene J, Ohlsson A. Perinatel outcomes of singleton pregnancies achieved by in vitro fertilization:a systematic review and meta-analysis. J Obstet Gynaecol Can.2005; 27(5):449-459
    2. Jackson RA, Gibson KA, Wu YW, Croughan MS. Perinatal outcomes in singletons following in vitro fertilization:a meta-analysis.Obstet Gynecol.2004; 103(3): 551-563.
    3. Koivurova S, Hartikainen AL, Sovio U, et al. Growth, psychomotor development and morbidity up to 3 years of age in children born after IVF. Hum Reprod.2003; 18(11):2328-2336
    4. DeBaun MR, Niemitz EL, and Feinberg, AP. Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. American Journal of Human Genetics.2003; 72(1):156-160
    5. Gicquel C, Gaston V, Mandelbaum J, Siffroi JP, Flahault A, and Le Bouc Y. In vitro fertilization may increase the risk of Beckwith-Wiedemann syndrome related to the abnormal imprinting of the KCNQ1OT1 gene. American Journal of Human Genetics.2003; 72(5):1338-1341
    6. Maher ER, Brueton LA, Bowdin SC, Luharia A, Cooper W, Cole TR, Macdonald F, Sampson JR, Barratt CL, Reik W, Hawkins MM. Beckwith-Wiedemann syndrome and assisted reproduction technology (ART). Journal of Medical Genetics.2003; 40(1):62-64.
    7. Halliday J,Oke K, Breheny S, Algar EJ, and Amor D. Beckwith-Wiedemann syndrome and IVF:A case-control study. American Journal of Human Genetics. 2004; 75(3):526-528.
    8. Horsthemke B, Ludwig M. Assisted reproduction:the epigenetic perspective. Hum Reprod Upd.2005; 11(5); 473-482
    9. Apostolidou S, Abu-Amero S, O'Donoghue K, et al. Elevated placental expression of the imprinted PHLDA2 gene is associated with low birth weight. J Mol Med. 2007;85(4):379-87
    10. Smith F.M. Garfield A.S. Ward A. Regulation of growth and metabolism by imprinted genes. Cytogenet Genome Res.2006; 113(1-4):279-291
    11. Fortier AL, Lopes FL, Darricarrere N, Martel J, Trasler JM. Superovulation alters the expression of imprinted genes in the midgestation mouse placenta. Hum Mol Genet.2008; 17(11):1653-1665.
    12. Huntriss J, Picton HM. Epigenetic consequences of assisted reproduction and infertility on the human preimplantation embryo. Hum Fertil (Camb).2008; 11(2): 85-94
    13. Andrews SC, Wood MD, Tunster SJ, Barton SC, Surani MA, John RM. Cdknlc (p57Kip2) is the major regulator of embryonic growth within its imprinted domain on mouse distal chromosome 7. BMC Dev Biol.2007 May 21; 7:53.
    14. Mainprize TG, Taylor MD, Rutka JT, Dirks PB. Cip/Kip cell-cycle inhibitors:a neuro-oncological perspective. J Neurooncol.2001; 51(3):205-218.
    15. Cunningham JJ, Roussel MF. Cyclin-dependent kinase inhibitors in the development of the central nervous system. Cell Growth Differ.2001; 12(8): 387-396.
    16. Takahashi K, Kobayashi T, Kanayama N. p57(Kip2) regulates the proper development of labyrinthine and spongiotrophoblasts. Mol Hum Reprod.2000; 6(11):1019-1025.
    17. Lam WW, Hatada I, Ohishi S, Mukai T, Joyce JA, Cole TR, Donnai D, Reik W, Schofield PN, Maher ER. Analysis of germline CDKN1C (p57KIP2) mutations in familial and sporadic Beckwith-Wiedemann syndrome (BWS) provides a novel genotype-phenotype correlation. J Med Genet.1999; 36(7):518-523
    18. O'Keefe D, Dao D, Zhao L, Sanderson R, Warburton D, Weiss L, Anyane-Yeboa K, Tycko B. Coding mutations in p57KIP2 are present in some cases of Beckwith-Wiedemann syndrome but are rare or absent in Wilms tumors. Am J Hum Genet.1997; 61(2):295-303.
