4-氯苯甲酰小檗胺诱导淋巴瘤细胞凋亡及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分BBD9对淋巴瘤细胞的生长抑制和诱导凋亡作用
     目的:
     研究BBD9对淋巴瘤细胞生长的影响及诱导凋亡作用。
     方法:
     MTT法检测BBD9对多种淋巴瘤细胞株的生长抑制作用,瑞氏染色观察细胞形态学变化,AV-PI染色流式细胞术和DNA ladder方法检测细胞凋亡。
     结果:
     BBD9能显著抑制四种淋巴瘤细胞株(Raji, L428, namalwa, Jurkat)细胞的生长。在0-4μg/ml BBD9浓度范围内,随着浓度的升高,各种细胞株的细胞存活率逐步降低。同时,BBD9对四种细胞株的生长抑制作用也呈时间依赖性,同一浓度下,随着药物作用时间的延长,细胞存活率也降低。BBD9作用于Raji,L428,namalwa, Jurkat细胞24h的IC5o分别是:1.5μg/ml、1.89μg/ml、1.83μg/ml、1.59μg/ml。
     BBD9对2例病人原代细胞也呈现剂量依赖性的生长抑制。其IC50分别为2.09gg/ml,2.43 gg/ml。BBD9虽然对4例正常入骨髓单个核细胞也有抑制作用,但其IC50为3.46μg/ml,抑制作用弱于对淋巴瘤细胞株细胞的作用。
     细胞形态学观察可见,BBD9处理Raji细胞和L428细胞24h后出现了典型的凋亡细胞形态:核碎裂,核浓缩、凋亡小体。DNA片段检测发现经BBD9处理的Raji、L428细胞出现了典型"DNA梯形条带”,而且随着药物浓度的增加,“DNA梯形条带”也越明显。应用AV-PI染色法经流式细胞仪检测表明,BBD9可以诱导淋巴瘤细胞凋亡。0、1、2、3μg/ml BBD9处理Raji细胞24h后,早期凋亡细胞比例分别为2.87±0.35%、9.36±2.10%、11.69±0.89%、46.96±3.58%;而在L428细胞,相应浓度作用后早期凋亡细胞的比例分别为4.45±0.97%、9.02±0.64%、17.62±2.33%、35.87±4.44%。Western blot检测表明,BBD9能诱导Raji细胞和L428细胞的caspase-3,-8,-9及PARP剪切激活。
     结论:
     (1)BBD9能抑制多种淋巴瘤细胞株细胞生长。
     (2)BBD9能抑制原代淋巴瘤细胞生长,对正常骨髓单个核细胞抑制作用弱。
     (3)BBD9能诱导淋巴瘤细胞凋亡。
     第二部分BBD9对淋巴瘤细胞的各种信号通路的影响
     目的:
     观察线粒体凋亡通路上各种蛋白的改变,观察PTEN/PI3K/Akt信号传导通路中参与信号传导的各种蛋白的改变,观察NF-κB信号传导通路中参与信号传导的各种蛋白的改变,进一步阐明BBD9抑制淋巴瘤细胞生长的分子机制。
     方法:
     western blot法检测BCL-2家族蛋白和IAP家族蛋白表达水平,流式细胞术检测细胞周期。western blot法检测细胞周期调控蛋白,检测PI3K/Akt和NF-KB信号通路上各种蛋白的表达水平。Real-time PCR检测PTEN mRNA及miR-17-5p,miR-20a的表达。免疫荧光检测NF-κB在细胞核、细胞浆中的信号表达。
     结果:
     BBD9处理Raji细胞后,抑凋亡蛋白Mcl-1明显下调,BCL-2轻度下调,促凋亡蛋白Bak、Bax和Bim、pBad表达量则有明显升高。BBD9下调IAP家族蛋白,如XIAP、CIAP1和Survivin等的表达。细胞周期分析表明,BBD9使淋巴瘤细胞周期阻滞在G2/M期。2gg/ml BBD9处理Raji细胞0、4、8、12、24 h后,处于G2/M期的细胞分别为8.41±3.62%、11.51±2.44%、17.36±6.11%、23.09±2.40%和25.21±9.04%。细胞周期调控蛋白cyclinA、cyclinB1和CDK1在BBD9处理的Raji细胞出现下调。
     0-3μg/ml BBD9处理Raji细胞24小时后,总Akt无明显变化,而磷酸化Akt呈下降趋势;BBD9还能下调PI3K蛋白,而PTEN呈现明显上调趋势。1、2、3μg/ml BBD9处理Raji细胞24h后,PTEN mRNA拷贝数比对照组分别增加3.76、7.13和19.75倍。而对PTEN mRNA起负调控作用的microRNA-miR-17-5p、miR-20a出现下调。
     Western blot检测表明,经1~3μg/ml BBD9处理Raji细胞后,胞浆IκB升高,但pIκB减少,胞核内NF-κB表达呈下调趋势。免疫荧光方法检测结果表明,在BBD9处理前,胞核所在位置红色荧光较强,胞浆所在位置红色荧光较弱,提示胞核内NF-κB表达较高,胞浆内NF-κB表达相对较低。经2μg/ml BBD9处理24h后,胞核内的红色信号减弱,即核内NF-κB表达减少,说明BBD9抑制了NF-κB进入核内。
     结论:
     (1)BBD9上调促凋亡蛋白Bak、Bax、pBad和Bim,下调抑凋亡蛋白Mcl-1;同时能下调XIAP, CIAP1和Survivin等IAP家族蛋白;通过下调cyclinA、cyclinB1和CDKl使细胞周期阻滞于G2/M期;通过上述途径诱导细胞凋亡,从而抑制淋巴瘤细胞生长。
     (2)BBD9可抑制PI3K/Akt信号通路,该通路受阻是BBD9诱导淋巴瘤细胞凋亡的一个重要机制。
     (3)BBD9可下调miR-17-5p,miR-20a,上调mRNA水平,使PTEN蛋白表达上调,来抑制PI3K/Akt信号通路。
     (4)BBD9可通过抑制IκB磷酸化,阻止NF-KB与IKB解离而进入核内。NF-κB通路受阻可能是BBD9诱导淋巴瘤细胞凋亡的另一个重要机制。
     总结:
     BBD9具有抑制淋巴瘤细胞株及原代细胞生长的作用,并在一定范围内呈时间和剂量依赖性。这种生长抑制作用是通过诱导细胞凋亡来起作用的。在BBD9诱导的淋巴瘤细胞凋亡过程中,促凋亡蛋白Bak、Bax、pBad和Bim上调,而抑凋亡蛋白Mcl-1则下调,并能下调XIAP, CIAP1和Survivin等IAP家族蛋白。BBD9还能通过下调cyclinA、cyclinB1和CDK1使细胞周期阻滞于G2/M期。BBD9在mRNA水平、microRNA水平调控PTEN,从而上调PTEN蛋白的表达,进而抑制PI3K/Akt信号通路。该通路受阻是BBD9诱导淋巴瘤细胞凋亡的一个重要机制。此外,BBD9还可以通过胞浆下调磷酸化IκB,抑制NF-κB进入核内来抑制NF-κB信号通路。该通路受阻可能是BBD9诱导淋巴瘤细胞凋亡的另一个重要机制。
Section 1 BBD9 inhibited cell growth and induced apoptosis In lymphoma cells
     Objective:
     To study the effects of BBD9 on lymphoma cells.
