单晶硅纳米级磨削过程的分子动力学仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超精密磨削技术是先进制造技术领域的前沿课题,是未来发展我国微电子产业的关键技术。在超精密磨削过程中,特别是进行纳米级加工时,材料以离散的数个原子或原子层的方式去除,因此加工过程中的能量分配、已加工表面的形成、材料的去除等都与常规加工存在巨大差别。因而对加工过程采用建立在传统连续介质力学基础上的切削理论来解释显然是不合适的,并且难于应用仪器对微观现象进行观察和测量。而分子动力学仿真是在理论上研究超精密加工过程的一种非常有效的方法,它提供了一条从系统的微观细节探索实验过程宏观特性的捷径,其具有可实验性、安全性、可进行超前研究、减少实验量等特点,目前在物理、化学、生物、医药以及材料等多个研究领域得到了广泛应用,并逐渐渗透到机械加工领域。
     对分子动力学基本理论和方法进行了深入研究,将固体物理学中的Debye模型引入到单晶硅原子动能和温度之间的转换过程中,建立了适合于单晶硅纳米级磨削过程的分子动力学仿真模型。研究了分子动力学并行算法,提出了基于区域分解法的区域二次划分的分子动力学并行算法、原子亲属表的概念和基于“永久序号”的消息传递策略,这些算法和策略的应用大大简化了编程,减小了程序出错的概率,同时也有效节省了通信开销和仿真时间。借助于联想深腾1800高性能服务器编制了分子动力学并行化仿真程序,进行了计算机实验,结果表明:并行化仿真程序相对串行仿真程序,模拟规模由几千个原子提高到数十万个原子,计算时间至少缩短了十倍,并且该程序具有很好的加速比、并行效率和扩展性。
     对单晶硅纳米级磨削过程进行计算机仿真,从磨削过程中瞬间原子位置、磨削力、原子间势能、损伤层深度等角度分析了纳米级磨削加工的机理,发现硅原子间势能的变化是导致单晶硅亚表面损伤的重要原因,在原子量级条件下单晶硅亚表面损伤层深度主要指沿磨削深度方向原子发生不规则排列的原子层的最大厚度。分子动力学仿真结果还发现:单晶硅纳米级磨削过程产生的亚表面损伤的主要形式是非晶结构,无明显的位错产生;磨粒原子与硅原子之间有粘附现象发生,这是由于纳米尺度磨粒的表面效应产生的。
     应用分子动力学方法,从理论上研究了磨粒钝圆半径、磨削深度和磨削速度对单晶硅纳米级磨削机理和工件亚表面损伤的影响,研究表明:磨粒钝圆半径、磨削深度和磨削速度对单晶硅纳米级磨削的机理几乎没有影响,只是在磨削力、能量和损伤层深度等方面有些差异。在磨削深度和磨削速度相同情况下,随着磨粒钝圆半径的增加,单晶硅亚表面损伤层变厚,这时与宏观实际情况一致。对于相同磨粒钝圆半径和磨削速度条件下的仿真结果表明:随着磨削深度的增大,单晶硅表面和亚表面质量恶化。在磨削深度和磨粒钝圆半径相同的情况下,在20~200m/s范围内,磨削速度对单晶硅亚表面损伤影响很小,说明分子动力学仿真对磨削速度的变化不敏感,因此可以适当提高仿真速度,从而缩短仿真时间和扩大仿真规模。
     为了进一步扩大分子动力学仿真的规模,开发了数百万粒子规模单晶硅超精密磨削的分子动力学并行化仿真软件。提出了数据“挖空”过滤算法,结合球形绘图法实现了大规模粒子仿真结果的可视化。最后应用该软件对单晶硅超精密磨削过程进行了仿真计算,将仿真结果与单颗磨粒超精密磨削加工实验和单晶硅片纳米级刻划加工实验结果进行了对比分析,结果表明:理论仿真结果与实验结果在单晶硅磨削后沟槽深度、材料堆积高度、表面形貌以及主切削力方面都比较接近,证明分子动力学仿真结果是有效可靠的,可以应用到纳米级机械加工的机理研究中。
Ultra-precision grinding technology is at the forefront of modern manufacture, and plays an important role in developing our country's future IC industry. In ultra-precision, especially nanometric grinding process, chip removal takes place in a limited region containing only a few atoms or atomic layers. So some phenomena including energy dissipation, machined surface formation and chip removal, and so on, differ from those of general grinding process. It is extremely difficult to observe and measure various microscopic physical phenomena occurring in nanometric machining through experiments, nor can the conventional theory based on "continuum mechanics" explain these phenomena. And many facts have proven that molecular dynamics (MD) approach is a very effective tool for prediction and analysis of ultra-precision machining in theory, which provides a shortcut from micro phenomena to macro characteristics. MD method has many advantages, such as experimental test, security, advance study, reduction of experiments, etc. Since then, MD simulation has been applied to a wide range of fields, including physics, chemistry, biology, medicine and material, to name a few. It also has been introduced to machining in 1990's.
     Through profound research of basic MD theory and method, Debye model is introduced from solid-state physics for conversion between kinetic energy and temperature of the silicon atom, the grinding model of monocrystalline silicon are established. Based on the detail investigation of MD parallel algorithms, a new MD parallel algorithm in which the spatial domain is divided twice is developed according to the spatial decomposition, an atom transferring strategy based on "invariable sequence number" is designed and the concept of "atom relative list" is proposed by studying the listing method of atom neighbor list. The application of all these stratygies greatly simplies the programming, reduces the probability of error in programming and also saves the communication overhead and the simulation time. The lenovo shenteng 1800 server works out the newly developed MD parallel program and the results show that the simulation scale is expanded from several thousand atoms of serial program to one hundred thousand level compared with the MD serial programe. Accordingly the computing time can be decreased to 1/10 of serial computing time at most. And the parallel program also has good accelerator, parallel efficency and augmentability.
     Besides, the grinding processes are simulated with the help of MD approach. Nanometric grinding mechanism is analyzed from the viewpoint of instantaneous distribution of atoms, grinding force, potential energy between silicon atoms and depth of damage layers. It is found that subsurface damage of the monocrystal silicon is mainly concerned with the variation of potential energy between silicon atoms. On atomic scales, the depth of subsurface damage layer of monocrystal silicon is defined as the maximal thickness of the atomic layers with random array in the subsurface of monocrystal silicon in the direction of grinding depth. Furthermore, under the conditions of present simulations, it is discovered that the subsurface damage is mainly composed of the amorphous layers, no obvious dislocations are found and the sorption between silicon atoms and diamond atoms is occurred due to the surface effect of the single grit.
     Moreover, the effects of cutting edge radius, cut depth and grinding speed on grinding mechanism and subsurface damage are studied in response to simulation results of different grinding conditions from the viewpoint of theory. It is shown that cutting edge radius, cut depth and grinding speed have little effect on the mechanism of the nanometric grinding and there are some differences in the value of the grinding force, potential energy between silion atoms and the depth of subsurface damage layers. From the results of MD simulations, it is shown that when the cutting edge radius increases in the nanometric grinding process with the same cut-depth and grinding speed and the depth of damage layers will become larger, which accord with those of the conventional grinding process. Then, when cut depth rises, both the depth of damage layers will increase. When the grinding speed ranges between 20m/s and 200m/s, the depth of damage layers doesn't change much with the increase of the grinding speed under the same cutting edge radius and cut depth conditions. That means MD simulation is not sensitive to the change of the grinding speed, thus advancing the grinding speed properly can shorten the simulation time and enlarge the simulation scale. Finally, to enlarge the scale of the MD simulation, the MD parallel software is developed, which can simulate the monocrystal silicon grinding process with several hundred million atoms. A new hollowing-out data filtering algorithm is deveopped to realize the visualization of massive particles combining with the mapping method based on the spherical shape. The simulation of monocrystal