    19. Tycko B, Morison IM. Physiological functions of imprinted genes. J Cell Physiol. 2002; 192(3):245-258.
    20. Fowden AL, Sibley C, Reik W, Constancia M. Imprinted genes, placental development and fetal growth. Horm Res.2006; 65 Suppl 3:50-58.
    21. Redline RW, Chernicky CL, Tan HQ, Ilan J, Ilan J. Differential expression of insulin-like growth factor-Ⅱ in specific regions of the late (post day 9.5) murine placenta. Mol Reprod Dev.1993; 36(2):121-129.
    22. Guo L, Choufani S, Ferreira J, Smith A, Chitayat D, Shuman C, Uxa R, Keating S, Kingdom J, Weksberg R. Altered gene expression and methylation of the human chromosome 11 imprinted region in small for gestational age (SGA) placentae. Dev Biol.2008; 320(1):79-91.
    23. Holmes R, Montemagno R, Jones J, Preece M, Rodeck C, Soothill P. Fetal and maternal plasma insulin-like growth factors and binding proteins in pregnancies with appropriate or retarded fetal growth. Early Hum Dev.1997; 49(1):7-17.
    24. Leger J, Oury JF, Noel M, Baron S, Benali K, Blot P, Czernichow P. Growth factors and intrauterine growth retardation. I. Serum growth hormone, insulin-like growth factor (IGF)-Ⅰ, IGF-Ⅱ, and IGF binding protein 3 levels in normally grown and growth-retarded human fetuses during the second half of gestation. Pediatr Res.1996; 40(1):94-100.
    25. Lassarre C, Hardouin S, Daffos F, Forestier F, Frankenne F, Binoux M. Serum insulin-like growth factors and insulin-like growth factor binding proteins in the human fetus. Relationships with growth in normal subjects and in subjects with intrauterine growth retardation. Pediatr Res.1991; 29(3):219-225.
    26. Street ME, Seghini P, Fieni S, Ziveri MA, Volta C, Martorana D, Viani I, Gramellini D, Bernasconi S. Changes in interleukin-6 and IGF system and their relationships in placenta and cord blood in newborns with fetal growth restriction compared with controls. Eur J Endocrinol.2006; 155(4):567-574.
    27. de Vrijer B, Davidsen ML, Wilkening RB, Anthony RV, Regnault TR. Altered placental and fetal expression of IGFs and IGF-binding proteins associated with intrauterine growth restriction in fetal sheep during early and mid-pregnancy. Pediatr Res.2006; 60(5):507-512
    28. Itoh T, Takenawa T. Phosphoinositide-binding domains:Functional units for temporal and spatial regulation of intracellular signalling. Cell Signal.2002; 14(9): 733-743
    29. Lemmon MA, Ferguson KM, Abrams CS. Pleckstrin homology domains and the cytoskeleton. FEBS Lett.2002; 513(1):71-76.
    30. Frank D, Fortino W, Clark L, Musalo R, Wang W, Saxena A, Li CM, Reik W, Ludwig T, Tycko B. Placental overgrowth in mice lacking the imprinted gene Ipl. Proc Natl Acad Sci U S A.2002; 99(11):7490-7495.
    31. Salas M, John R, Saxena A, Barton S, Frank D, Fitzpatrick G, Higgins MJ, Tycko B. Placental growth retardation due to loss of imprinting of Phlda2. Mech Dev. 2004; 121(10):1199-1210
    32. Tycko B. Imprinted genes in placental growth and obstetric disorders. Cytogenet Genome Res.2006; 113(1-4):271-278.
    33. McMinn J, Wei M, Schupf N, Cusmai J, Johnson EB, Smith AC, Weksberg R, Thaker HM, Tycko B. Unbalanced placental expression of imprinted genes in human intrauterine growth restriction. Placenta.2006; 27(6-7):540-549
    34. Hansen TV, Hammer NA, Nielsen J, Madsen M, Dalbaeck C, Wewer UM, Christiansen J, Nielsen FC. Dwarfism and impaired gut development in insulin-like growth factor Ⅱ mRNA-binding protein 1-deficient mice. Mol Cell Biol.2004; 24(10):4448-4464.