     Methods:
     Cell growth was measured by MTT assay in lymphoma cell lines and primary cells from patients with lymphocytic leukemia. Cell morphology was observed by Wright-Giemsa stain. AV-PI staining and DNA ladder was used for detecting apoptosis.
     Results:
     The cell viabilities of four lymphoma cell lines, including Raji, L428, Namalwa and Jurkat, were significantly inhibited by BBD9 at the concentration of 0-4μg/ml. The cell survival rate was decreased with the increasing concentration of BBD9. Furthermore, BBD9 inhibited cell growth in all four cell lines in a time dependent manner. When treated at the same concentration of BBD9, fewer cells would survive with increasing time. The 24h IC50 of BBD9 on Raji, L428, Namalwa and Jurkat were 1.5μg/ml、1.89μg/ml、1.83μg/ml、1.59μg/ml, respectively. Primary cells from two patients with lymphoma were treated with BBD9 for 24h, and also showed growth inhibition in a dose dependent manner. The IC50 for primary cells were 2.09μg/ml and 2.43μg/ml, respectively. The cell growth inhibition induced by BBD9 was also measured in mononuclear cells from normal bone marrow by MTT assay. The results showed that the cell growth of normal mononuclear cells was inhibited, in a dose dependant manner, by BBD9 at the concentration of 0-4μg/ml. However, normal mononuclear cells were less sensitive to BBD9 treatment than primary lymphoma cells were, and the 24h IC50 was 3.46μg/ml. After treated by BBD9 for 24h, Raji and L428 cells, observed by Wright-Giemsa stain, showed a typical apoptotic morphology, nuclear fragmentation and apoptotic body. Typical DNA ladders were also seen in Raji and L428 cells treated by BBD9 for 24h. With the concentration of BBD9 increasing, the DNA ladder became more significant. Further study revealed that BBD9 could induce apoptosis in lymphoma cells, as measured by AV-PI assay. After treated by 0,1, 2,3μg/ml BBD9 for 24h, the Raji cells in early apoptosis were 2.87±0.35%、9.36±2.10%、11.69±0.89%、46.96±3.58% respectively. Meanwhile, the L428 cells in early apoptosis were 4.45±0.97%.9.02±0.64%、17.62±2.33%、35.87±4.44%, respectively. Furthermore, caspase-3,-8,-9 and PARP were cleaved and activated, as measured by western blot, in Raji cells and L428 cells treated by BBD9.
     Conclusions:
     (1) BBD9 inhibited cell growth of four lymphoma cell lines
     (2) BBD9 inhibited cell growth of primary cells, but inhibited less in bone marrow normal mononuclear cells.
     (3) BBD9 induced apoptosis in lymphoma cells.
     Section 2 BBD9 affected some signaling pathway in lymphoma cell
     Objective:
     To reveal the alteration of proteins involved in mitochondria apoptosis; To reveal the expression of proteins involved in PI3K/Akt signaling pathway; To study the mechanism of PTEN protein upregulated in Raji cells after cells being treated by BBD9. To reveal the alteration of proteins involved in NF-κB signaling pathway, and to better understand the mechanism of BBD9 effecting on lymphoma cells.