silicon ultra-precision grinding process is carried out with the aid of the newly developed MD parallel software. Through comparison the MD simulation results and the results of the single grit ultra-precision grinding experiments and the nanometric scratching experiments by means of atomic force microscope (AFM), it is shown that the theoretical results are very similar to thoses of the experiments from the viewpoint of the depth of the groove, the hight of chip piled up on two sides of the abrasive grain, silicon surface topography after grinding and the main cutting force. That means MD simulation is very effective, reliable and successful to fulfill the investigation on nanometric machining mechanism.
引文
[1]Takayuki Ohba.Current status of 300 mm/0.25-0.18um technologies,International Conference on Solid-State and Integrated Circuit Technology Proceedings,1998:21-24.
    [2]P.O.Hahn,The 300 mm silicon wafer-A cost and technology challenge,Microelectronic Engineering,2001,56(1-2):3-13.
    [3]E.Dornberger,J.Virbulis,B.Hanna,R.Hoelzl,E.Daub and W.Von Ammon.Silicon crystals for future requirements of 300mm wafers,Journal of Crystal Growth,2001(229):11-16.
    [4]B.L.Gehman.In the age of 300mm silicon,tech standards are even more crucial,Solid State Technology,2001,44(8):127-128.
    [5]Imai,M.,Mayusumi,M.,Inoue,K.,Nakahara,S.and Gima,S..Issues for the larger diameter epitaxial wafer,Microelectronic Engineering,2001,56(1-2):109-115.
    [6]蒋荣华,肖顺珍.半导体材料的进展与发展趋势,四川有色金属,2000(3):1-7.
    [7]蒋民华.面向新世纪的人工晶体,人工晶体学报,2001,30(1):1-9.
    [8]田业冰,郭东明,康仁科,金洙吉.大尺寸硅片自旋转磨削的试验研究,金刚石与磨料磨具工程,2004(04):1-4.
    [9]罗熙淳,分子动力学在纳米级机械加工技术中的应用,中国机械工程,1999:692-696.
    [10]G.Binning,H.Rohrer,C.Gerber and E.Weibei.Tunneling through a Controllable Vacuum Gap,Applied Physics Letters,1982(40):190-198.
    [11]Yoshio Ichida,Kozo Kishi.Nanotopography of Ultraprecise Ground Surface of Fine Ceramics Using Atomic Force Microscope,Annals of the CIRP,1993,42(1):647-650。
    [12]D.A.Lucca and Y.W.Seo.Effect of Edge Geometry on Energy Dissipation in Ultraprecision Machining,Annals of the CIRP,1993,42(1):83-85.
    [13]D.A.Lucca,Y.W.Seo and R.L.Rhorer.Aspects of Surface Generation in Orthogonal Ultraprecision Machining,Annals of the CIRP,1994,43(1):43-45.
    [14]E.Brinksmeier,R.Hoper and O.Riemer.Characterization of Micromachined Surfaces by Atomic Force Microscopy.Ind.Diam.Rev.1996,(2):59-63.
    [15]F.Z.Fang.Nano-turning of Single Crystal Silicon,Journal of Materials Processing Technology,1998,(82):95-101.
    [16]Yoshio Ichida,Nabil Benj and Reza Yousefi.Ductile-Mode Mirror Cutting of Single-Crystal Silicon (1st Report):Effects of Cutting Speed on the Brittle/Ductile Mode Transition Behavior in Cutting Process,Journal of the Japan Society for Precision Engineering,1998,64(4):608-612.
    [17]罗熙淳.基于分子动力学的微纳米级加工表面形成机理研究:(博士学位论文).哈尔滨:哈尔滨工业大学,2002.
    [18]L.C.Zhang and M.Mahdi.Applied Mechanics in Grinding,Part Ⅳ:The Mechanism of Grinding Induced Phase Transformation,International Journal of Machine Tools and Manufacture,1995,35:1397-1409.
    [19]I.Zarudi and L.C.Zhang.Subsurface Damage in Single-Crystal Silicon due to Grinding and Polishing,Journal of Materials Science Letters,1996,15:586-587.