    1. Allis CD, Jenuwein T, Reinberg D. Epigenetics.北京:科学出版社,2008,第一版
    2.薛京伦,汪旭,吴超群等.表观遗传学:原理、技术与实践.上海:科学技术出版社,2006,第一版
    3. Arnaud P, Feil R. Epigenetic deregulation of genomic imprinting in human disorders and following assisted reproduction. Birth Defects Res C Embryo Today. 2005; 75(2):81-97.
    4. Guo L, Choufani S, Ferreira J, Smith A, Chitayat D, Shuman C, Uxa R, Keating S, Kingdom J, Weksberg R. Altered gene expression and methylation of the human chromosome 11 imprinted region in small for gestational age (SGA) placentae. Dev Biol.2008; 320(1):79-91.
    5. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A. 1992; 89(5):1827-1831.
    6. DeBaun MR, Niemitz EL, and Feinberg, AP. Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. American Journal of Human Genetics.2003; 72(1):156-160
    7. Gicquel C, Gaston V, Mandelbaum J, Siffroi JP, Flahault A, and Le Bouc Y. In vitro fertilization may increase the risk of Beckwith-Wiedemann syndrome related to the abnormal imprinting of the KCNQ1OT1 gene. American Journal of Human Genetics.2003; 72(5):1338-1341
    8. Maher ER, Brueton LA, Bowdin SC, Luharia A, Cooper W, Cole TR, Macdonald F, Sampson JR, Barratt CL, Reik W, Hawkins MM. Beckwith-Wiedemann syndrome and assisted reproduction technology (ART). Journal of Medical Genetics.2003; 40(1):62-64.
    9. Halliday J,Oke K, Breheny S, Algar EJ, and Amor D. Beckwith-Wiedemann syndrome and IVF:A case-control study. American Journal of Human Genetics. 2004; 75(3):526-528.
    10. Rivera RM, Stein P, Weaver JR, Mager J, Schultz RM and Bartolomei MS. Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on day 9.5 of development. Hum Mol Genet.2008; 17(1):1-14.
    11. Geuns E, Hilven P, Van Steirteghem A, Liebaers I, De Rycke M. Methylation analysis of KvDMRl in human oocytes. J Med Genet.2007; 44(2):144-147.
    12. Gomes MV, Huber J, Ferriani RA, Amaral Neto AM, Ramos ES. Abnormal methylation at the KvDMRl imprinting control region in clinically normal children conceived by assisted reproductive technologies. Mol Hum Reprod.2009; 15(8):471-477.
    13. Fortier AL, Lopes FL, Darricarrere N, Martel J, Trasler JM. Superovulation alters the expression of imprinted genes in the midgestation mouse placenta. Hum Mol Genet.2008; 17(11):1653-1665.
    14. Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet.2002; 3(9):662-673.
    15. Caspary T, Cleary MA, Baker CC, Guan XJ, Tilghman SM. Multiple mechanisms regulate imprinting of the mouse distal chromosome 7 gene cluster. Mol Cell Biol. 1998; 18(6):3466-3474.
    16. Shin JY, Fitzpatrick GV, Higgins MJ. Two distinct mechanisms of silencing by the KvDMRl imprinting control region. EMBO J.2008; 27(1):168-178.
    17. Bhogal B, Arnaudo A, Dymkowski A, Best A, Davis TL. Methylation at mouse Cdknlc is acquired during postimplantation development and functions to maintain imprinted expression. Genomics.2004; 84(6):961-970.
    18. Yatsuki H, Joh K, Higashimoto K, Soejima H, Arai Y, Wang Y, Hatada I, Obata Y, Morisaki H, Zhang Z, Nakagawachi T, Satoh Y, Mukai T. Domain regulation of imprinting cluster in Kip2/Litl subdomain on mouse chromosome 7F4/F5: large-scale DNA methylation analysis reveals that DMR-Litl is a putative imprinting control region. Genome Res.2002; 12(12):1860-1870.