     Methods:
     Western blot was used for detecting BCL-2 family proteins, IAP family proteins and PI staining was used for cell cycle analysis; Western blot was also used for assaying the expression of proteins involved in cell cycle regulating proteins, assaying the expression of proteins involved in PI3K/Akt and NF-κB signaling pathway. Real-time PCR was messured to detect the mRNA of PTEN and expression of the mir-17-5p and mir-20a. Immunofluorescence detection was messured to detect the expression of the NF-κB and IκB in cytosplasm and intranuclear.
     Results:
     After treated by BBD9, the expression of Raji cells'pro-apoptotic protein, Bak, Bax pBad and Bim were up-regulated and anti-apoptotic protein, Mcl-1 were down-regulated. BBD9 also inhibited the expression of IAP family proteins, such as XIAP, CIAP1 and Survivin. In addition, the results of cell cycle analysis showed that BBD9 induced cell cycle arrest in G2/M phase. After being treated by 2μg/ml BBD9 for Oh,4h,8h,12h,24h, the Raji cells arrested in G2/M phase were 8.41±3.62%. 11.51±2.44%、17.36±6.11%、23.09±2.40%、25.21±9.04%, respectively. Cell cycle regulators cyclin A, cyclin B1 and CDK1 were all down-regulated as measured by western blot assay, in Raji cells treated by BBD9 for 24h.
     After inhibited with 0-3μg/ml BBD9 for 24h, the expression of total Akt of Raji cell was not change, the pAkt and PI3K were decreased while PTEN was obiviously increased. Compared with the untreated control group, the expressions of PTEN mRNA were 3.76,7.13 and 19.75 folds. Furthermore, microRNA-miR-17-5p, miR-20a were significantly down regulated in Raji cells treated with BBD9.
     After inhibited with 0-3μg/ml BBD9 for 24h, the expression of cytoplasmic IκB of Raji cell increased, while the pIκB was decreased, meanwhile the expression of intranuclear NF-κB the was downregulated. Immunofluorescence detection revealed that the untreated control group, the red fluorescent light in the location of nuclear was bright, and weak in the cytoplasm which means the expression of NF-κB in nuclear was low. After treated with 2μg/ml BBD9 for 24h, the red fluorescent light in the blue fluorescent light location, which indicate the location of nuclear, was weak, that means the expression fo NF-κB in nuclear was downregulated and BBD9 inhibited the NF-κB transfer to nuclear.
     Conclusions:
     (1) BBD9 up-regulated pro-apoptotic protein such as Bak, Bax, pBad and Bim and down-regulated anti-apoptotic protein Mcl-1; and inhibited XIAP, CIAP1 and Survivin proteins; BBD9 also induced cell cycle arrested in G2/M phase through down-regulation of cyclin A, cyclin B1 and CDK1. By these signal pathways, BBD9 induce apoptosis of lymphoma cells so that inhibited the proliferation of lymphoma cells.
     (2) BBD9 inhibited PI3K/Akt signaling pathway which maybe the important mechanism that BBD9 induced apoptosis of lymphoma cells.
     (3) BBD9 downregulated miR-17-5p, miR-20a, and upregulated PTEN mRNA so as to upreglated the expression of PTEN protein, which inhibiter PI3K/Akt signaling pathway.
     (4) BBD9 inhibited pIκB, inhibited NF-κB transfer to nuclear so as to inhibit NF-κB signaling pathway, which maybe another important mechanism that BBD9 induced apoptosis of lymphoma cells.
     Summary:
     BBD9 inhibited cell growth in lymphoma cell lines and primary cells from patients through inducing apoptosis, which was time-and dose-depedent to some extent. BBD9 may induce Pro-apoptotic protein such as Bak, Bax pBad and Bim up-regulated and anti-apoptotic protein Mcl-1 down-regulated. IAP family proteins, include XIAP, CIAP1 and Survivin was downregulated by BBD9. Furthermore, BBD9 also can induce cell cycle arrested in G2/M phase through down-regulation of cyclin A cyclin B1 and CDK1. In addition, BBD9 increased the expression of mRNA of PTEN, and increase the expression of PTEN protein so as to inhibited PI3K/Akt signal pathway. BBD9 inhibited PI3K/Akt signal pathway, which maybe an important mechanism that BBD9 induced apoptosis of lymphoma cells. BBD9 also inhibited pIκB, inhibited NF-κB transfer to nuclear so as to inhibit NF-κB signaling pathway, which maybe another important mechanism that BBD9 induced apoptosis of lymphoma cells.
引文
1. Parkin DM, Bray F, Ferlay J, Pisani P:Global cancer statistics,2002. CA Cancer J Clin 2005;55:74-108.
    2.邓家栋:邓家栋临床血液学.2001 上海.上海科学技术出版社2001:1030-1035.
    3. Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R, et al:CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 2002;346:235-42.
    4. Ren Y, Lu L, Guo TB, Qiu J, Yang Y, Liu A, Zhang JZ:Novel immunomodulatory properties of berbamine through selective down-regulation of STAT4 and action of IFN-gamma in experimental autoimmune encephalomyelitis. J Immunol 2008;181:1491-8.