    [20]I.Zhang and Zhang L C.Effect of Ultraprecision Grinding on Microstructural Change in Silicon Monocrystals,Journal of Materials Processing Technology,1998,84:149-158.
    [21]N.P.Hung and Y.Q.Fu.Effect of Crystalline Orientation in the Ductile-regime Machining of Silicon,Int.J.Adv.Manuf.Technol.,2000,16:871-876.
    [22]M.Zhou and B.K.Ngoi.Effect of Tool and Workpiece Anistropy on Microcutting Process,Pro.Instn.Mech.Engrs.,2001,B(215):13-19.
    [23]C.F.Cheung and W.B.Lee.An Investigation of Cutting Dynamics in Single Point Diamond Turning,JSME International Journal,2000,C43(1):116-126.
    [24]W.B.Lee and C.F.Cheung.A Dynamics Surface Topography Model for the Precision Machining,International Journal of Mechanical Sciences,2001,43:961-991.
    [25]C.F.Cheung and W.B.Lee.A Multi-spectrum Analysis of Surface Roughness Formation in Ultra-precision Turning,Precision Engineering,2002,24:77-87.
    [26]田业冰,郭东明,康仁科,金洙吉.大尺寸硅片自旋转磨削的试验研究,金刚石与磨料磨具工程,2004,4:1-4.
    [27]Y.B.Tian,R.K.Kang,D.M.Guo,Z.J.Jin and J.X.Su.Investigation on Material Removal Rate in Rotation Grinding for Large-scale Silicon Wafer,Materials Science Forum,2004,471-472:362-368.
    [28]R.K.Kang,Y.X.Zhang,D.M.Guo and Z.J.Jin.Study on the Surface and Subsurface Integrity of Ground Monocrystalline Silicon Wafers,Key Engineering Materials,2005,291-292:241-245.
    [29]Y.X.Zhang,R.K.Kang,D.M.Guo and Z.J.Jin.Rarnan Microspectroscopy Study on the Ground Surface of Monocrystalline Silicon Wafers,Key Engineering Materials,2006,304-305:425-431.
    [30]Klamecki B.E..Incipient chip formation in metal cutting-a three dimension finite analysis,PhD dissertation,Urbana:University of Illinois at Urbana-Chanpaign,1973,1-10.
    [31]Usui E.and Shirakashi T..Mechanics of machining-from descriptive to predictive theory,On the art of cutting metals-75 years later a tribute to F.W.Taylor,1982,13-30.
    [32]Iwata K.,Osakada K.and Terasaka T..Process modeling of orthogonal cutting by the rigid plastic finite element method,Transactions of the ASME,Journal of Engineering Material and Technology,1984,106:132-138.
    [33]Komvopoulos K.and Erpenbeck S.A..Finite element modeling of orthogonal metal cutting,Transactions of the ASME,Journal of Engineering for Industry,1991,113:253-267.
    [34]M.Toshimichi,S.Nobuhiro and L.Sheng.Combined Stress,Material Flow and Heat Analysis if Orthogonal Micromachining of Copper.Annals of the CIRP,1993,42(1):75-78.
    [35]Lin Zone-ching and Lee Been-yon.An investigation of the residual stress of a machined workpiece considering tool flank wear,Journal of Materials Processing Technology,1995,51:1-24.
    [36]M.Mahdi and L.C.Zhang.An Adaptive Three-dimensional Finite Element Algorithm for the Orthogonal Cutting of Composite Materials,Journal of Materials Processing Technology,2001,113:368-372.
    [37]M.Mahdi and L.C.Zhang.A Finite Element Model for the Orthogonal Cutting of Fiber-reinforced Composite Materials,Journal of Materials Processing Technology,2001,113:373-377.
    [38]I.Zarudi and L.C.Zhang.A Revisit to Some Wheel-workpiece Interaction Problems in Surface Grinding,International Journal of Machine Tools & Manufacture,2002,42:905-913.
    [39] V. R. Marinov. Hybrid Analytical-numerical Solution for the Shear Angle in Othogonal Metal Cutting-Part I: Theoretical Foundation. International Journal of Mechanical Science, 2001(43): 399-414.
    