    19. Bell AC, Felsenfeld G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature.2000; 405(6785):482-485.
    20. Sato A, Otsu E, Negishi H, Utsunomiya T, Arima T. Aberrant DNA methylation of imprinted loci in superovulated oocytes. Hum Reprod.2007; 22(1):26-35
    21. Beatty L, Weksberg R, Sadowski PD. Detailed analysis of the methylation patterns of the KvDMRl imprinting control region of human chromosome 11. Genomics. 2006 Jan;87(1):46-56.
    1. Allis CD, Jenuwein T, Reinberg D. Epigenetics.北京:科学出版社,2008,第一版
    2.薛京伦,汪旭,吴超群等.表观遗传学:原理、技术与实践.上海:科学技术出版社,2006,第一版
    3. Horsthemke B, Ludwig M. Assisted reproduction:the epigenetic perspective. Hum Reprod Upd.2005; 11(5); 473-482
    4. Huntriss J, Picton HM. Epigenetic consequences of assisted reproduction and infertility on the human preimplantation embryo. Hum Fertil (Camb).2008; 11(2): 85-94
    5. Hatada I, Inazawa J, Abe T, Nakayama M, Kaneko Y, Jinno Y, Niikawa N, Ohashi H, Fukushima Y, Iida K, Yutani C, Takahashi S, Chiba Y, Ohishi S, Mukai T. Genomic imprinting of human p57KIP2 and its reduced expression in Wilms' tumors. Hum Mol Genet.1996; 5(6):783-788.
    6. Smith F.M. Garfield A.S. Ward A. Regulation of growth and metabolism by imprinted genes. Cytogenet Genome Res.2006; 113(1-4):279-291
    7. Arnaud P, Feil R. Epigenetic deregulation of genomic imprinting in human disorders and following assisted reproduction. Birth Defects Res C Embryo Today. 2005; 75(2):81-97.
    8. Cui H, Cruz-Correa M, Giardiello FM, Hutcheon DF, Kafonek DR, Brandenburg S, et al. Loss of IGF2 imprinting:a potential marker of colorectal cancer risk. Science.2003;299(5613):1753-1755.
    9. Beatty L, Weksberg R, Sadowski PD. Detailed analysis of the methylation patterns of the KvDMRl imprinting control region of human chromosome 11. Genomics. 2006 Jan;87(1):46-56.
    10. Umlauf D, Goto Y, Cao R, Cerqueira F, Wagschal A, Zhang Y, Feil R. Imprinting along the Kcnql domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat Genet.2004; 36(12):1296-1300.
    11. Sullivan MJ, Taniguchi T, Jhee A, Kerr N, Reeve AE. Relaxation of IGF2 imprinting in Wilms tumours associated with specific changes in IGF2 methylation. Oncogene.1999; 18(52):7527-7534.
    12. Wilkin F, Paquette J, Ledru E, Hamelin C, Pollak M, Deal CL. H19 sense and antisense transgenes modify insulin-like growth factor-II mRNA levels. Eur J Biochem.2000; 267(13):4020-4027
    13. Li YM, Franklin G, Cui HM, Svensson K, He XB, Adam G, Ohlsson R, Pfeifer S. The H19 transcript is associated with polysomes and may regulate IGF2 expression in trans. J Biol Chem.1998; 273(43):28247-28252.
    14. Wolff GL, Kodell RL, Moore SR, Cooney CA. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J.1998; 12(11): 949-957.
    15. Rees WD, Hay SM, Brown DS, Antipatis C, Palmer RM. Maternal protein deficiency causes hypermethylation of DNA in the livers of rat fetuses. J Nutr. 2000; 130(7):1821-1826.