    5. Wu D, Lin MF, Zhao XY:[Effects of berbamine on K562 cells and its mechanisms in vitro and in vivo]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2005;13:373-8.
    6. Zhao XY, He ZW, Wu D, Xu RZ:Berbamine selectively induces apoptosis of human acute promyelocytic leukemia cells via survivin-mediated pathway. Chin Med J (Engl) 2007; 120:802-6.
    7. Xu R, Dong Q, Yu Y, Zhao X, Gan X, Wu D, et al:Berbamine:a novel inhibitor of bcr/abl fusion gene with potent anti-leukemia activity. Leuk Res 2006;30:17-23.
    8. Wang GY, Zhang JW, Lu QH, Xu RZ, Dong QH:Berbamine induces apoptosis in human hepatoma cell line SMMC7721 by loss in mitochondrial transmembrane potential and caspase activation. J Zhejiang Univ Sci B 2007;8:248-55.
    9. Xie J, Ma T, Gu Y, Zhang X, Qiu X, Zhang L, et al:Berbamine derivatives:a novel class of compounds for anti-leukemia activity. Eur J Med Chem 2009;44:3293-8.
    10. Thompson CB:Apoptosis in the pathogenesis and treatment of disease. Science 1995;267:1456-62.
    11. Hotchkiss RS, Strasser A, McDunn JE, Swanson PE:Cell death. N Engl J Med 2009;361:1570-83.
    12. Zong WX, Thompson CB:Necrotic death as a cell fate. Genes Dev 2006;20:1-15.
    13. Kerr JF, Wyllie AH, Currie AR:Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972;26:239-57.
    14. Elmore S:Apoptosis:a review of programmed cell death. Toxicol Pathol 2007;35:495-516.
    15. Compton MM:A biochemical hallmark of apoptosis:internucleosomal degradation of the genome. Cancer Metastasis Rev 1992;11:105-19.
    16. Brumatti G, Sheridan C, Martin SJ:Expression and purification of recombinant annexin V for the detection of membrane alterations on apoptotic cells. Methods 2008;44:235-40.
    17. Cohen GM:Caspases:the executioners of apoptosis. Biochem J 1997;326 (Pt 1):1-16.
    18. Hamacher R, Schmid RM, Saur D, Schneider G:Apoptotic pathways in pancreatic ductal adenocarcinoma. Mol Cancer 2008;7:64.
    19. Mohammad R, Abubakr Y, Dan M, Aboukameel A, Chow C, Mohamed A, et al: Bcl-2 antisense oligonucleotides are effective against systemic but not central nervous system disease in severe combined immunodeficient mice bearing human t(14;18) follicular lymphoma. Clin Cancer Res 2002;8:1277-83.
    20. Heckman CA, Mehew JW, Boxer LM:NF-kappaB activates Bcl-2 expression in t(14;18) lymphoma cells. Oncogene 2002;21:3898-908.
    21. Dierlamm J, Baens M, Wlodarska I, Stefanova-Ouzounova M, Hernandez JM, Hossfeld DK, et al:The apoptosis inhibitor gene API2 and a novel 18q gene,
    MLT, are recurrently rearranged in the-t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood 1999;93:3601-9.
    22. Remstein ED, James CD, Kurtin PJ:Incidence and subtype specificity of API2-MALT1 fusion translocations in extranodal, nodal, and splenic marginal zone lymphomas. Am J Pathol 2000; 156:1183-8.
    23. Polgar D, Leisser C, Maier S, Strasser S, Ruger B, Dettke M, et al:Truncated ALK derived from chromosomal translocation t(2;5)(p23;q35) binds to the SH3 domain of p85-PI3K. Mutat Res 2005;570:9-15.
    24. Reed JC:Bcl-2-family proteins and hematologic malignancies:history and future prospects. Blood 2008; 111:3322-30.
    25. Petros AM, Olejniczak ET, Fesik SW:Structural biology of the Bcl-2 family of proteins. Biochim Biophys Acta 2004; 1644:83-94.
    26. Adams JM, Cory S:Bcl-2-regulated apoptosis:mechanism and therapeutic potential. Curr Opin Immunol 2007; 19:488-96.
    27. Oltvai ZN, Milliman CL, Korsmeyer SJ:Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993;74:609-19.
    28. Liston P, Fong WG, Korneluk RG:The inhibitors of apoptosis:there is more to life than Bc12. Oncogene 2003;22:8568-80.
    29. Akyurek N, Ren Y, Rassidakis GZ, Schlette EJ, Medeiros LJ:Expression of inhibitor of apoptosis proteins in B-cell non-Hodgkin and Hodgkin lymphomas. Cancer 2006; 107:1844-51.
    30. Fulda S:Inhibitor of apoptosis proteins in hematological malignancies. Leukemia 2009;23:467-76.
    31. Galea CA, Wang Y, Sivakolundu SG, Kriwacki RW:Regulation of cell division by intrinsically unstructured proteins:intrinsic flexibility, modularity, and signaling conduits. Biochemistry 2008;47:7598-609.
    32. Nakayama K, Nakayama K:Cip/Kip cyclin-dependent kinase inhibitors:brakes of the cell cycle engine during development. Bioessays 1998;20:1020-9.