    [40] Guo Y. B. and Liu C. R.. FEM analysis of mechanical state on sequentially machined surfaces. Machining Science and Technology. 2002,6 (1): 21-41.
    
    [41] Shet C. and Deng X.. Residual stresses and strains in orthogonal metal cutting, International Journal of Machine Tools & Manufacture, 2003,43: 573-587.
    
    [42] E. Fermi, J. Pasta and S. M. Ulam. "Studies of Non-Linear Problems" in Enrico Fermi: Collected Papers, University of Chicago Press, 1955: 978.
    
    [43] B. J. Alder and T. E. Wainwright. Molecular Dynamics Simulation of Hard Sphere System, Journal of Chemistry and Physics, 1957(27): 1208-1218.
    
    [44] B. J. Alder and T. E. Wainwright. The Property of Hard Sphere System, Physics Review, 1962(127): 359-366.
    
    [45] L. Verlet. A New Algorism of MDS, Physics Review, 1967(159): 98-110.
    
    [46] W.G. Hoover and A.J.D. Groot. Large-Scale Elastic-Plastic Indentation Simulation via nonequilibrium Molecular Dynamics, Physics Review, 1990(42): 5844-5853.
    
    [47] S. Shimada, N. Ikawa, Feasibility study on ultimate accuracy in microcutting using molecular dynamics simulation, Annals of the CIRP, 1993: 91-94
    
    [48] 温诗铸.纳米级摩擦学进展,清华大学出版社,1996:69-80.
    
    [49] W.G. Hoover, A.J.D. Groot, I. F. Stowers and W. J. Slekhaus. Interface Tribology via Nonequilibium Molecular Dynamics Simulation, Material Research Symposium, 1989(140): 119-124.
    
    [50] I. F. Stowers, R. Komanduri and E. D. Baird. Review of Precision Surface Generation Processes and their Potential Application to the Fabrication of Large Optical Components. Proceeding of the SPIE, San Diego, 1989:62-73.
    
    [51] J. Belak and I. F. Stowers. A Molecular Dynamics Model of the Orthogonal Cutting Process, Proceeding of the ASPE, Annal Conference, Rochester, New York, 1990: 23-28.
    
    [52] J. Belak, W. G. Hoover, C. G. Hoover, A. J. De and I. F. Stowers. Molecular Dynamics Modeling Applied to Indentation and Metal Cutting Problems, Thrust Area Reps., 1990(89): 4-8.
    
    [53] J. Belak, D. A. Lucca, and R. Komanduri. Molecular Dynamics Simulation of the Chip Forming Process in Single Crystal Copper and Comparison with Experimental Data, Proceeding of the ASPE, Annal Conference, 1991: 100-103.
    
    [54] J. Belak, D.B. Boercker and I. F. Stowers. Simulation of Nanometer-Scale Deformation of Metallic and Ceramic Surface, MRS Bullletin, 1993, 18(5): 55-60.
    
    [55] J. Belak, J. N. Glosli, D. B. Boercker and I. F. Stowers. Molecular Dynamics Simulation of Mechanical Deformation of Ultra-thin Metal and Ceramic Films, Mat. Res. Soc. Symp. Proc, 1995(389): 181-190.
    
    [56] R. Komanduri, N. Chandrasekaran and L. M. Raff. Effect of Geometry in Nanometric Cutting: A Molecular Dynamics Simulation Approach, Wear, 1998(118): 84-97.
    
    [57] N. Chandrasekaran, A. Noori-khajavi, L. M. Raff and R. Komanduri. A New Method for Molecular Dynamics Simulation of Nanometric Cutting, Philos. Mag., 1998, B77(1): 7-13.
    