    1. Aston KI, Peterson CM, Carrell DT. Monozygotic twinning associated with assisted reproductive technologies:a review. Reproduction.2008; 136(4):377-386
    2. Andersen AN, Goossens V, Bhattacharya S, Ferraretti AP, de Mouzon J, Nygren KG; European IVF-monitoring (EIM) Consortium; European Society of Human Reproduction and Embryology (ESHRE). Assisted reproductive technology and intrauterine inseminations in Europe,2005:results generated from European registers by ESHRE. Hum Reprod.2009; 1(1):1-21
    3. Wright VC, Chang J, Jeng G, Macaluso M; Centers for Disease Control and Prevention (CDC). Assisted reproductive technology surveillance—United States, 2005. MMWR Surveill Summ.2008; 57(5):1-23.
    4. AIHW, Australian Institute of Health and Welfare. Assisted Reproduction Technology in Australia and New Zealand 2006. Assisted Reproduction Technology Series, Number 12. National Perinatal Statistical Unit and Fertility Society of Australia,2008. www.npsu.unsw.edu.au.
    5. Vitthala S, Gelbaya TA, Brison DR, Fitzgerald CT, Nardo LG. The risk of monozygotic twins after assisted reproductive technology:a systematic review and meta-analysis. Hum Reprod Update.2009; 15(1):45-55
    6. Gleicher N, Oleske DM, Tur-Kaspa I, Vidali A, Karande V. Reducing the risk of high-order multiple pregnancy after ovarian stimulation with gonadotropins. N Engl J Med.2000; 343(1):2-7
    7.2002 Assisted Reproductive Technology Success Rates. National Summary and Fertility Clinic Reports. From the Center for Disease Control, Society for Assisted Reproductive Technology, and the American Society for Reproductive Medicine, 2005
    8. Abusheikha N, Salha O, Sharma V & Brinsden P. Monozygotic twinning and IVF/ICSI treatment:a report of 11 cases and review of literature. Hum Reprod Update 2000; 6(4):396-403.
    9. Alikani M, Cekleniak NA, Walters E, Cohen J. Monozygotic twinning following assisted conception:an analysis of 81 consecutive cases. Hum Reprod.2003; 18(9): 1937-1943
    10. Skiadas CC, Missmer SA, Benson CB, Gee RE & Racowsky C. Risk factors associated with pregnancies containing a monochorionic pair following assisted reproductive technologies. Hum Reprod.2008; 23(6):1366-1371.
    11. Schachter M, Raziel A, Friedler S, Strassburger D, Bern O & Ron-E1 R. Monozygotic twinning after assisted reproductive techniques:a phenomenon independent of micromanipulation. Hum Reprod.2001; 16(6):1264-1269.
    12. Blickstein I, Keith LG. On the possible cause of monozygotic twinning:lessons from the 9-banded armadillo and from assisted reproduction. Twin Res Hum Genet 2007; 10:394-399.
    13. Behr B, Fisch JD, Racowsky C, Miller K, Pool TB, Milki AA. Blastocyst-ET and monozygotic twinning. J Assist Reprod Genet 2000; 17:349-351.
    14. Wright V, Schieve LA, Vahratian A, Reynolds MA. Monozygotic twinning associated with day 5 embryo transfer in pregnancies conceived after IVF. Hum Reprod.2004; 19(8):1831-1836
    15. Me'ne'zo YJ, Sakkas D. Monozygotic twinning:is it related to apoptosis in the embryo? Hum Reprod.2002; 17:247-248.
    16. Milki AA, Jun SH, Behr B, Giudice LC, Westphal LM. Incidence of monozygotic twinning with blastocyst transfer compared to cleavage-stage transfer. Fertil Steril. 2003; 79:504-506.
    17. Moayeri SE, Behr B, Lathi RB,Westphal LM, Milki AA. Risk of monozygotic twinning with blastocyst transfer decreases over time:an 8-year experience. Ferti Steril.2007; 87:1028-1032.
    18. Zuppa AA, Maragliano G, Scapillati ME, Crescimbini B, Tortorolo G. Neonatal outcome of spontaneous and assisted twin pregnancies. Eur J Obstet Gynecol Reprod Biol.2001; 95(1):68-72.
    19. McDonald S, Murphy K, Beyene J, Ohlsson A. Perinatal outcomes of in vitro fertilization twins:a systematic review and meta-analyses. Am J Obstet Gynecol. 2005; 193(1):141-52.