    33. Geng L, Zhang X, Zheng S, Legerski RJ:Artemis links ATM to G2/M checkpoint recovery via regulation of Cdkl-cyclin B. Mol Cell Biol 2007;27:2625-35.
    34. Jones PF, Jakubowicz T, Pitossi FJ, Maurer F, Hemmings BA:Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc Natl Acad Sci U S A 1991;88:4171-5.
    35. Burgering BM, Coffer PJ:Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 1995;376:599-602.
    36. Chang F, Lee JT, Navolanic PM, Steelman LS, Shelton JG, Blalock WL, et al: Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation:a target for cancer chemotherapy. Leukemia 2003;17:590-603.
    37. LoPiccolo J, Blumenthal GM, Bernstein WB, Dennis PA:Targeting the PI3K/Akt/mTOR pathway:effective combinations and clinical considerations. Drug Resist Updat 2008; 11:32-50.
    38. Kandel ES, Skeen J, Majewski N, Di Cristofano A, Pandolfi PP, Feliciano CS, et al:Activation of Akt/protein kinase B overcomes a G(2)/m cell cycle checkpoint induced by DNA damage. Mol Cell Biol 2002;22:7831-41.
    39. Liang J, Slingerland JM:Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle 2003;2:339-45.
    40.李俊发 贺俊崎:细胞信号转导研究技术.北京.中国协和医科大学出版社.2008.
    41. Garcia MG, Alaniz LD, Cordo Russo RI, Alvarez E, Hajos SE:PI3K/Akt inhibition modulates multidrug resistance and activates NF-kappaB in murine lymphoma cell lines. Leuk Res 2008.
    42. Uddin S, Hussain AR, Siraj AK, Manogaran PS, Al-Jomah NA, Moorji A, et al:
    Role of phosphatidylinositol 3'-kinase/AKT pathway in diffuse large B-cell Iymphoma survival. Blood 2006;108:4178-86.
    43. Borlado LR, Redondo C, Alvarez B, Jimenez C, Criado LM, Flores J, et al: Increased phosphoinositide 3-kinase activity induces a lymphoproliferative disorder and contributes to tumor generation in vivo. FASEB J 2000;14:895-903.
    44. Rudelius M, Pittaluga S, Nishizuka S, Pham TH, Fend F, Jaffe ES, et al: Constitutive activation of Akt contributes to the pathogenesis and survival of mantle cell Iymphoma. Blood 2006; 108:1668-76.
    45. Hagenbeek TJ, Spits H:T-cell lymphomas in T-cell-specific Pten-deficient mice originate in the thymus. Leukemia 2008;22:608-19.
    46. Herranz M, Urioste M, Santos J, Martinez-Delgado JB, Rivas C, Benitez J, Fernandez-Piqueras J:Allelic losses and genetic instabilities of PTEN and p73 in non-Hodgkin lymphomas. Leukemia 2000;14:1325-7.
    47. Sakai A, Thieblemont C, Wellmann A, Jaffe ES, Raffeld M:PTEN gene alterations in lymphoid neoplasms. Blood 1998;92:3410-5.
    48. Steelman LS, Abrams SL, Whelan J, Bertrand FE, Ludwig DE, Basecke J, et al: Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia. Leukemia 2008;22:686-707.
    49. Fridberg M, Servin A, Anagnostaki L, Linderoth J, Berglund M, Soderberg O, et al:Protein expression and cellular localization in two prognostic subgroups of diffuse large B-cell Iymphoma:higher expression of ZAP70 and PKC-beta Ⅱ in the non-germinal center group and poor survival in patients deficient in nuclear PTEN. Leuk Lymphoma 2007;48:2221-32.
    50. Zhou M, Gu L, Findley HW, Jiang R, Woods WG:PTEN reverses MDM2-mediated chemotherapy resistance by interacting with p53 in acute lymphoblastic leukemia cells. Cancer Res 2003;63:6357-62.
    51. Dal Col J, Zancai P, Terrin L, Guidoboni M, Ponzoni M, Pavan A, et al:Distinct functional significance of Akt and mTOR constitutive activation in mantle cell lymphoma. Blood 2008; 111:5142-51.
    52. Hwang HW, Mendell JT:MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 2006;94:776-80.
    53. Matsubara H, Takeuchi T, Nishikawa E, Yanagisawa K, Hayashita Y, Ebi H, et al: Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers, overexpressing miR-17-92. Oncogene 2007;26:6099-105.
    54. Sylvestre Y, De Guire V, Querido E, Mukhopadhyay UK, Bourdeau V, Major F, et al:An E2F/miR-20a autoregulatory feedback loop. J Biol Chem 2007;282:2135-43.
    55. Inomata M, Tagawa H, Guo YM, Kameoka Y, Takahashi N, Sawada K: MicroRNA-17-92 down-regulates expression of distinct targets in different B-cell lymphoma subtypes. Blood 2009; 113:396-402.
    56. Baldwin AS Jr:The NF-kappa B and I kappa B proteins:new discoveries and insights. Annu Rev Immunol 1996;14:649-83.
    57. Lee CH, Jeon YT, Kim SH, Song YS:NF-kappaB as a potential molecular target for cancer therapy. Biofactors 2007;29:19-35.