    [58] R. Komanduri, N. Chandrasekaran and L. M. Raff. Orientation Effects in Nanometric Cutting of Sigle Crystal Materials: A MD Simulation Approach, Annals of the CIRP, 1999, 48(1): 296-302.
    [59]R.Komanduri,N.Chandrasekaran and L.M.Raff.MD simulation of Nanometric Cutting of Single Crystal Aluminum-Effect of Crystal Orientation and Direction of Cutting,Wear,2000(242):60-88.
    [60]R.Komanduri and L.M.Raff.A Review on the Molecular Dynamics Simulation of Machining at the Atomic Scale,Proceeding of the I MECH E(Part B),Journal of Engineering Manufacture,2001(215):1639-1672.
    [61]T.Inamura,H.Suzuki and N.Takezawa.Cutting Experiment in A Computer Using Atomic Models of A Copper Crystal and A Diamond Tool,JSPE,1990,56(8):1480-1486.
    [62]N.Ikawa,S.Shimada and H.Tanaka.Mininum Thickness of Cutting in Micromachining,Nanotechnology,1992,3(1):6-9.
    [63]S.Shimada,N.Ikawa and G.Ohmori.Molecular Dynamics Analysis as Compared with Experimental Results of Micromachining,Annals of the CIRP,1992,41(1):117-120.
    [64]T.Inamura,N.Takezawa and Y.Kumaki.Mechanics and Energy Dissipation in Nanoscale Cutting,Annals of the CIRP,1993,42(1):79-82.
    [65]S.Shimada,N.Ikawa and H.Tanaka.Feasibility Study on Ultimate Accuracy in Microcutting Using Molecular Dynamics Simulation,Annals of the CIRP,1993,42(1):91-94.
    [66]S.Shimada,N.Ikawa and H.Tanaka.Structure of Micromachined Surface Simulated by Molecular Dynamics Analysis,Annals of the CIRP,1994,43(1):51-53.
    [67]S.Shimada,N.Ikawa and T.Inamura.Brittle-DuctileTransition Phenomena in Microindentation and Micromachining,Annals of the CIRP,1995,44(1):523-525.
    [68]S.Shimada,R.Inoue,J.Uchikoshi and N.Ikawa.Molecular Dynamics Analysis on Microstructure of Diamond Turned Surface,Proceeding of the SPIE,Tokyo,1995:315-322.
    [69]S.Shimada.Molecular Dynamics Analysis of Nanometric Cutting Process,Int.J.Japan.Soc.Prec.Eng.,1995,29(4):283-286.
    [70]T.Inamura and S.Shimada.Brittle/Ductile Transition Phenomena Observed in Computer Simulations of Machining Defect-Free Monocrystalline Silicon,Annals of the CIRP,1997,46(1):31-34.
    [71]T.Inamura.Computer Simulation of Microcutting.Int.J.Japan.Soc.Prec.Eng.,1998,32(4):239-242.
    [72]T.Inamura,S.Shimada,N.Ikawa and N.Takezawa.Crack Initiation in Machining Monocrystalline Silicon,Annals of the CIRP,1999,48(1):81-84.
    [73]S.Shimada,H.Tanaka and N.Ikawa.Atomistic Mechanism of Surface Generation in Micromachining of Monocrystalline Silicon,Proceeding of the 1st International Euspen Conference Bremen,1999:230-233.
    [74]X.S.Han,B.Lin and S.Y.Yu.Investigation of Tool Geometry in Nanometric Cutting by Molecular Dynamics Dimulation,Journal of Materials Processing Technology,2002(129):105-108.
    [75]韩雪松.超精密加工机理及其仿真研究:(硕士学位论文).天津:天津大学,2002.
    [76]罗熙淳,梁迎春,董申.分子动力学在单点金刚石超精密车削机理研究中的应用,工具技术,2000,34(4):3-7.
    [77]罗熙淳,梁迎春,董申.单晶硅纳米级加工机理的分子动力学研究,航空精密制造技术,2000,36(3):21-24.
    [78]罗熙淳,梁迎春,董申.单晶铝纳米级切削过程分子动力学模拟技术研究,中国机械工程,2000,11(8):860-862.
    [79]X.Luo,Y.Liang and S.Dong.Atomic Study on Some Problems in Nanometric Cutting Mechanism,High Technology Letters,2000,6(4):50-53.