    20. Boulet SL, Schieve LA, Nannini A, Ferre C, Devine O, Cohen B, Zhang Z, Wright V, Macaluso M. Perinatal outcomes of twin births conceived using assisted reproduction technology:a population-based study. Hum Reprod.2008; 23(8): 1941-1948.
    21. Helmerhorst FM, Perquin DA, Donker D, Keirse MJ Perinatal outcome of singletons and twins after assisted conception:a systematic review of controlled studies. BMJ.2004; 328(7434):261.
    22. Bissonnette F, Cohen J, Collins J, Cowan L, Dale S, Dill S, Greene C, Gysler M, Hanck B, Hughes E, Leader A, McDonald S, Marrin M, Martin R, Min J, Mortimer D, Mortimer S, Smith J, Tsang B, van Vugt D, Yuzpe A; Canadian Fertility and Andrology Society. Incidence and complications of multiple gestation in Canada: proceedings of an expert meeting. Reprod Biomed Online.2007; 14(6):773-790
    23. Daniel Y, Ochshorn Y, Fait G, Geva E, Bar-Am A, Lessing JB. Analysis of 104 twin pregnancies conceived with assisted reproductive technologies and 193 spontaneously conceived twin pregnancies. Fertil Steril.2000; 74(4):683-9.
    24. Koivurova S, Hartikainen AL, Gissler M, Hemminki E, Sovio U, Jarvelin MR. Neonatal outcome and congenital malformations in children born after in vitro fertilization. Hum Reprod,2002; 17(5):1391-1398
    25. Morley R. Fetal origins of adult disease. Semin Fetal Neonatal Med.2006; 11(2): 73-78
    26. Frankle S, Elwood P, Sweetnam P et al. Birthweight, body mass index in middle age, and incident coronary heart disease. Lancet.1996; 348(9040):1478-1480
    27. Barker DJ, Osmond C, Forsen TJ, et al. Trajectories of growth among children who later have coronary events. N Engl J Med.2005; 353(17):1802-1809.
    28. Forsen T, Eriksson J, Tuomilehto J, et al. The fetal and childhood growth of persons who develop type 2 diabetes. Ann Intern Med.2000; 133(3):176-182.
    29. Dennison EM, Syddall HE, Sayer AA, et al. Birth weight and weight at 1 year are independent determinants of bone mass in the seventh decade:the Hertfordshire cohort study. Pediatr Res.2005; 57(4):582-586.
    30. Wahlbeck K, Forsen T, Osmond C, et al. Association of schizophrenia with low maternal body mass index, small size at birth, and thinness during childhood. Arch Gen Psychiatry.2001; 58(1):48-52.
    31. Gale CR, Martyn CN. Birth weight and later risk of depression in a national birth cohort. Br J Psychiatry.2004; 184:28-33.
    32. Lucas JS, Inskip HM, Godfrey KM, et al. Small size at birth and greater postnatal weight gain:relationships to diminished infant lung function. Am J Respir Crit Care Med.2004; 170(5):534-540
    33. Stromberg B, Dahlquist G, Ericson A, Finnstrom O, Koster M, Stjernqvist K. Neurological sequelae in children born after in-vitro fertilisation:a population-based study. Lancet.2002; 359(9305):461-465.
    34. Pinborg A, Loft A, Schmidt L, Greisen G, Rasmussen S, Andersen AN. Neurological sequelae in twins born after assisted conception:controlled national cohort study. BMJ.2004; 329(7461):311.
    35. Rao A, Sairam S, Shehata H. Obstetric complications of twin pregnancies. Best Pract Res Clin Obstet Gynaecol.2004; 18(4):557-76
    36. Dickey RP, Sartor BM, Pyrzak R. What is the most relevant standard of success in assisted reproduction?:no single outcome measure is satisfactory when evaluating success in assisted reproduction; both twin births and singleton births should be counted as successes. Hum Reprod.2004; 19(4):783-7.