    58. Senftleben U, Karin M:The IKK/NF-kappa B pathway. Crit Care Med 2002;30:S18-26.
    59. Basseres DS, Baldwin AS:Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene 2006;25:6817-30.
    60. Luo JL, Kamata H, Karin M:IKK/NF-kappaB signaling:balancing life and death--a new approach to cancer therapy. J Clin Invest 2005;115:2625-32.
    61. Zheng B, Georgakis GV, Li Y, Bharti A, McConkey D, Aggarwal BB, Younes A: Induction of cell cycle arrest and apoptosis by the proteasome inhibitor PS-341 in Hodgkin disease cell lines is independent of inhibitor of nuclear factor-kappaB mutations or activation of the CD30, CD40, and RANK receptors. Clin Cancer Res 2004;10:3207-15.
    62. Kashkar H, Deggerich A, Seeger JM, Yazdanpanah B, Wiegmann K, Haubert D, et al:NF-kappaB-independent down-regulation of XIAP by bortezomib sensitizes HL B cells against cytotoxic drugs. Blood 2007;109:3982-8.
    63. Kane RC, Dagher R, Farrell A, Ko CW, Sridhara R, Justice R, Pazdur R: Bortezomib for the treatment of mantle cell lymphoma. Clin Cancer Res 2007;13:5291-4.
    64. Strauss SJ, Maharaj L, Hoare S, Johnson PW, Radford JA, Vinnecombe S, et al: Bortezomib therapy in patients with relapsed or refractory lymphoma:potential correlation of in vitro sensitivity and tumor necrosis factor alpha response with clinical activity. J Clin Oncol 2006;24:2105-12.
    65. Goy A, Younes A, McLaughlin P, Pro B, Romaguera JE, Hagemeister F, et al: Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin's lymphoma. J Clin Oncol 2005;23:667-75.
    66. Dunleavy K, Pittaluga S, Czuczman MS, Dave SS, Wright G, Grant N, et al: Differential efficacy of bortezomib plus chemotherapy within molecular subtypes of diffuse large B-cell lymphoma. Blood 2009; 113:6069-76.
    67. Guedat P, Colland F:Patented small molecule inhibitors in the ubiquitin proteasome system. BMC Biochem 2007;8 Suppl 1:S14.
    68. Chiarini F, Fala F, Tazzari PL, Ricci F, Astolfi A, Pession A, et al:Dual inhibition of class IA phosphatidylinositol 3-kinase and mammalian target of rapamycin as a new therapeutic option for T-cell acute lymphoblastic leukemia. Cancer Res 2009;69:3520-8.
    69. Witzig TE, Geyer SM, Ghobrial I, Inwards DJ, Fonseca R, Kurtin P, et al:Phase II trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma. J Clin Oncol 2005;23:5347-56.
    70. Hess G, Herbrecht R, Romaguera J, Verhoef G, Crump M, Gisselbrecht C, et al: Phase III study to evaluate temsirolimus compared with investigator's choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J Clin Oncol 2009;27:3822-9.
    71. Adams JM, Cory S:The Bcl-2 protein family:arbiters of cell survival. Science 1998;281:1322-6.
    72. Ho PT, Parkinson DR:Antisense oligonucleotides as therapeutics for malignant diseases. Semin Oncol 1997;24:187-202.
    73. Pro B, Leber B, Smith M, Fayad L, Romaguera J, Hagemeister F, et al:Phase II multicenter study of oblimersen sodium, a Bcl-2 antisense oligonucleotide, in combination with rituximab in patients with recurrent B-cell non-Hodgkin lymphoma. Br J Haematol 2008;143:355-60.
    74. Perez-Galan P, Roue G, Villamor N, Campo E, Colomer D:The BH3-mimetic GX15-070 synergizes with bortezomib in mantle cell lymphoma by enhancing Noxa-mediated activation of Bak. Blood 2007; 109:4441-9.
    75. O'Brien SM, Claxton DF, Crump M, Faderl S, Kipps T, Keating MJ, et al:Phase I study of obatoclax mesylate (GX15-070), a small molecule pan-Bcl-2 family antagonist, in patients with advanced chronic lymphocytic leukemia. Blood 2009;113:299-305.
    76. Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S, et al:ABT-263:a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 2008;68:3421-8.
    77. Mehnert JM, Kelly WK:Histone deacetylase inhibitors:biology and mechanism of action. Cancer J 2007; 13:23-9.
    78. Shaffer AL, Yu X, He Y, Boldrick J, Chan EP, Staudt LM:BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 2000;13:199-212.
    79. Martinez-Iglesias O, Ruiz-Llorente L, Sanchez-Martinez R, Garcia L, Zambrano A, Aranda A:Histone deacetylase inhibitors:mechanism of action and therapeutic use in cancer. Clin Transl Oncol 2008; 10:395-8.
    80. Sakajiri S, Kumagai T, Kawamata N, Saitoh T, Said JW, Koeffler HP:Histone deacetylase inhibitors profoundly decrease proliferation of human lymphoid cancer cell lines. Exp Hematol 2005;33:53-61.
    81. Duvic M, Talpur R, Ni X, Zhang C, Hazarika P, Kelly C, et al:Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood 2007;109:31-9.