    [80]Y.Liang,X.Luo and S.Dong.MDS Study of the Effects of Micro-vibrations of the Diamond Tool on the Nanometric Machined Surface Roughness,Proceeding of the 2nd Euspen International Conference,Turin,2001:692-695.
    [81]唐玉兰.基于分子动力学单晶材料纳米级切削过程及相关技术的研究:(博士学位论文),哈尔滨:哈尔滨工业大学,2004.
    [82]唐玉兰,梁迎春,霍德鸿,程凯.基于分子动力学单晶硅纳米级切削机理研究,微细加工技术,2003,76(2):76-80.
    [83]唐玉兰,梁迎春,霍德鸿,董申.单晶铜纳米级切削过程的研究,纳米级技术与精密工程,2004,2(2):132-135.
    [84]R.Komanduri and N.Chandrasekaran.MD simulation of indentation and scratching of single crystal aluminum,Wear,2000(240):113-143.
    [85]R.Komanduri and N.Chandrasekaran,Molecular Dynamics Simulation of Atomic-Scale Friction,Physical Review,2000(B61):14007-14019.
    [86]R.Rentsch and I.Inasaki.Investigation of Surface Integrity by Molecular Dynamics Simulation,Annals of the CIRP,1995,44(1):295-298.
    [87]L.C Zhang and H.Tanaka.On the Mechanics and Physics in the Nano-Indentation of Silicon Monocrystals,JSME International Journal,1999,42(4):546-559.
    [88]W.C.D.Cheong and L.C.Zhang.Molecular Dynamics Simulation of Phase Transformations in Silicon Monocrystals Due to Nano-indentation,Nanotechnology,2000(11):173-180.
    [89]W.C.D.Cheong and L.C.Zhang.Effects of Repeated Nano-Indentations on the Deformation in Monocrystalline Silicon,Journal of Materials Science Letters,2000(19):439-442.
    [90]田珺,梁迎春.基于分子动力学的单晶硅压痕过程计算机仿真研究,江苏机械制造与自动化,2001(4):139-141.
    [91]田珺.纳米级磨削过程的分子动力学建模与仿真:(硕士学位论文),哈尔滨:哈尔滨工业大学,2001.
    [92]L.C Zhang and H.Tanaka.Atomic Scale Deformation in Silicon Monocrystals Induced by Two-Body and Three-Body Contact Sliding,Tribology International,1998,31(8):425-433.
    [93]R.Rentsch and I.Inasaki.Molecular Dynamics Simulation for Abrasive Processes,Annals of the CIRP,1994,43(1):327-330.
    [94]J.Shimizu,L.Zhou,A.Muroya and H.Eda.Simulation and Experimental Analysis of Abrasive Wear in Ultra High-Speed Grinding,Proceeding of WTC,2001.
    [95]J.Shimizu,L.Zhou and H.Eda.Simulation and Experimental Analysis of Super High-Speed Grinding of Ductile Material,Journal of Materials Processing Technology,2002,129:19-24.
    [96]林滨,韩雪松,于思远.纳米级磨削过程中分子动力学计算机仿真实验,天津大学学报,2000,33(5):652-656.
    [97]林滨.工程陶瓷超精密磨削技术研究:(博士学位论文),天津:天津大学,1998.
    [98]庄昌文,林晓东,刘心松.实现并行计算机的机群系统,计算机应用,1998,18(6):11-13.
    [99]胡凯,张怡,鲍峥.机群计算(Cluster Computing),http://www.e-works.net.cn/wljs/yj26.htm
    [100]杨文志.Linux最佳实用手册,人民邮电出版社,1996.
    [101]Verlet L.Computer "experiments" on classical fluids:1.thermo dynamical properties of Lennard-Jones molecules,Physical Review,1967,159:98-103.
    [102]陈国良.并行计算结构·算法·编程,高等教育出版社,1999.
    [103]A.Geist,A.Belguelin,J.Dongarra,W.C.Jiang,R.Manchek,V Sunderam.PVM:Parallel Virtual Machine A Users' Guide and Tutorial for networked parallel computing,Cambridge,The MIT Press,1994.
    [104]董科军,刘让苏,郑采星等.液态金属原子大系统凝固过程模拟的并行算法研究,自然科学进展,2001,2:187-193.
    [105]Steven J.Plimpton.Molecular Dynamics Simulations of Short-Range Force Systems on 1024-Node Hypercubes,Distributed Memory Computing Conference,1990:478-483.