    37. JOINT SOGC-CFAS Guidelines for the number of embryos to transfer following in vitro fertilization No.182, September 2006. Int J Gynaecol Obstet.2008; 102(2): 203-16.
    38. Kalu E, Thum MY, Abdalla H. Reducing multiple pregnancy in assisted reproduction technology:towards a policy of single blastocyst transfer in younger women. BJOG. 2008; 115(9):1143-50.
    1. OLA B, LEDGER W L. Endometriosis and Infertility[J]. Women's Health Medicine,2005,2(1):15-17.
    2. ESFANDIARI N, FALCONE T, GOLDBERG J M, et al. Effects of peritoneal fluid on preimplantation mouse embryo development and apoptosis in vitro[J]. Reprod Biomed Online,2005,11(5):615-619.
    3. GOMEZ-TORRES M J, ACIEN P, CAMPOS A, et al. Embryotoxicity of peritoneal fluid in women with endometriosis. Its relation with cytokines and lymphocyte populations[J]. Hum Reprod,2002,17(3):777-781.
    4. IWABE T, HARADA T, TERAKAWA N. Role of cytokines in endometriosis-associated infertility[J]. Gynecol Obstet Invest,2002,53(Suppl 1): 19-25.
    5. KONDERA-ANASZ Z, SIKORA J, MIELCZAREK-PALACZ A, et al. Concentrations of interleukin (IL)-lalpha, IL-1 soluble receptor type Ⅱ (IL-1 sRII) and IL-1 receptor antagonist (IL-1 Ra) in the peritoneal fluid and serum of infertile women with endometriosis[J]. Eur J Obstet Gynecol Reprod Biol,2005,123(2): 198-203.
    6. WU Ming-yih, CHEN Shee-uan, CHAO Kuang-han, et al. Mouse embryo toxicity of IL-6 in peritoneal fluids from women with or without endometriosis [J]. Acta Obstet Gynecol Scand,2001,80(1):7-11.
    7. ZHANG X, R K. SHARMA R K, AGARWAL A, et al. TNF-alpha induced embryotoxicity and role of TNF-alpha blocker-infliximab on in vitro blastocyst development rate[J]. Fertil Steril,2004,82,(Suppl 2):S160-S161.
    8. HOCKETT M E, ROHRBACH N R, SCHRICK F N. Alterations in embryo development in progestogen-supplemented cows administered prostaglandin F2a[J]. Prostaglandins Other Lipid Mediators,2004,73(3-4):227-236.
    9. OSBORN B H, HANEY A F, MISUKONIS M A, et al. Inducible nitric oxide synthase expression by peritoneal macrophages in endometriosis-associated infertility[J]. Fertil Steril,2002,77(1):46-51.
    10. DONG Min-yue, SHI Y, CHENG Qi, et al. Increased nitric oxide in peritoneal fluid from women with idiopathic infertility and endometriosis[J]. J Reprod Med, 2001,46(10):887-891.
    11. BARROSO R, OSUAMKPE C, NAGAMANI M. Nitric oxide inhibits development of embryos and implantation in mice[J]. Mol Hum Reprod,1998,4: 503-507.
    12. POLINESS A E, HEALEY M G, BRENNECKE S P, et al. Proteomic identification of elevated levels of haptoglobin precursor in peritoneal fluid of women with endometriosis[J]. Eur J Obstet Gynecol,2005,123(suppl 1):S31.
    13. SHARPE-TIMMS K L, ZIMMER R L, RICKE E A. Intense focal express of de novo synthesized haptoglobin by subluminal endometrial stroma correlates with the window of implantation in women with endometriosis[J]. Fertil Steril,2002, 78(suppl 1):S88.
    14. SHARPE-TIMMS K L, ZIMMER R L, RICKE E A, et al. Endometriotic haptoglobin binds to peritoneal macrophages and alters their function in women with endometriosis[J]. Fertil Steril,2002,78(4):810-819.
    15. DIMITRIADIS E, STOIKOS C, STADDOES-BELL M, et al. Interleukin-11, IL-11 receptora and leukemia inhibitory factor are dysregulated in endometrium of infertile women with endometriosis during the implantation window[J]. J Reprod Immunol,2006,69(1):53-64.