    82. Olsen EA, Kim YH, Kuzel TM, Pacheco TR, Foss FM, Parker S, et al:Phase Ⅱb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol 2007;25:3109-15.
    83. Lane AA, Chabner BA:Histone deacetylase inhibitors in cancer therapy. J Clin Oncol 2009;27:5459-68.
    84. Siu LL, Chan JK, Wong KF, Kwong YL:Specific patterns of gene methylation in natural killer cell lymphomas:p73 is consistently involved. Am J Pathol 2002;160:59-66.
    85. Ghoshal K, Bai S:DNA methyltransferases as targets for cancer therapy. Drugs Today (Barc) 2007;43:395-422.
    86. Rolland D, Camara-Clayette V, Barbarat A, Salles G, Coiffier B, Ribrag V, Thieblemont C:Farnesyltransferase inhibitor R115777 inhibits cell growth and induces apoptosis in mantle cell lymphoma. Cancer Chemother Pharmacol 2008;61:855-63.
    87. Gille H, Kowalski J, Li B, LeCouter J, Moffat B, Zioncheck TF, et al:Analysis of biological effects and signaling properties of Flt-1 (VEGFR-1) and KDR (VEGFR-2). A reassessment using novel receptor-specific vascular endothelial growth factor mutants. J Biol Chem 2001;276:3222-30.
    88. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J: Vascular-specific growth factors and blood vessel formation. Nature 2000 407:242-8.
    89. Salven P, Orpana A, Teerenhovi L, Joensuu H:Simultaneous elevation in the serum concentrations of the angiogenic growth factors VEGF and bFGF is an independent predictor of poor prognosis in non-Hodgkin lymphoma:a single-institution study of 200 patients. Blood 2000;96:3712-8.
    90. Hazar B, Paydas S, Zorludemir S, Sahin B, Tuncer Ⅰ:Prognostic significance of microvessel density and vascular endothelial growth factor (VEGF) expression in non-Hodgkin's lymphoma. Leuk Lymphoma 2003;44:2089-93.
    91. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, et al:Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004;350:2335-42.
    92. Miller K, Wang M, Gralow J, Dickler M, Cobleigh M, Perez EA, et al:Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 2007;357:2666-76.
    93. Reck M, von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsh V, et al: Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer:AVAil. J Clin Oncol 2009;27:1227-34.
    94. Melichar B, Koralewski P, Ravaud A, Pluzanska A, Bracarda S, Szczylik C, et al: First-line bevacizumab combined with reduced dose interferon-alpha2a is active in patients with metastatic renal cell carcinoma. Ann Oncol 2008;19:1470-6.
    95. Ganjoo KN, An CS, Robertson MJ, Gordon LI, Sen JA, Weisenbach J, et al: Rituximab, bevacizumab and CHOP (RA-CHOP) in untreated diffuse large B-cell lymphoma:safety, biomarker and pharmacokinetic analysis. Leuk Lymphoma 2006;47:998-1005.
    96. Stopeck AT, Unger JM, Rimsza LM, Bellamy WT, Iannone M, Persky DO, et al: A phase II trial of single agent bevacizumab in patients with relapsed, aggressive non-Hodgkin lymphoma:Southwest oncology group study S0108. Leuk Lymphoma 2009;50:728-35.
    97. Marriott JB, Muller G, Dalgleish AG:Thalidomide as an emerging immunotherapeutic agent. Immunol Today 1999;20:538-40.
    98. Pro B, Younes A, Albitar M, Dang NH, Samaniego F, Romaguera J, et al: Thalidomide for patients with recurrent lymphoma. Cancer 2004; 100:1186-9.
    99. Kaufmann H, Raderer M, Wohrer S, Puspok A, Bankier A, Zielinski C, et al: Antitumor activity of rituximab plus thalidomide in patients with relapsed/refractory mantle cell lymphoma. Blood 2004;104:2269-71.
    100. Hernandez-Ilizaliturri FJ, Reddy N, Holkova B, Ottman E, Czuczman MS: Immunomodulatory drug CC-5013 or CC-4047 and rituximab enhance antitumor activity in a severe combined immunodeficient mouse lymphoma model. Clin Cancer Res 2005;11:5984-92.
    101.Verhelle D, Corral LG, Wong K, Mueller JH, Moutouh-de Parseval L, Jensen-Pergakes K, et al:Lenalidomide and CC-4047 inhibit the proliferation of malignant B cells while expanding normal CD34+progenitor cells. Cancer Res 2007;67:746-55.
    102. Wiernik PH, Lossos IS, Tuscano JM, Justice G, Vose JM, Cole CE, et al: Lenalidomide monotherapy in relapsed or refractory aggressive non-Hodgkin's lymphoma. J Clin Oncol 2008;26:4952-7.
    103. Hofmann J:Protein kinase C isozymes as potential targets for anticancer therapy. Curr Cancer Drug Targets 2004;4:125-46.
    104. Fang X, Yu S, Tanyi JL, Lu Y, Woodgett JR, Mills GB:Convergence of multiple signaling cascades at glycogen synthase kinase 3:Edg receptor-mediated phosphorylation and inactivation by lysophosphatidic acid through a protein kinase C-dependent intracellular pathway. Mol Cell Biol 2002;22:2099-110.