    [106]Steven J.Plimpton.Fast parallel algorithms for short-range molecular dynamics[J],Journal of computational physics,1994,117:1-19.
    [107]李世桥.单晶硅超精密磨削分子动力学并行仿真的研究:(硕士学位论文),大连:大连理工大学,2005.
    [108]F.bruge,S.L.Formil.Concurrent molecular dynamics simulation of spinodal phase transition on transputer arrays,Computer physics communications,1990,60:31-38.
    [109]T.W.Clark,et al.Parallelzing molecular dynamics using spatial decomposition,IEEE,Comput.Soc.Press.Washington,DC 1994:95-102.
    [110]R.Hayashi,S.Horguchi.Efficiency of dynamics load balancing based on permanent cells for parallel molecular dynamics simulation,IEEE,Comput.Soc.Press.Washington,DC 2000:1-8.
    [111]朱宇翔,张景琳.在可扩展机群系统上二维分子动力学问题的并行计算,计算物理,1999,16(4):422-427.
    [112]莫则尧,张景琳.二维分子动力学程序(MDP)的并行与优化,计算物理,2000,17(1-2):193-198.
    [113]曹小林,莫则尧,张景琳,陈其峰.基于“块-单元”数据结构的分子动力学并行计算,计算物理,2004,21(5):377-385.
    [114]曹小林,莫则尧,张景琳.MPP并行机上数亿粒子规模的分子动力学模拟,高技术通信,2004,5:10-14.
    [115]K.J.Dong,R.S.Liu,C.X.Zheng,et al.Parallel algorithm of solidification process simulation for large-sized system of liquid metal atoms,Transactions of Nonferrous Metals Society of China,2003,4:824-829.
    [116]吴江涛,刘志刚,董小社,何戈.RS/6000机群系统中分子动力学并行算法的研究,工程热物理学报,2002,23(4):418-420.
    [117]吴江涛.高精度流体热物性测试实验系统的研制及二甲醚热物理性质的研究:(博士学位论文),西安:西安交通大学,2003.
    [118]于陕升.机群计算在分子动力学模拟中的应用:(硕士学位论文),吉林:吉林大学,2003
    [119]王莹,屈一新.PC集群的建立与MPI并行环境的实现及其应用,北京化工大学学报,2001,28(4):4-6.
    [120]Shu Jiwu,Wang Bing,Chen Min.Smith.Optimization techniques for parallel force-decomposition algorithm in molecular dynamic simulations.Comp.Phy.Comm.2003,152(2):121-130.
    [121]邹芹,王明智,王艳辉.纳米级金刚石的性能与应用前景,金刚石与磨料磨具工程,2003,2(134):54-58.
    [122]W.C.D.Cheong,L.C.Zhang and H.Tanaka.Some Essentials of Simulation Nano-Surfacing Processes Using the Molecular Dynamics Method,Key Engineering Materials,2001,196:31-42.
    [123]马文淦.计算物理学,中国科学技术大学出版社,2001:91-97.
    [124]T.Inamura and N.Takezawa.Atomic-scale Cutting in A Computer Using Crystal Models of Copper and Diamond,Annals of the CIRP,1992,41(1):121-124.
    [125]于思远,林滨.分子动力学仿真技术在超精密加工领域中的应用,中国机械工程,2002:22-25.
    [126]J.Tersoff.Modeling Solid-state Chemistry:Interatomic Potentials for Multicomponent System,Physics Review,1989,B39:5566-5568.
    [127]M.S.Daw and M.I.Baskes.Semiempirical,Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals,Physics Review Letter,1983,50(17):1285-1288.
    [128]M.S.Daw and M.I.Baskes.Embdded-atom Method:Derivation and Application to Impurities,Surface and other Defects in Metals,Physics Review,1985,B(29):6443-6453.
    [129]韩雪松.超精密加工机理及其仿真的研究:(硕士学位论文),天津:天津大学,2002.
    [130]Verlet L.Computer "Experiments" on Classical Fluids:Ⅰ.Thermodynamical Properties of Lennard-Jones Molecules,Physical Review,1967,159:98-10.
    [131]Quentrec B,Brot C.New Method for Searching for Neighbors in Molecular Dynamics Computations,Journal of Computation Physics,1973,13:430-432.
    [132]李小梅,莫则尧,胡庆丰等.可扩展并行算法的设计与分析,北京:国防工业出版社,2000.
    [133]黄昆(原著),韩汝琦(改编).固体物理学,高等教育出版社,1985:122-132.
    [134]房晓勇,刘竞业,杨会静.固体物理学,哈尔滨工业大学出版社,2004:95-102.
    [135]袁俊哲,王先逵.精密和超精密加工技术,机械工业出版社,1999:43-60.
    [136]霍凤伟.硅片延性域磨削机理研究:(博士学位论文),大连:大连理工大学,2006.