    16. BULLETTI C, FLAMIGNI C, ZIEGLER D. Implantation markers and endometriosis[J]. Reprod Biomed Online,2005,11(4):464-468.
    17. MARIA J I, LINGWEN J, COLIN L S, et al. Effect of peritoneal fluid from women with endometriosis on implantation in the mouse model[J]. Fertil Steril,2000,74(1):41-48.
    18. NURI C, SEMIH K, ZERRIN C, et al. Difference in avP3 integrin expression in endometrial stromal cell in subgroups of women with unexplained infertility [J]. Eur J Obstet Gynecol Reprod Biol,2006,126(2):206-211.
    19. GOFFIN F, MUNAUT C, FRANKENNE F, et al. Expression pattern of metalloproteinases and tissue inhibitors of matrix-metalloproteinases in cycling human endometrium[J]. Biol Reprod,2003,69(3):976-984.
    20. HUANG He-feng, HONG Li-hua, TAN Yi, et al. Matrix metalloproteinase 2 is associated with changes in steroid hormones in the sera and peritoneal fluid of patients with endometriosis[J]. Fertil Steril,2004,81(5):1235-1239.
    21. CASTRO A, JOHNSON M C, ANIDO M, et al. Role of nitric oxide and bcl-2 family genes in the regulation of human endometrial apoptosis[J]. Fertil Steril, 2002,78(3):587-95.
    22. RILEY S C, THOMASSEN R, BAE S E, et al. Matrix metalloproteinase-2 and-9 secretion by the equine ovary during follicular growth and prior to ovulation[J]. Anim Reprod Sci,2004,81(3-4):329-339.
    23. GOTTSCH M L, VAN KIRK E A, MURDOCH W J. Tumour necrosis factor alpha up-regulates matrix metalloproteinase-2 activity in periovulatory ovine follicles: metamorphic and endocrine implications[J]. Reprod Fertil,2000,12:75-80.
    24. GOTTSCH M L, VAN KIRK E A, MURDOCH W J. Role of matrix metalloproteinase 2 in the ovulatory folliculo-luteal transition of ewes[J]. Reprod, 2002,124:347-352.
    25. SHALEV E, GOLDMAN S, BEM-SHLOMO I. The balance between MMP-9 and MMP-2 and their tissue inhibitor (TIMP)-1 in luteinized granulosa cells: comparison between women with PCOS and normal ovulatory women[J]. Mol Hum Reprod,2001,7:325-331.
    26. HARADA T, IWABE T, TERAKAWA N. Role of cytokines in endometriosis[J]. Fertil Steril,2001,76(1):1-10.
    27. YOSHIDA S, HARADA T, IWABE T, et al.A combination of interleukin-6 and its soluble receptor impairs sperm motility:implications in infertility associated with endometriosis[J]. Hum Reprod,2004,19(8):1821-1825.
    28. ZHANG Q, SHIMOYA K, OHTA Y, CHIN R, et al. Detection of fractalkine in human seminal plasma and its role in infertile patients[J]. Hum Reprod,2002,17: 1560-1564.
    29. ZHANG Q, SHIMOYA K, TEMMA K, et al. Expression of fractalkine in the Fallopian tube and CX3CR1 in sperm[J]. Hum Reprod,2004,19 (2):409-414.
    30. SHIMOYA K, ZHANG Q, TEMMA K, et al. Fractalkine in the peritoneal fluid of women with endometriosis[J]. Int J Gynecol Obstet,2005,91(1):36-41.
    31. RACHEL A L, OVRANG D, ERTAN S, et al. Peritoneal fluid, endometriosis, and ciliary beat frequency in the human fallopian tube[J]. Lancet,2002,360(9341): 1221-1222.
    32. MWANZA A M, EINARSSON S, MADEJ A., et al. Postovulatory effect of repeated administration of prostaglandin F2a on the endocrine status, ova transport, binding of accessory spermatozoa to the zona pellucida and embryo development of recently ovulated sows[J]. Theriogenol,2002,58(6):1111-1124.