    105. Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, et al:Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 2002;8:68-74.
    106.Faul MM, Gillig JR, Jirousek MR, Ballas LM, Schotten T, Kahl A, Mohr M: Acyclic N-(azacycloalkyl)bisindolylmaleimides:isozyme selective inhibitors of PKCbeta. Bioorg Med Chem Lett 2003;13:1857-9.
    107. Hanauske AR, Oberschmidt O, Hanauske-Abel H, Lahn MM, Eismann U: Antitumor activity of enzastaurin (LY317615.HC1) against human cancer cell lines and freshly explanted tumors investigated in in-vitro [corrected] soft-agar cloning experiments. Invest New Drugs 2007;25:205-10.
    108. Querfeld C, Rizvi MA, Kuzel TM, Guitart J, Rademaker A, Sabharwal SS, et al: The selective protein kinase C beta inhibitor enzastaurin induces apoptosis in cutaneous T-cell lymphoma cell lines through the AKT pathway. J Invest Dermatol 2006;126:1641-7.
    109. Robertson MJ, Kahl BS, Vose JM, de Vos S, Laughlin M, Flynn PJ, et al:Phase Ⅱ study of enzastaurin, a protein kinase C beta inhibitor, in patients with relapsed or refractory diffuse large B-cell lymphoma. J Clin Oncol 2007;25:1741-6.
    110. Morschhauser F, Seymour JF, Kluin-Nelemans HC, Grigg A, Wolf M, Pfreundschuh M, et al:A phase Ⅱ study of enzastaurin, a protein kinase C beta inhibitor, in patients with relapsed or refractory mantle cell lymphoma. Ann Oncol 2008;19:247-53.
    111. Hornung RL, Pearson JW, Beckwith M, Longo DL:Preclinical evaluation of bryostatin as an anticancer agent against several murine tumor cell lines:in vitro versus in vivo activity. Cancer Res 1992;52:101-7.
    112. Blackhall FH, Ranson M, Radford JA, Hancock BW, Soukop M, McGown AT, et al:A phase Ⅱ trial of bryostatin 1 in patients with non-Hodgkin's lymphoma. Br J Cancer 2001;84:465-9.
    113. Barr PM, Lazarus HM, Cooper BW, Schluchter MD, Panneerselvam A, Jacobberger JW, et al:Phase II study of bryostatin 1 and vincristine for aggressive non-Hodgkin lymphoma relapsing after an autologous stem cell transplant. Am J Hematol 2009;84:484-7.
    114. Roberts JD, Smith MR, Feldman EJ, Cragg L, Millenson MM, Roboz GJ, et al: Phase I study of bryostatin 1 and fludarabine in patients with chronic lymphocytic leukemia and indolent (non-Hodgkin's) lymphoma. Clin Cancer Res 2006;12:5809-16.
    115. Jolly C, Morimoto RI:Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst 2000;92:1564-72.
    116. Valbuena JR, Rassidakis GZ, Lin P, Atwell C, Georgakis GV, Younes A, et al: Expression of heat-shock protein-90 in non-Hodgkin's lymphomas. Mod Pathol 2005;18:1343-9.
    117. Sausville EA, Tomaszewski JE, Ivy P:Clinical development of 17-allylamino, 17-demethoxygeldanamycin. Curr Cancer Drug Targets 2003;3:377-83.
    118. Georgakis GV, Li Y, Younes A:The heat shock protein 90 inhibitor 17-AAG induces cell cycle arrest and apoptosis in mantle cell lymphoma cell lines by depleting cyclin D1, Akt, Bid and activating caspase 9. Br J Haematol 2006;135:68-71.
    119. Solit DB, Basso AD, Olshen AB, Scher HI, Rosen N:Inhibition of heat shock protein 90 function down-regulates Akt kinase and sensitizes tumors to Taxol. Cancer Res 2003;63:2139-44.
    120. Usmani SZ, Bona R, Li Z:17 AAG for HSP90 inhibition in cancer-from bench to bedside. Curr Mol Med 2009;9:654-64.
    121. Friedberg JW, Cohen P, Chen L, Robinson KS, Forero-Torres A, La Casce AS, et al:Bendamustine in patients with rituximab-refractory indolent and transformed non-Hodgkin's lymphoma:results from a phase Ⅱ multicenter, single-agent study. J Clin Oncol 2008;26:204-10.
    122.Robinson KS, Williams ME, van der Jagt RH, Cohen P, Herst JA, Tulpule A, et al: Phase II multicenter study of bendamustine plus rituximab in patients with relapsed indolent B-cell and mantle cell non-Hodgkin's lymphoma. J Clin Oncol 2008;26:4473-9.
    123. Borchmann P, Schnell R, Knippertz R, Staak JO, Camboni GM, Bernareggi A, et al:Phase I study of BBR 2778, a new aza-anthracenedione, in advanced or refractory non-Hodgkin's lymphoma. Ann Oncol 2001;12:661-7.
    124. Borchmann P, Morschhauser F, Parry A, Schnell R, Harousseau JL, Gisselbrecht C, et al:Phase-II study of the new aza-anthracenedione, BBR 2778, in patients with relapsed aggressive non-Hodgkin's lymphomas. Haematologica 2003;88:888-94.